1
|
Li W, Sun Y, Liang Y, Wang Y, Fan Y, Li M, Sun R, Xie J. Identification and Characterization of Troponin T Associated with Development, Metabolism and Reproduction in Tribolium castaneum. Int J Mol Sci 2025; 26:2786. [PMID: 40141428 PMCID: PMC11942869 DOI: 10.3390/ijms26062786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
As a tropomyosin-binding component, troponin T (TnT) is essential for the Ca2+ regulation of striated muscles' contraction and locomotion activity, but its impacts on the growth and development of insects have rarely been reported. In this study, TnT was identified and functionally characterized in Tribolium castaneum by RNA interference (RNAi) and transcriptome analysis. The TnT of T. castaneum contained a 1152 bp open reading frame encoding 383 amino acids. It displayed the highest expression in late pupae and was highly expressed in the integument and CNS. Both the larval and early pupal injection of dsTnT led to 100% cumulative mortality before the pupal-adult transition. Late pupal RNAi caused 26.01 ± 4.29% pupal mortality; the survivors successfully became adults, but 49.71 ± 6.51% died in 10 days with a dried and shriveled abdomen, poorly developed reproductive system and no offspring. Additionally, RNA sequencing results indicated that key ecdysteroid and juvenile hormone biosynthesis genes (CYP314A1, aldehyde dehydrogenase family 3 member B1 and farnesol dehydrogenase) were affected, as well as several cuticle protein, nutrition metabolism and immune-related genes, suggesting that TnT may play prominent roles in development, metabolism and reproduction by affecting these pathways. This study could provide a brand-new target gene in the RNAi strategy for pest control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 570228, China; (W.L.); (Y.S.); (Y.L.); (Y.W.); (Y.F.); (M.L.)
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 570228, China; (W.L.); (Y.S.); (Y.L.); (Y.W.); (Y.F.); (M.L.)
| |
Collapse
|
2
|
Ronca F, Raggi A. Role of the interaction between troponin T and AMP deaminase by zinc bridge in modulating muscle contraction and ammonia production. Mol Cell Biochem 2024; 479:793-809. [PMID: 37184757 PMCID: PMC11016001 DOI: 10.1007/s11010-023-04763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
The N-terminal region of troponin T (TnT) does not bind any protein of the contractile machinery and the role of its hypervariability remains uncertain. In this review we report the evidence of the interaction between TnT and AMP deaminase (AMPD), a regulated zinc enzyme localized on the myofibril. In periods of intense muscular activity, a decrease in the ATP/ADP ratio, together with a decrease in the tissue pH, is the stimulus for the activation of the enzyme that deaminating AMP to IMP and NH3 displaces the myokinase reaction towards the formation of ATP. In skeletal muscle subjected to strong tetanic contractions, a calpain-like proteolytic activity produces the removal in vivo of a 97-residue N-terminal fragment from the enzyme that becomes desensitized towards the inhibition by ATP, leading to an unrestrained production of NH3. When a 95-residue N-terminal fragment is removed from AMPD by trypsin, simulating in vitro the calpain action, rabbit fast TnT or its phosphorylated 50-residue N-terminal peptide binds AMPD restoring the inhibition by ATP. Taking in consideration that the N-terminus of TnT expressed in human as well as rabbit white muscle contains a zinc-binding motif, we suggest that TnT might mimic the regulatory action of the inhibitory N-terminal domain of AMPD due to the presence of a zinc ion connecting the N-terminal and C-terminal regions of the enzyme, indicating that the two proteins might physiologically associate to modulate muscle contraction and ammonia production in fast-twitching muscle under strenuous conditions.
Collapse
Affiliation(s)
- Francesca Ronca
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - Antonio Raggi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|
3
|
Cardiac troponin T and autoimmunity in skeletal muscle aging. GeroScience 2022; 44:2025-2045. [PMID: 35034279 PMCID: PMC9616986 DOI: 10.1007/s11357-022-00513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Age-related muscle mass and strength decline (sarcopenia) impairs the performance of daily living activities and can lead to mobility disability/limitation in older adults. Biological pathways in muscle that lead to mobility problems have not been fully elucidated. Immunoglobulin G (IgG) infiltration in muscle is a known marker of increased fiber membrane permeability and damage vulnerability, but whether this translates to impaired function is unknown. Here, we report that IgG1 and IgG4 are abundantly present in the skeletal muscle (vastus lateralis) of ~ 50% (11 out of 23) of older adults (> 65 years) examined. Skeletal muscle IgG1 was inversely correlated with physical performance (400 m walk time: r = 0.74, p = 0.005; SPPB score: r = - 0.73, p = 0.006) and muscle strength (r = - 0.6, p = 0.05). In a murine model, IgG was found to be higher in both muscle and blood of older, versus younger, C57BL/6 mice. Older mice with a higher level of muscle IgG had lower motor activity. IgG in mouse muscle co-localized with cardiac troponin T (cTnT) and markers of complement activation and apoptosis/necroptosis. Skeletal muscle-inducible cTnT knockin mice also showed elevated IgG in muscle and an accelerated muscle degeneration and motor activity decline with age. Most importantly, anti-cTnT autoantibodies were detected in the blood of cTnT knockin mice, old mice, and older humans. Our findings suggest a novel cTnT-mediated autoimmune response may be an indicator of sarcopenia.
Collapse
|
4
|
Rasmussen M, Feng HZ, Jin JP. Evolution of the N-Terminal Regulation of Cardiac Troponin I for Heart Function of Tetrapods: Lungfish Presents an Example of the Emergence of Novel Submolecular Structure to Lead the Capacity of Adaptation. J Mol Evol 2022; 90:30-43. [PMID: 34966949 PMCID: PMC10926322 DOI: 10.1007/s00239-021-10039-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Troponin-based Ca2+ regulation of striated muscle contraction emerged approximately 700 million years ago with largely conserved functions during evolution. Troponin I (TnI) is the inhibitory subunit of troponin and has evolved into three muscle type-specific isoforms in vertebrates. Cardiac TnI is specifically expressed in the adult heart and has a unique N-terminal extension implicating a specific value during natural selection. The N-terminal extension of cardiac TnI in higher vertebrates contains β-adrenergic-regulated protein kinase A (PKA) phosphorylation sites as a mechanism to enhance cardiac muscle relaxation and facilitate ventricular filling. Phylogenic studies showed that the N-terminal extension of cardiac TnI first emerged in the genomes of early tetrapods as well as primordial lobe-finned fishes such as the coelacanth whereas it is absent in ray-finned fish. This apparently rapid evolution of β-adrenergic regulation of cardiac function suggests a high selection value for the heart of vertebrate animals on land to work under higher metabolic demands. Sequencing and PKA phosphorylation data showed that lungfish cardiac TnI has evolved with an amphibian-like N-terminal extension with prototype PKA phosphorylation sites while its overall structure remained fish like. The data demonstrate that the submolecular structure of TnI may evolve ahead of the whole protein for cardiac muscle contractility to adapt to new environmental conditions. Understanding the evolution of the β-adrenergic regulation of TnI and cardiac adaptation to the increased energetic demands of life on land adds knowledge for the treatment of human heart diseases and failure.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Han-Zhong Feng
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Owen AM, Patel SP, Smith JD, Balasuriya BK, Mori SF, Hawk GS, Stromberg AJ, Kuriyama N, Kaneki M, Rabchevsky AG, Butterfield TA, Esser KA, Peterson CA, Starr ME, Saito H. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. eLife 2019; 8:e49920. [PMID: 31793435 PMCID: PMC6890461 DOI: 10.7554/elife.49920] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic critical illness is a global clinical issue affecting millions of sepsis survivors annually. Survivors report chronic skeletal muscle weakness and development of new functional limitations that persist for years. To delineate mechanisms of sepsis-induced chronic weakness, we first surpassed a critical barrier by establishing a murine model of sepsis with ICU-like interventions that allows for the study of survivors. We show that sepsis survivors have profound weakness for at least 1 month, even after recovery of muscle mass. Abnormal mitochondrial ultrastructure, impaired respiration and electron transport chain activities, and persistent protein oxidative damage were evident in the muscle of survivors. Our data suggest that sustained mitochondrial dysfunction, rather than atrophy alone, underlies chronic sepsis-induced muscle weakness. This study emphasizes that conventional efforts that aim to recover muscle quantity will likely remain ineffective for regaining strength and improving quality of life after sepsis until deficiencies in muscle quality are addressed.
Collapse
Affiliation(s)
- Allison M Owen
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Samir P Patel
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonUnited States
| | - Jeffrey D Smith
- Department of Biosystems and Agricultural EngineeringUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
| | - Beverly K Balasuriya
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Stephanie F Mori
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Gregory S Hawk
- Department of StatisticsUniversity of KentuckyLexingtonUnited States
| | | | - Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical SchoolCharlestownUnited States
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical SchoolCharlestownUnited States
| | - Alexander G Rabchevsky
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonUnited States
| | - Timothy A Butterfield
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
| | - Karyn A Esser
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Charlotte A Peterson
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
- Department of Rehabilitation SciencesUniversity of KentuckyLexingtonUnited States
| | - Marlene E Starr
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonUnited States
| | - Hiroshi Saito
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
| |
Collapse
|
6
|
Denes LT, Riley LA, Mijares JR, Arboleda JD, McKee K, Esser KA, Wang ET. Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation. Skelet Muscle 2019; 9:17. [PMID: 31174599 PMCID: PMC6555731 DOI: 10.1186/s13395-019-0203-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background Skeletal muscle contributes to roughly 40% of lean body mass, and its loss contributes to morbidity and mortality in a variety of pathogenic conditions. Significant insights into muscle function have been made using cultured cells, in particular, the C2C12 myoblast line. However, differentiation of these cells in vitro typically yields immature myotubes relative to skeletal muscles in vivo. While many efforts have attempted to improve the maturity of cultured myotubes, including the use of bioengineered substrates, lack of molecular characterization has precluded their widespread implementation. This study characterizes morphological, molecular, and transcriptional features of C2C12 myotubes cultured on crosslinked, micropatterned gelatin substrates fabricated using previously established methods and compares them to myotubes grown on unpatterned gelatin or traditional plasticware. Methods We used immunocytochemistry, SDS-PAGE, and RNAseq to characterize C2C12 myotubes grown on micropatterned gelatin hydrogels, unpatterned gelatin hydrogels, and typical cell culture substrates (i.e., plastic or collagen-coated glass) across a differentiation time course. The ability to form aligned sarcomeres and myofilament protein concentration was assessed. Additionally, the transcriptome was analyzed across the differentiation time course. Results C2C12 myotubes grown on micropatterned gelatin hydrogels display an increased ability to form aligned sarcomeres as well as increased contractile protein content relative to myotubes cultured on unpatterned gelatin and plastic. Additionally, genes related to sarcomere formation and in vivo muscle maturation are upregulated in myotubes grown on micropatterned gelatin hydrogels relative to control myotubes. Conclusions Our results suggest that growing C2C12 myotubes on micropatterned gelatin hydrogels accelerates sarcomere formation and yields a more fully matured myotube culture. Thus, the use of micropatterned hydrogels is a viable and simple approach to better model skeletal muscle biology in vitro. Electronic supplementary material The online version of this article (10.1186/s13395-019-0203-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lance T Denes
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lance A Riley
- Department of Physiology and Functional Genomics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joseph R Mijares
- Department of Physiology and Functional Genomics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Juan D Arboleda
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kendra McKee
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Xu Z, Feng X, Dong J, Wang ZM, Lee J, Furdui C, Files DC, Beavers KM, Kritchevsky S, Milligan C, Jin JP, Delbono O, Zhang T. Cardiac troponin T and fast skeletal muscle denervation in ageing. J Cachexia Sarcopenia Muscle 2017; 8:808-823. [PMID: 28419739 PMCID: PMC5659053 DOI: 10.1002/jcsm.12204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. METHODS Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. RESULTS Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. CONCLUSIONS Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast-twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age-related decline in muscle function.
Collapse
Affiliation(s)
- Zherong Xu
- Department of Internal Medicine, Section on Gerontology and Geriatic Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Geriatrics, First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Xin Feng
- Department of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Juan Dong
- Department of Internal Medicine, Section on Gerontology and Geriatic Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatic Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daniel Clark Files
- Internal Medicine-Pulmonary, Critical Care, Allergy and Immunology, Gerontology and Geriatric Medicine and the Critical Illness Injury and Recovery Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kristen M Beavers
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| | - Stephen Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatic Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carolanne Milligan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatic Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tan Zhang
- Department of Internal Medicine, Section on Gerontology and Geriatic Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Mondal A, Jin JP. Protein Structure-Function Relationship at Work: Learning from Myopathy Mutations of the Slow Skeletal Muscle Isoform of Troponin T. Front Physiol 2016; 7:449. [PMID: 27790152 PMCID: PMC5062619 DOI: 10.3389/fphys.2016.00449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 12/03/2022] Open
Abstract
Troponin T (TnT) is the sarcomeric thin filament anchoring subunit of the troponin complex in striated muscles. A nonsense mutation in exon 11 of the slow skeletal muscle isoform of TnT (ssTnT) gene (TNNT1) was found in the Amish populations in Pennsylvania and Ohio. This single nucleotide substitution causes a truncation of the ssTnT protein at Glu180 and the loss of the C-terminal tropomyosin (Tm)-binding site 2. As a consequence, it abolishes the myofilament integration of ssTnT and the loss of function causes an autosomal recessive nemaline myopathy (NM). More TNNT1 mutations have recently been reported in non-Amish ethnic groups with similar recessive NM phenotypes. A nonsense mutation in exon 9 truncates ssTnT at Ser108, deleting Tm-binding site 2 and a part of the middle region Tm-binding site 1. Two splicing site mutations result in truncation of ssTnT at Leu203 or deletion of the exon 14-encoded C-terminal end segment. Another splicing mutation causes an internal deletion of the 39 amino acids encoded by exon 8, partially damaging Tm-binding site 1. The three splicing mutations of TNNT1 all preserve the high affinity Tm-binding site 2 but still present recessive NM phenotypes. The molecular mechanisms for these mutations to cause myopathy provide interesting models to study and understand the structure-function relationship of TnT. This focused review summarizes the current knowledge of TnT isoform regulation, structure-function relationship of TnT and how various ssTnT mutations cause recessive NM, in order to promote in depth studies for further understanding the pathogenesis and pathophysiology of TNNT1 myopathies toward the development of effective treatments.
Collapse
Affiliation(s)
- Anupom Mondal
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
9
|
TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene 2016; 582:1-13. [PMID: 26774798 DOI: 10.1016/j.gene.2016.01.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
Abstract
Troponin T (TnT) is a central player in the calcium regulation of actin thin filament function and is essential for the contraction of striated muscles. Three homologous genes have evolved in vertebrates to encode three muscle type-specific TnT isoforms: TNNT1 for slow skeletal muscle TnT, TNNT2 for cardiac muscle TnT, and TNNT3 for fast skeletal muscle TnT. Alternative splicing and posttranslational modifications confer additional structural and functional variations of TnT during development and muscle adaptation to various physiological and pathological conditions. This review focuses on the TnT isoform genes and their molecular evolution, alternative splicing, developmental regulation, structure-function relationships of TnT proteins, posttranslational modifications, and myopathic mutations and abnormal splicing. The goal is to provide a concise summary of the current knowledge and some perspectives for future research and translational applications.
Collapse
|
10
|
Jin JP. Evolution, Regulation, and Function of N-terminal Variable Region of Troponin T: Modulation of Muscle Contractility and Beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 321:1-28. [DOI: 10.1016/bs.ircmb.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Ikonomov OC, Sbrissa D, Compton LM, Kumar R, Tisdale EJ, Chen X, Shisheva A. The Protein Complex of Neurodegeneration-related Phosphoinositide Phosphatase Sac3 and ArPIKfyve Binds the Lewy Body-associated Synphilin-1, Preventing Its Aggregation. J Biol Chem 2015; 290:28515-28529. [PMID: 26405034 DOI: 10.1074/jbc.m115.669929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/14/2022] Open
Abstract
The 5-phosphoinositide phosphatase Sac3, in which loss-of-function mutations are linked to neurodegenerative disorders, forms a stable cytosolic complex with the scaffolding protein ArPIKfyve. The ArPIKfyve-Sac3 heterodimer interacts with the phosphoinositide 5-kinase PIKfyve in a ubiquitous ternary complex that couples PtdIns(3,5)P2 synthesis with turnover at endosomal membranes, thereby regulating the housekeeping endocytic transport in eukaryotes. Neuron-specific associations of the ArPIKfyve-Sac3 heterodimer, which may shed light on the neuropathological mechanisms triggered by Sac3 dysfunction, are unknown. Here we conducted mass spectrometry analysis for brain-derived interactors of ArPIKfyve-Sac3 and unraveled the α-synuclein-interacting protein Synphilin-1 (Sph1) as a new component of the ArPIKfyve-Sac3 complex. Sph1, a predominantly neuronal protein that facilitates aggregation of α-synuclein, is a major component of Lewy body inclusions in neurodegenerative α-synucleinopathies. Modulations in ArPIKfyve/Sac3 protein levels by RNA silencing or overexpression in several mammalian cell lines, including human neuronal SH-SY5Y or primary mouse cortical neurons, revealed that the ArPIKfyve-Sac3 complex specifically altered the aggregation properties of Sph1-GFP. This effect required an active Sac3 phosphatase and proceeded through mechanisms that involved increased Sph1-GFP partitioning into the cytosol and removal of Sph1-GFP aggregates by basal autophagy but not by the proteasomal system. If uncoupled from ArPIKfyve elevation, overexpressed Sac3 readily aggregated, markedly enhancing the aggregation potential of Sph1-GFP. These data identify a novel role of the ArPIKfyve-Sac3 complex in the mechanisms controlling aggregate formation of Sph1 and suggest that Sac3 protein deficiency or overproduction may facilitate aggregation of aggregation-prone proteins, thereby precipitating the onset of multiple neuronal disorders.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Diego Sbrissa
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Lauren M Compton
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Rita Kumar
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201; Departments of Emergency Medicine, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Ellen J Tisdale
- Departments of Pharmacology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Xuequn Chen
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Assia Shisheva
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
12
|
Lee JS, Wu Y, Skallos P, Fang J, Zhang X, Karnovsky A, Woods J, Stemmer PM, Liu M, Zhang K, Chen X. Proteomics analysis of rough endoplasmic reticulum in pancreatic beta cells. Proteomics 2015; 15:1508-11. [PMID: 25546123 PMCID: PMC4489703 DOI: 10.1002/pmic.201400345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/02/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022]
Abstract
Pancreatic beta cells have well-developed ER to accommodate for the massive production and secretion of insulin. ER homeostasis is vital for normal beta cell function. Perturbation of ER homeostasis contributes to beta cell dysfunction in both type 1 and type 2 diabetes. To systematically identify the molecular machinery responsible for proinsulin biogenesis and maintenance of beta cell ER homeostasis, a widely used mouse pancreatic beta cell line, MIN6 cell was used to purify rough ER. Two different purification schemes were utilized. In each experiment, the ER pellets were solubilized and analyzed by 1D SDS-PAGE coupled with HPLC-MS/MS. A total of 1467 proteins were identified in three experiments with ≥95% confidence, among which 1117 proteins were found in at least two separate experiments and 737 proteins found in all three experiments. GO analysis revealed a comprehensive profile of known and novel players responsible for proinsulin biogenesis and ER homeostasis. Further bioinformatics analysis also identified potential beta cell specific ER proteins as well as ER proteins present in the risk genetic loci of type 2 diabetes. This dataset defines a molecular environment in the ER for proinsulin synthesis, folding and export and laid a solid foundation for further characterizations of altered ER homeostasis under diabetes-causing conditions. All MS data have been deposited in the ProteomeXchange with identifier PXD001081 (http://proteomecentral.proteomexchange.org/dataset/PXD001081).
Collapse
Affiliation(s)
- Jin-sook Lee
- Department of Physiology, Wayne State University, Detroit, MI 48201
| | - Yanning Wu
- Department of Physiology, Wayne State University, Detroit, MI 48201
| | - Patracia Skallos
- Department of Physiology, Wayne State University, Detroit, MI 48201
| | - Jingye Fang
- Department of Physiology, Wayne State University, Detroit, MI 48201
| | - Xuebao Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - James Woods
- Department of Physiology, Wayne State University, Detroit, MI 48201
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
| | - Ming Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Xuequn Chen
- Department of Physiology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
13
|
Sheng JJ, Jin JP. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 2014; 5:165. [PMID: 24817852 PMCID: PMC4012202 DOI: 10.3389/fphys.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
14
|
Cardiac performance correlates of relative heart ventricle mass in amphibians. J Comp Physiol B 2013; 183:801-9. [DOI: 10.1007/s00360-013-0756-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/25/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
|