1
|
Maghodia AB, Geisler C, Jarvis DL. A new nodavirus-negative Trichoplusia ni cell line for baculovirus-mediated protein production. Biotechnol Bioeng 2020; 117:3248-3264. [PMID: 32662870 DOI: 10.1002/bit.27494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022]
Abstract
Cell lines derived from Trichoplusia ni (Tn) are widely used as hosts in the baculovirus-insect cell system (BICS). One advantage of Tn cell lines is they can produce recombinant proteins at higher levels than cell lines derived from other insects. However, Tn cell lines are persistently infected with an alphanodavirus, Tn5 cell-line virus (TnCLV), which reduces their utility as a host for the BICS. Several groups have isolated TnCLV-negative Tn cell lines, but none were thoroughly characterized and shown to be free of other adventitious viruses. Thus, we isolated and extensively characterized a new TnCLV-negative line, Tn-nodavirus-negative (Tn-NVN). Tn-NVN cells have no detectable TnCLV, no other previously identified viral contaminants of lepidopteran insect cell lines, and no sequences associated with any replicating virus or other viral adventitious agents. Tn-NVN cells tested negative for >60 species of Mycoplasma, Acholeplasma, Spiroplasma, and Ureaplasma. Finally, Tn-NVN cells grow well as a single-cell suspension culture in serum-free medium, produce recombinant proteins at levels similar to High Five™ cells, and do not produce recombinant glycoproteins with immunogenic core α1,3-fucosylation. Thus, Tn-NVN is a new, well-characterized TnCLV-negative cell line with several other features enhancing its utility as a host for the BICS.
Collapse
Affiliation(s)
| | | | - Donald L Jarvis
- GlycoBac, LLC, Laramie, Wyoming.,Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
2
|
Abstract
Glycosylation refers to the covalent attachment of sugar residues to a protein or lipid, and the biological importance of this modification has been widely recognized. While glycosylation in mammals is being extensively investigated, lower level animals such as invertebrates have not been adequately interrogated for their glycosylation. The rich diversity of invertebrate species, the increased database of sequenced invertebrate genomes and the time and cost efficiency of raising and experimenting on these species have enabled a handful of the species to become excellent model organisms, which have been successfully used as tools for probing various biologically interesting problems. Investigation on invertebrate glycosylation, especially on model organisms, not only expands the structural and functional knowledgebase, but also can facilitate deeper understanding on the biological functions of glycosylation in higher organisms. Here, we reviewed the research advances in invertebrate glycosylation, including N- and O-glycosylation, glycosphingolipids and glycosaminoglycans. The aspects of glycan biosynthesis, structures and functions are discussed, with a focus on the model organisms Drosophila and Caenorhabditis. Analytical strategies for the glycans and glycoconjugates are also summarized.
Collapse
Affiliation(s)
- Feifei Zhu
- 1 Institute of Life Sciences, Jiangsu University , Zhenjiang 212013 , People's Republic of China.,2 School of Food and Biological Engineering, Jiangsu University , Zhenjiang 212013 , People's Republic of China
| | - Dong Li
- 1 Institute of Life Sciences, Jiangsu University , Zhenjiang 212013 , People's Republic of China
| | - Keping Chen
- 1 Institute of Life Sciences, Jiangsu University , Zhenjiang 212013 , People's Republic of China
| |
Collapse
|
3
|
Zhang P, Burel C, Plasson C, Kiefer-Meyer MC, Ovide C, Gügi B, Wan C, Teo G, Mak A, Song Z, Driouich A, Lerouge P, Bardor M. Characterization of a GDP-Fucose Transporter and a Fucosyltransferase Involved in the Fucosylation of Glycoproteins in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2019; 10:610. [PMID: 31164895 PMCID: PMC6536626 DOI: 10.3389/fpls.2019.00610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
Although Phaeodactylum tricornutum is gaining importance in plant molecular farming for the production of high-value molecules such as monoclonal antibodies, little is currently known about key cell metabolism occurring in this diatom such as protein glycosylation. For example, incorporation of fucose residues in the glycans N-linked to protein in P. tricornutum is questionable. Indeed, such epitope has previously been found on N-glycans of endogenous glycoproteins in P. tricornutum. Meanwhile, the potential immunogenicity of the α(1,3)-fucose epitope present on plant-derived biopharmaceuticals is still a matter of debate. In this paper, we have studied molecular actors potentially involved in the fucosylation of the glycoproteins in P. tricornutum. Based on sequence similarities, we have identified a putative P. tricornutum GDP-L-fucose transporter and three fucosyltransferase (FuT) candidates. The putative P. tricornutum GDP-L-fucose transporter coding sequence was expressed in the Chinese Hamster Ovary (CHO)-gmt5 mutant lacking its endogenous GDP-L-fucose transporter activity. We show that the P. tricornutum transporter is able to rescue the fucosylation of proteins in this CHO-gmt5 mutant cell line, thus demonstrating the functional activity of the diatom transporter and its appropriate Golgi localization. In addition, we overexpressed one of the three FuT candidates, namely the FuT54599, in P. tricornutum and investigated its localization within Golgi stacks of the diatom. Our findings show that overexpression of the FuT54599 leads to a significant increase of the α(1,3)-fucosylation of the diatom endogenous glycoproteins.
Collapse
Affiliation(s)
- Peiqing Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Carole Burel
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Carole Plasson
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Marie-Christine Kiefer-Meyer
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Clément Ovide
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Bruno Gügi
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Corrine Wan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Gavin Teo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Amelia Mak
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Azeddine Driouich
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Patrice Lerouge
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Muriel Bardor
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
- Institut Universitaire de France (I.U.F.), Paris, France
| |
Collapse
|
4
|
Frappaolo A, Sechi S, Kumagai T, Karimpour-Ghahnavieh A, Tiemeyer M, Giansanti MG. Modeling Congenital Disorders of N-Linked Glycoprotein Glycosylation in Drosophila melanogaster. Front Genet 2018; 9:436. [PMID: 30333856 PMCID: PMC6176275 DOI: 10.3389/fgene.2018.00436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/14/2018] [Indexed: 11/13/2022] Open
Abstract
Protein glycosylation, the enzymatic addition of N-linked or O-linked glycans to proteins, serves crucial functions in animal cells and requires the action of glycosyltransferases, glycosidases and nucleotide-sugar transporters, localized in the endoplasmic reticulum and Golgi apparatus. Congenital Disorders of Glycosylation (CDGs) comprise a family of multisystemic diseases caused by mutations in genes encoding proteins involved in glycosylation pathways. CDGs are classified into two large groups. Type I CDGs affect the synthesis of the dolichol-linked Glc3Man9GlcNac2 precursor of N-linked glycosylation or its transfer to acceptor proteins. Type II CDG (CDG-II) diseases impair either the trimming of the N-linked oligosaccharide, the addition of terminal glycans or the biosynthesis of O-linked oligosaccharides, which occur in the Golgi apparatus. So far, over 100 distinct forms of CDGs are known, with the majority of them characterized by neurological defects including mental retardation, seizures and hypotonia. Yet, it is unclear how defective glycosylation causes the pathology of CDGs. This issue can be only addressed by developing animal models of specific CDGs. Drosophila melanogaster is emerging as a highly suitable organism for analyzing glycan-dependent functions in the central nervous system (CNS) and the involvement of N-glycosylation in neuropathologies. In this review we illustrate recent work that highlights the genetic and neurobiologic advantages offered by D. melanogaster for dissecting glycosylation pathways and modeling CDG pathophysiology.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza - Università di Roma, Rome, Italy
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza - Università di Roma, Rome, Italy
| | - Tadahiro Kumagai
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza - Università di Roma, Rome, Italy
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza - Università di Roma, Rome, Italy
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
6
|
Walski T, De Schutter K, Van Damme EJM, Smagghe G. Diversity and functions of protein glycosylation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:21-34. [PMID: 28232040 DOI: 10.1016/j.ibmb.2017.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 05/28/2023]
Abstract
The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Kurz S, King JG, Dinglasan RR, Paschinger K, Wilson IBH. The fucomic potential of mosquitoes: Fucosylated N-glycan epitopes and their cognate fucosyltransferases. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 68:52-63. [PMID: 26617287 PMCID: PMC4707139 DOI: 10.1016/j.ibmb.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 05/12/2023]
Abstract
Fucoconjugates are key mediators of protein-glycan interactions in prokaryotes and eukaryotes. As examples, N-glycans modified with the non-mammalian core α1,3-linked fucose have been detected in various organisms ranging from plants to insects and are immunogenic in mammals. The rabbit polyclonal antibody raised against plant horseradish peroxidase (anti-HRP) is able to recognize the α1,3-linked fucose epitope and is also known to specifically stain neural tissues in the fruit fly Drosophila melanogaster. In this study, we have detected and localized the anti-HRP cross-reactivity in another insect species, the malaria mosquito vector Anopheles gambiae. We were able to identify and structurally elucidate fucosylated N-glycans including core mono- and difucosylated structures (responsible for anti-HRP cross reactivity) as well as a Lewis-type antennal modification on mosquito anionic N-glycans by applying enzymatic and chemical treatments. The three mosquito fucosyltransferase open reading frames (FucT6, FucTA and FucTC) required for the in vivo biosynthesis of the fucosylated N-glycan epitopes were identified in the Anopheles gambiae genome, cloned and recombinantly expressed in Pichia pastoris. Using a robust MALDI-TOF MS approach, we characterised the activity of the three recombinant fucosyltransferases in vitro and demonstrate that they share similar enzymatic properties as compared to their homologues from D. melanogaster and Apis mellifera. Thus, not only do we confirm the neural reactivity of anti-HRP in a mosquito species, but also demonstrate enzymatic activity for all its α1,3- and α1,6-fucosyltransferase homologues, whose specificity matches the results of glycomic analyses.
Collapse
Affiliation(s)
- Simone Kurz
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Jonas G King
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & The Malaria Research Institute, Baltimore, MD 21205, USA
| | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & The Malaria Research Institute, Baltimore, MD 21205, USA
| | | | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria.
| |
Collapse
|
8
|
Yamamoto-Hino M, Yoshida H, Ichimiya T, Sakamura S, Maeda M, Kimura Y, Sasaki N, Aoki-Kinoshita KF, Kinoshita-Toyoda A, Toyoda H, Ueda R, Nishihara S, Goto S. Phenotype-based clustering of glycosylation-related genes by RNAi-mediated gene silencing. Genes Cells 2015; 20:521-42. [PMID: 25940448 PMCID: PMC4682476 DOI: 10.1111/gtc.12246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/24/2015] [Indexed: 01/16/2023]
Abstract
Glycan structures are synthesized by a series of reactions conducted by glycosylation-related (GR) proteins such as glycosyltransferases, glycan-modifying enzymes, and nucleotide-sugar transporters. For example, the common core region of glycosaminoglycans (GAGs) is sequentially synthesized by peptide-O-xylosyltransferase, β1,4-galactosyltransferase I, β1,3-galactosyltransferase II, and β1,3-glucuronyltransferase. This raises the possibility that functional impairment of GR proteins involved in synthesis of the same glycan might result in the same phenotypic abnormality. To examine this possibility, comprehensive silencing of genes encoding GR and proteoglycan core proteins was conducted in Drosophila. Drosophila GR candidate genes (125) were classified into five functional groups for synthesis of GAGs, N-linked, O-linked, Notch-related, and unknown glycans. Spatiotemporally regulated silencing caused a range of malformed phenotypes that fell into three types: extra veins, thick veins, and depigmentation. The clustered phenotypes reflected the biosynthetic pathways of GAGs, Fringe-dependent glycan on Notch, and glycans placed at or near nonreducing ends (herein termed terminal domains of glycans). Based on the phenotypic clustering, CG33145 was predicted to be involved in formation of terminal domains. Our further analysis showed that CG33145 exhibited galactosyltransferase activity in synthesis of terminal N-linked glycans. Phenotypic clustering, therefore, has potential for the functional prediction of novel GR genes.
Collapse
Affiliation(s)
- Miki Yamamoto-Hino
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hideki Yoshida
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.,Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan.,Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Tomomi Ichimiya
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Sho Sakamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Megumi Maeda
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshinobu Kimura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Norihiko Sasaki
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan.,Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Akiko Kinoshita-Toyoda
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.,College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hidenao Toyoda
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.,College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryu Ueda
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.,Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Shoko Nishihara
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.,Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Satoshi Goto
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
9
|
Feng L, Jiang H, Wu P, Marlow FL. Negative feedback regulation of Wnt signaling via N-linked fucosylation in zebrafish. Dev Biol 2014; 395:268-86. [PMID: 25238963 DOI: 10.1016/j.ydbio.2014.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 01/05/2023]
Abstract
L-fucose, a monosaccharide widely distributed in eukaryotes and certain bacteria, is a determinant of many functional glycans that play central roles in numerous biological processes. The molecular mechanism, however, by which fucosylation mediates these processes remains largely elusive. To study how changes in fucosylation impact embryonic development, we up-regulated N-linked fucosylation via over-expression of a key GDP-Fucose transporter, Slc35c1, in zebrafish. We show that Slc35c1 overexpression causes elevated N-linked fucosylation and disrupts embryonic patterning in a transporter activity dependent manner. We demonstrate that patterning defects associated with enhanced N-linked fucosylation are due to diminished canonical Wnt signaling. Chimeric analyses demonstrate that elevated Slc35c1 expression in receiving cells decreases the signaling range of Wnt8a during zebrafish embryogenesis. Moreover, we provide biochemical evidence that this decrease is associated with reduced Wnt8 ligand and elevated Lrp6 coreceptor, which we show are both substrates for N-linked fucosylation in zebrafish embryos. Strikingly, slc35c1 expression is regulated by canonical Wnt signaling. These results suggest that Wnt limits its own signaling activity in part via up-regulation of a transporter, slc35c1 that promotes terminal fucosylation and thereby limits Wnt activity.
Collapse
Affiliation(s)
- Lei Feng
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| | - Hao Jiang
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| | - Peng Wu
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA.
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Freeze HH. Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 2013; 288:6936-45. [PMID: 23329837 DOI: 10.1074/jbc.r112.429274] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nearly 70 inherited human glycosylation disorders span a breathtaking clinical spectrum, impacting nearly every organ system and launching a family-driven diagnostic odyssey. Advances in genetics, especially next generation sequencing, propelled discovery of many glycosylation disorders in single and multiple pathways. Interpretation of whole exome sequencing results, insights into pathological mechanisms, and possible therapies will hinge on biochemical analysis of patient-derived materials and animal models. Biochemical diagnostic markers and readouts offer a physiological context to confirm candidate genes. Recent discoveries suggest novel perspectives for textbook biochemistry and novel research opportunities. Basic science and patients are the immediate beneficiaries of this bidirectional collaboration.
Collapse
Affiliation(s)
- Hudson H Freeze
- Genetic Disease Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| |
Collapse
|