1
|
Wang YY, Tian Y, Li YZ, Liu YF, Zhao YY, Chen LH, Zhang C. The role of m5C methyltransferases in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1225014. [PMID: 37476573 PMCID: PMC10354557 DOI: 10.3389/fcvm.2023.1225014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
The global leading cause of death is cardiovascular disease (CVD). Although advances in prevention and treatment have been made, the role of RNA epigenetics in CVD is not fully understood. Studies have found that RNA modifications regulate gene expression in mammalian cells, and m5C (5-methylcytosine) is a recently discovered RNA modification that plays a role in gene regulation. As a result of these developments, there has been renewed interest in elucidating the nature and function of RNA "epitranscriptomic" modifications. Recent studies on m5C RNA methylomes, their functions, and the proteins that initiate, translate and manipulate this modification are discussed in this review. This review improves the understanding of m5C modifications and their properties, functions, and implications in cardiac pathologies, including cardiomyopathy, heart failure, and atherosclerosis.
Collapse
Affiliation(s)
- Yan-Yue Wang
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuan Tian
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Yong-Zhen Li
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi-Fan Liu
- ResearchLaboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Yu-Yan Zhao
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lin-Hui Chen
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chi Zhang
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Liu RJ, Long T, Li J, Li H, Wang ED. Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Res 2017; 45:6684-6697. [PMID: 28531330 PMCID: PMC5499824 DOI: 10.1093/nar/gkx473] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
5-methylcytosine (m5C) modifications of RNA are ubiquitous in nature and play important roles in many biological processes such as protein translational regulation, RNA processing and stress response. Aberrant expressions of RNA:m5C methyltransferases are closely associated with various human diseases including cancers. However, no structural information for RNA-bound RNA:m5C methyltransferase was available until now, hindering elucidation of the catalytic mechanism behind RNA:m5C methylation. Here, we have solved the structures of NSun6, a human tRNA:m5C methyltransferase, in the apo form and in complex with a full-length tRNA substrate. These structures show a non-canonical conformation of the bound tRNA, rendering the base moiety of the target cytosine accessible to the enzyme for methylation. Further biochemical assays reveal the critical, but distinct, roles of two conserved cysteine residues for the RNA:m5C methylation. Collectively, for the first time, we have solved the complex structure of a RNA:m5C methyltransferase and addressed the catalytic mechanism of the RNA:m5C methyltransferase family, which may allow for structure-based drug design toward RNA:m5C methyltransferase–related diseases.
Collapse
Affiliation(s)
- Ru-Juan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Tao Long
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jing Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Hao Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China
| |
Collapse
|
3
|
Abstract
All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability. Whichever the case, the overall importance of modifications is highlighted by both their evolutionary conservation and the fact that organisms use a substantial portion of their genomes to encode modification enzymes, far exceeding what is needed for the de novo synthesis of the canonical nucleotides themselves [2]. Although some modifications occur at exactly the same nucleotide position in tRNAs from the three domains of life, many can be found at various positions in a particular tRNA and their location may vary between and within different tRNAs. With this wild array of chemical diversity and substrate specificities, one of the big challenges in the tRNA modification field has been to better understand at a molecular level the modes of substrate recognition by the different modification enzymes; in this realm RNA binding rests at the heart of the problem. This chapter will focus on several examples of modification enzymes where their mode of RNA binding is well understood; from these, we will try to draw general conclusions and highlight growing themes that may be applicable to the RNA modification field at large.
Collapse
|
4
|
Mundus J, Flyvbjerg KF, Kirpekar F. Identification of the methyltransferase targeting C2499 in Deinococcus radiodurans 23S ribosomal RNA. Extremophiles 2016; 20:91-9. [PMID: 26590840 PMCID: PMC4690841 DOI: 10.1007/s00792-015-0800-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023]
Abstract
The bacterium Deinococcus radiodurans-like all other organisms-introduces nucleotide modifications into its ribosomal RNA. We have previously found that the bacterium contains a Carbon-5 methylation on cytidine 2499 of its 23S ribosomal RNA, which is so far the only modified version of cytidine 2499 reported. Using homology search, we identified the open reading frame DR_0049 as the primary candidate gene for the methyltransferase that modifies cytidine 2499. Mass spectrometric analysis demonstrated that recombinantly expressed DR0049 protein methylates E. coli cytidine 2499 both in vitro and in vivo. We also inactivated the DR_0049 gene in D. radiodurans through insertion of a chloramphenicol resistance cassette. This resulted in complete absence of the cytidine 2499 methylation, which all together demonstrates that DR_0049 encodes the methyltransferase producing m(5)C2499 in D. radiodurans 23S rRNA. Growth experiments disclosed that inactivation of DR_0049 is associated with a severe growth defect, but available ribosome structures show that cytidine 2499 is positioned very similar in D. radiodurans harbouring the modification and E. coli without the modification. Hence there is no obvious structure-based explanation for the requirement for the C2499 posttranscriptional modification in D. radiodurans.
Collapse
Affiliation(s)
- Julie Mundus
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Karen Freund Flyvbjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
5
|
Abstract
Cells have developed molecular machineries, which can chemically modify DNA and RNA nucleosides. One particular and chemically simple modification, (cytosine-5) methylation (m(5)C), has been detected both in RNA and DNA suggesting universal use of m(5)C for the function of these nucleotide polymers. m(5)C can be reproducibly mapped to abundant noncoding RNAs (transfer RNA, tRNA and ribosomal RNA, rRNA), and recently, also nonabundant RNAs (including mRNAs) have been reported to carry this modification. Quantification of m(5)C content in total RNA preparations indicates that a limited number of RNAs carry this modification and suggests specific functions for (cytosine-5) RNA methylation. What exactly is the biological function of m(5)C in RNA? Before attempting to address this question, m(5)C needs to be mapped specifically and reproducibly, preferably on a transcriptome-wide scale. To facilitate the detection of m(5)C in its sequence context, RNA bisulfite sequencing (RNA-BisSeq) has been developed. This method relies on the efficient chemical deamination of nonmethylated cytosine, which can be read out as single nucleotide polymorphism (nonmethylated cytosine as thymine vs. methylated cytosine as cytosine), when differentially comparing cDNA libraries to reference sequences after DNA sequencing. Here, the basic protocol of RNA-BisSeq, its current applications and limitations are described.
Collapse
Affiliation(s)
- Matthias Schaefer
- Vienna Biocenter, Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Universität Wien, Vienna, Austria.
| |
Collapse
|
6
|
Rout S, Warhurst DC, Suar M, Mahapatra RK. In silico comparative genomics analysis of Plasmodium falciparum for the identification of putative essential genes and therapeutic candidates. J Microbiol Methods 2015; 109:1-8. [DOI: 10.1016/j.mimet.2014.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/27/2014] [Accepted: 11/27/2014] [Indexed: 01/17/2023]
|
7
|
Lartigue C, Lebaudy A, Blanchard A, El Yacoubi B, Rose S, Grosjean H, Douthwaite S. The flavoprotein Mcap0476 (RlmFO) catalyzes m5U1939 modification in Mycoplasma capricolum 23S rRNA. Nucleic Acids Res 2014; 42:8073-82. [PMID: 24939895 PMCID: PMC4081110 DOI: 10.1093/nar/gku518] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 01/26/2023] Open
Abstract
Efficient protein synthesis in all organisms requires the post-transcriptional methylation of specific ribosomal ribonucleic acid (rRNA) and transfer RNA (tRNA) nucleotides. The methylation reactions are almost invariably catalyzed by enzymes that use S-adenosylmethionine (AdoMet) as the methyl group donor. One noteworthy exception is seen in some bacteria, where the conserved tRNA methylation at m5U54 is added by the enzyme TrmFO using flavin adenine dinucleotide together with N5,N10-methylenetetrahydrofolate as the one-carbon donor. The minimalist bacterium Mycoplasma capricolum possesses two homologs of trmFO, but surprisingly lacks the m5U54 tRNA modification. We created single and dual deletions of the trmFO homologs using a novel synthetic biology approach. Subsequent analysis of the M. capricolum RNAs by mass spectrometry shows that the TrmFO homolog encoded by Mcap0476 specifically modifies m5U1939 in 23S rRNA, a conserved methylation catalyzed by AdoMet-dependent enzymes in all other characterized bacteria. The Mcap0476 methyltransferase (renamed RlmFO) represents the first folate-dependent flavoprotein seen to modify ribosomal RNA.
Collapse
Affiliation(s)
- Carole Lartigue
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Anne Lebaudy
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Alain Blanchard
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, University of Florida, FL 32611, USA
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Henri Grosjean
- Centre de Génétique Moléculaire, UPR3404, CNRS, Associée à l'Université Paris Sud 11, FRC 3115, F-91190 Gif-sur-Yvette, France
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|