1
|
Piccolo D, Zarouchlioti C, Bellingham J, Guarascio R, Ziaka K, Molday RS, Cheetham ME. A Proximity Complementation Assay to Identify Small Molecules That Enhance the Traffic of ABCA4 Misfolding Variants. Int J Mol Sci 2024; 25:4521. [PMID: 38674104 PMCID: PMC11050442 DOI: 10.3390/ijms25084521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.
Collapse
Affiliation(s)
- Davide Piccolo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Christina Zarouchlioti
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Rosellina Guarascio
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Kalliopi Ziaka
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Michael E. Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| |
Collapse
|
2
|
Baldassarri M, Zguro K, Tomati V, Pastorino C, Fava F, Croci S, Bruttini M, Picchiotti N, Furini S, GEN-COVID Multicenter Study, Pedemonte N, Gabbi C, Renieri A, Fallerini C. Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes. Cells 2022; 11:4096. [PMID: 36552859 PMCID: PMC9776607 DOI: 10.3390/cells11244096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19.
Collapse
Affiliation(s)
- Margherita Baldassarri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Kristina Zguro
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Cristina Pastorino
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16148 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Nicola Picchiotti
- Department of Mathematics, University of Pavia, 27100 Pavia, Italy
- University of Siena, DIISM-SAILAB, 53100 Siena, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | | | - Chiara Gabbi
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
3
|
Chomyshen SC, Tabarraei H, Wu CW. Translational suppression via IFG-1/eIF4G inhibits stress-induced RNA alternative splicing in Caenorhabditis elegans. Genetics 2022; 221:iyac075. [PMID: 35536193 PMCID: PMC9252287 DOI: 10.1093/genetics/iyac075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Splicing of precursor mRNA is an essential process for dividing cells, and splicing defects have been linked to aging and various chronic diseases. Environmental stress has recently been shown to modify alternative splicing, and molecular mechanisms that influence stress-induced alternative splicing remain unclear. Using an in vivo RNA splicing reporter, we performed a genome-wide RNAi screen in Caenorhabditis elegans and found that protein translation suppression via silencing of the conserved eukaryotic initiation factor 4G (IFG-1/eIF4G) inhibits cadmium-induced alternative splicing. Transcriptome analysis of an ifg-1-deficient mutant revealed an overall decrease in intronic and intergenic reads and prevented cadmium-induced alternative splicing compared to the wild type. We found that the ifg-1 mutant up-regulates >80 RNA splicing regulatory genes controlled by the TGF-β transcription factor SMA-2. The extended lifespan of the ifg-1 mutant is partially reduced upon sma-2 depletion and completely nullified when core spliceosome genes including snr-1, snr-2, and uaf-2 are knocked down. Depletion of snr-1 and snr-2 also diminished the enhanced cadmium resistance of the ifg-1 mutant. Together, these data describe a molecular mechanism through which translation suppression inhibits stress-induced alternative splicing and demonstrate an essential role for RNA splicing in promoting longevity and stress resistance in a translation-compromised mutant.
Collapse
Affiliation(s)
- Samantha C Chomyshen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
4
|
Anglès F, Wang C, Balch WE. Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold. Commun Biol 2022; 5:356. [PMID: 35418593 PMCID: PMC9008016 DOI: 10.1038/s42003-022-03302-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although the impact of genome variation on the thermodynamic properties of function on the protein fold has been studied in vitro, it remains a challenge to assign these relationships across the entire polypeptide sequence in vivo. Using the Gaussian process regression based principle of Spatial CoVariance, we globally assign on a residue-by-residue basis the biological thermodynamic properties that contribute to the functional fold of CFTR in the cell. We demonstrate the existence of a thermodynamically sensitive region of the CFTR fold involving the interface between NBD1 and ICL4 that contributes to its export from endoplasmic reticulum. At the cell surface a new set of residues contribute uniquely to the management of channel function. These results support a general 'quality assurance' view of global protein fold management as an SCV principle describing the differential pre- and post-ER residue interactions contributing to compartmentalization of the energetics of the protein fold for function. Our results set the stage for future analyses of the quality systems managing protein sequence-to-function-to-structure broadly encompassing genome design leading to protein function in complex cellular relationships responsible for diversity and fitness in biology in response to the environment.
Collapse
Affiliation(s)
- Frédéric Anglès
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Sherman MY, Gabai V. The role of Bag3 in cell signaling. J Cell Biochem 2021; 123:43-53. [PMID: 34297413 DOI: 10.1002/jcb.30111] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
Bag3 has been implicated in a wide variety of physiological processes from autophagy to aggresome formation and from cell transformation to survival. We argue that involvement of Bag3 in many of these processes is due to its distinct function in cell signaling. The structure of Bag3 suggests that it can serve as a scaffold that links molecular chaperones Hsp70 and small Hsps with components of a variety of signaling pathways. Major protein-protein interaction motifs of Bag3 that recruit components of signaling pathways are WW domain and PXXP motif that interacts with SH3-domain proteins. Furthermore, Hsp70-Bag3 appears to be a sensor of abnormal polypeptides during the proteotoxic stress. It also serves as a sensor of a mechanical force during mechanotransduction. Common feature of these and probably certain other sensory mechanisms is that they represent responses to specific kinds of abnormal proteins, i.e. unfolded filamin A in case of mechanotransduction or stalled translating polypeptides in case of sensing proteasome inhibition. Overall Hsp70-Bag3 module represents a novel signaling node that responds to multiple stimuli and controls multiple physiological processes.
Collapse
Affiliation(s)
| | - Vladimir Gabai
- Department of Biochemistry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Rauscher R, Bampi GB, Guevara-Ferrer M, Santos LA, Joshi D, Mark D, Strug LJ, Rommens JM, Ballmann M, Sorscher EJ, Oliver KE, Ignatova Z. Positive epistasis between disease-causing missense mutations and silent polymorphism with effect on mRNA translation velocity. Proc Natl Acad Sci U S A 2021; 118:e2010612118. [PMID: 33468668 PMCID: PMC7848603 DOI: 10.1073/pnas.2010612118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Epistasis refers to the dependence of a mutation on other mutation(s) and the genetic context in general. In the context of human disorders, epistasis complicates the spectrum of disease symptoms and has been proposed as a major contributor to variations in disease outcome. The nonadditive relationship between mutations and the lack of complete understanding of the underlying physiological effects limit our ability to predict phenotypic outcome. Here, we report positive epistasis between intragenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene responsible for cystic fibrosis (CF) pathology. We identified a synonymous single-nucleotide polymorphism (sSNP) that is invariant for the CFTR amino acid sequence but inverts translation speed at the affected codon. This sSNP in cis exhibits positive epistatic effects on some CF disease-causing missense mutations. Individually, both mutations alter CFTR structure and function, yet when combined, they lead to enhanced protein expression and activity. The most robust effect was observed when the sSNP was present in combination with missense mutations that, along with the primary amino acid change, also alter the speed of translation at the affected codon. Functional studies revealed that synergistic alteration in ribosomal velocity is the underlying mechanism; alteration of translation speed likely increases the time window for establishing crucial domain-domain interactions that are otherwise perturbed by each individual mutation.
Collapse
Affiliation(s)
- Robert Rauscher
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Giovana B Bampi
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Marta Guevara-Ferrer
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Leonardo A Santos
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Disha Joshi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
- Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - David Mark
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Lisa J Strug
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Statistical Sciences, Computer Science and Division of Biostatistics, University of Toronto, Toronto M5G 0A4, Canada
| | - Johanna M Rommens
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | | | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
- Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
- Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany;
| |
Collapse
|
7
|
Oliver KE, Rauscher R, Mijnders M, Wang W, Wolpert MJ, Maya J, Sabusap CM, Kesterson RA, Kirk KL, Rab A, Braakman I, Hong JS, Hartman JL, Ignatova Z, Sorscher EJ. Slowing ribosome velocity restores folding and function of mutant CFTR. J Clin Invest 2020; 129:5236-5253. [PMID: 31657788 DOI: 10.1172/jci124282] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), with approximately 90% of patients harboring at least one copy of the disease-associated variant F508del. We utilized a yeast phenomic system to identify genetic modifiers of F508del-CFTR biogenesis, from which ribosomal protein L12 (RPL12/uL11) emerged as a molecular target. In the present study, we investigated mechanism(s) by which suppression of RPL12 rescues F508del protein synthesis and activity. Using ribosome profiling, we found that rates of translation initiation and elongation were markedly slowed by RPL12 silencing. However, proteolytic stability and patch-clamp assays revealed RPL12 depletion significantly increased F508del-CFTR steady-state expression, interdomain assembly, and baseline open-channel probability. We next evaluated whether Rpl12-corrected F508del-CFTR could be further enhanced with concomitant pharmacologic repair (e.g., using clinically approved modulators lumacaftor and tezacaftor) and demonstrated additivity of these treatments. Rpl12 knockdown also partially restored maturation of specific CFTR variants in addition to F508del, and WT Cftr biogenesis was enhanced in the pancreas, colon, and ileum of Rpl12 haplosufficient mice. Modulation of ribosome velocity therefore represents a robust method for understanding both CF pathogenesis and therapeutic response.
Collapse
Affiliation(s)
| | - Robert Rauscher
- Institute for Biochemistry & Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marjolein Mijnders
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Wei Wang
- Gregory Fleming James Cystic Fibrosis Research Center and
| | | | - Jessica Maya
- Gregory Fleming James Cystic Fibrosis Research Center and
| | | | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Kevin L Kirk
- Gregory Fleming James Cystic Fibrosis Research Center and
| | - Andras Rab
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jeong S Hong
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - John L Hartman
- Gregory Fleming James Cystic Fibrosis Research Center and.,Department of Genetics, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Zoya Ignatova
- Institute for Biochemistry & Molecular Biology, University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
8
|
Anglès F, Hutt DM, Balch WE. HDAC inhibitors rescue multiple disease-causing CFTR variants. Hum Mol Genet 2020; 28:1982-2000. [PMID: 30753450 DOI: 10.1093/hmg/ddz026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding the role of the epigenome in protein-misfolding diseases remains a challenge in light of genetic diversity found in the world-wide population revealed by human genome sequencing efforts and the highly variable response of the disease population to therapeutics. An ever-growing body of evidence has shown that histone deacetylase (HDAC) inhibitors (HDACi) can have significant benefit in correcting protein-misfolding diseases that occur in response to both familial and somatic mutation. Cystic fibrosis (CF) is a familial autosomal recessive disease, caused by genetic diversity in the CF transmembrane conductance regulator (CFTR) gene, a cyclic Adenosine MonoPhosphate (cAMP)-dependent chloride channel expressed at the apical plasma membrane of epithelial cells in multiple tissues. The potential utility of HDACi in correcting the phenylalanine 508 deletion (F508del) CFTR variant as well as the over 2000 CF-associated variants remains controversial. To address this concern, we examined the impact of US Food and Drug Administration-approved HDACi on the trafficking and function of a panel of CFTR variants. Our data reveal that panobinostat (LBH-589) and romidepsin (FK-228) provide functional correction of Class II and III CFTR variants, restoring cell surface chloride channel activity in primary human bronchial epithelial cells. We further demonstrate a synergistic effect of these HDACi with Vx809, which can significantly restore channel activity for multiple CFTR variants. These data suggest that HDACi can serve to level the cellular playing field for correcting CF-causing mutations, a leveling effect that might also extend to other protein-misfolding diseases.
Collapse
Affiliation(s)
- Frédéric Anglès
- Department of Molecular Medicine, Scripps Research, North Torrey Pines Rd, La Jolla, CA, USA
| | - Darren M Hutt
- Department of Molecular Medicine, Scripps Research, North Torrey Pines Rd, La Jolla, CA, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, North Torrey Pines Rd, La Jolla, CA, USA.,Skaggs Institute of Chemical Biology, North Torrey Pines Rd, La Jolla, CA, USA
| |
Collapse
|
9
|
Hutt DM, Loguercio S, Roth DM, Su AI, Balch WE. Correcting the F508del-CFTR variant by modulating eukaryotic translation initiation factor 3-mediated translation initiation. J Biol Chem 2018; 293:13477-13495. [PMID: 30006345 DOI: 10.1074/jbc.ra118.003192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Inherited and somatic rare diseases result from >200,000 genetic variants leading to loss- or gain-of-toxic function, often caused by protein misfolding. Many of these misfolded variants fail to properly interact with other proteins. Understanding the link between factors mediating the transcription, translation, and protein folding of these disease-associated variants remains a major challenge in cell biology. Herein, we utilized the cystic fibrosis transmembrane conductance regulator (CFTR) protein as a model and performed a proteomics-based high-throughput screen (HTS) to identify pathways and components affecting the folding and function of the most common cystic fibrosis-associated mutation, the F508del variant of CFTR. Using a shortest-path algorithm we developed, we mapped HTS hits to the CFTR interactome to provide functional context to the targets and identified the eukaryotic translation initiation factor 3a (eIF3a) as a central hub for the biogenesis of CFTR. Of note, siRNA-mediated silencing of eIF3a reduced the polysome-to-monosome ratio in F508del-expressing cells, which, in turn, decreased the translation of CFTR variants, leading to increased CFTR stability, trafficking, and function at the cell surface. This finding suggested that eIF3a is involved in mediating the impact of genetic variations in CFTR on the folding of this protein. We posit that the number of ribosomes on a CFTR mRNA transcript is inversely correlated with the stability of the translated polypeptide. Polysome-based translation challenges the capacity of the proteostasis environment to balance message fidelity with protein folding, leading to disease. We suggest that this deficit can be corrected through control of translation initiation.
Collapse
Affiliation(s)
| | | | | | - Andrew I Su
- Integrative Structural and Computational Biology and
| | - William E Balch
- From the Departments of Molecular Medicine and .,the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
10
|
Hsp70-Bag3 complex is a hub for proteotoxicity-induced signaling that controls protein aggregation. Proc Natl Acad Sci U S A 2018; 115:E7043-E7052. [PMID: 29987014 DOI: 10.1073/pnas.1803130115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein abnormalities in cells are the cause of major pathologies, and a number of adaptive responses have evolved to relieve the toxicity of misfolded polypeptides. To trigger these responses, cells must detect the buildup of aberrant proteins which often associate with proteasome failure, but the sensing mechanism is poorly understood. Here we demonstrate that this mechanism involves the heat shock protein 70-Bcl-2-associated athanogene 3 (Hsp70-Bag3) complex, which upon proteasome suppression responds to the accumulation of defective ribosomal products, preferentially recognizing the stalled polypeptides. Components of the ribosome quality control system LTN1 and VCP and the ribosome-associated chaperone NAC are necessary for the interaction of these species with the Hsp70-Bag3 complex. This complex regulates important signaling pathways, including the Hippo pathway effectors LATS1/2 and the p38 and JNK stress kinases. Furthermore, under proteotoxic stress Hsp70-Bag3-LATS1/2 signaling regulates protein aggregation. We established that the regulated step was the emergence and growth of abnormal protein oligomers containing only a few molecules, indicating that aggregation is regulated at very early stages. The Hsp70-Bag3 complex therefore functions as an important signaling node that senses proteotoxicity and triggers multiple pathways that control cell physiology, including activation of protein aggregation.
Collapse
|
11
|
Belostotsky R, Lyakhovetsky R, Sherman MY, Shkedy F, Tzvi-Behr S, Bar R, Hoppe B, Reusch B, Beck BB, Frishberg Y. Translation inhibition corrects aberrant localization of mutant alanine-glyoxylate aminotransferase: possible therapeutic approach for hyperoxaluria. J Mol Med (Berl) 2018; 96:621-630. [PMID: 29777253 DOI: 10.1007/s00109-018-1651-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 01/28/2023]
Abstract
Primary hyperoxaluria type 1 is a severe kidney stone disease caused by abnormalities of the peroxisomal alanine-glyoxylate aminotransferase (AGT). The most frequent mutation G170R results in aberrant mitochondrial localization of the active enzyme. To evaluate the population of peroxisome-localized AGT, we developed a quantitative Glow-AGT assay based on the self-assembly split-GFP approach and used it to identify drugs that can correct mislocalization of the mutant protein. In line with previous reports, the Glow-AGT assay showed that mitochondrial transport inhibitors DECA and monensin increased peroxisomal localization of the mutant. Here, we demonstrate that prolonged treatment with the translation elongation inhibitor emetine, a medicinal alkaloid used in treatment of amoebiasis, corrected G170R-AGT mislocalization. Furthermore, emetine reduced the augmented oxalate level in culture media of patient-derived hepatocytes bearing the G170R mutation. A distinct translation inhibitor GC7 had a similar effect on the mutant Glow-AGT relocalization indicating that mild translation inhibition is a promising therapeutic approach for primary hyperoxaluria type 1 caused by AGT misfolding/mistargeting. KEY MESSAGES • There is no effective conservative treatment to decrease oxalate production in PH1 patients. • Chemical chaperones rescue mislocalization of mutant AGT and reduce oxalate levels. • We have developed an assay for precise monitoring of the peroxisomal AGT. • Inhibition of translation by emetine reroutes the mutant protein to peroxisome. • Mild translation inhibition is a promising cure for conformational disorders.
Collapse
Affiliation(s)
- Ruth Belostotsky
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Shmuel Bait Street, 91031, Jerusalem, Israel.
| | - Roman Lyakhovetsky
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Shmuel Bait Street, 91031, Jerusalem, Israel.,Medical Scientific Unit, Teva Pharmaceutical Industries, Petah Tikva, Israel
| | | | - Fanny Shkedy
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Shmuel Bait Street, 91031, Jerusalem, Israel
| | - Shimrit Tzvi-Behr
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Shmuel Bait Street, 91031, Jerusalem, Israel
| | - Roi Bar
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Shmuel Bait Street, 91031, Jerusalem, Israel
| | - Bernd Hoppe
- Department of Pediatrics, University Medical Center, Bonn, Germany
| | - Björn Reusch
- Institute of Human Genetics, Cologne, Germany.,Center for Molecular Medicine Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, Cologne, Germany.,Center for Molecular Medicine Cologne, Cologne, Germany
| | - Yaacov Frishberg
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Shmuel Bait Street, 91031, Jerusalem, Israel
| |
Collapse
|
12
|
Goodman CA, Coenen AM, Frey JW, You JS, Barker RG, Frankish BP, Murphy RM, Hornberger TA. Insights into the role and regulation of TCTP in skeletal muscle. Oncotarget 2017; 8:18754-18772. [PMID: 27813490 PMCID: PMC5386645 DOI: 10.18632/oncotarget.13009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/28/2016] [Indexed: 01/07/2023] Open
Abstract
The translationally controlled tumor protein (TCTP) is upregulated in a range of cancer cell types, in part, by the activation of the mechanistic target of rapamycin (mTOR). Recently, TCTP has also been proposed to act as an indirect activator of mTOR. While it is known that mTOR plays a major role in the regulation of skeletal muscle mass, very little is known about the role and regulation of TCTP in this post-mitotic tissue. This study shows that muscle TCTP and mTOR signaling are upregulated in a range of mouse models (mdx mouse, mechanical load-induced hypertrophy, and denervation- and immobilization-induced atrophy). Furthermore, the increase in TCTP observed in the hypertrophic and atrophic conditions occurred, in part, via a rapamycin-sensitive mTOR-dependent mechanism. However, the overexpression of TCTP was not sufficient to activate mTOR signaling (or increase protein synthesis) and is thus unlikely to take part in a recently proposed positive feedback loop with mTOR. Nonetheless, TCTP overexpression was sufficient to induce muscle fiber hypertrophy. Finally, TCTP overexpression inhibited the promoter activity of the muscle-specific ubiquitin proteasome E3-ligase, MuRF1, suggesting that TCTP may play a role in inhibiting protein degradation. These findings provide novel data on the role and regulation of TCTP in skeletal muscle in vivo.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia.,Institute for Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
| | - Allison M Coenen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - John W Frey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Jae-Sung You
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Robert G Barker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Barnaby P Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
13
|
Athanasiou D, Aguila M, Opefi CA, South K, Bellingham J, Bevilacqua D, Munro PM, Kanuga N, Mackenzie FE, Dubis AM, Georgiadis A, Graca AB, Pearson RA, Ali RR, Sakami S, Palczewski K, Sherman MY, Reeves PJ, Cheetham ME. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Hum Mol Genet 2017; 26:305-319. [PMID: 28065882 PMCID: PMC5351934 DOI: 10.1093/hmg/ddw387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/29/2023] Open
Abstract
Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic 'gain of function', such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Chikwado A. Opefi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | - Kieron South
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | | | | - Peter M. Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Naheed Kanuga
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Adam M. Dubis
- Moorfields Eye Hospital NHS Trust, 162 City Road, London, UK
| | | | - Anna B. Graca
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Robin R. Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Sanae Sakami
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Michael Y. Sherman
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts, MA, USA
| | - Philip J. Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | |
Collapse
|
14
|
Howard AC, Rollins J, Snow S, Castor S, Rogers AN. Reducing translation through eIF4G/IFG-1 improves survival under ER stress that depends on heat shock factor HSF-1 in Caenorhabditis elegans. Aging Cell 2016; 15:1027-1038. [PMID: 27538368 PMCID: PMC5114698 DOI: 10.1111/acel.12516] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Although certain methods of lowering and/or altering mRNA translation are associated with increased lifespan, the mechanisms underlying this effect remain largely unknown. We previously showed that the increased lifespan conferred by reducing expression of eukaryotic translation initiation factor 4G (eIF4G/IFG‐1) enhances survival under starvation conditions while shifting protein expression toward factors involved with maintaining ER‐dependent protein and lipid balance. In this study, we investigated changes in ER homeostasis and found that lower eIF4G/IFG‐1 increased survival under conditions of ER stress. Enhanced survival required the ER stress sensor gene ire‐1 and the ER calcium ATPase gene sca‐1 and corresponded with increased translation of chaperones that mediate the ER unfolded protein response (UPRER). Surprisingly, the heat‐shock transcription factor gene hsf‐1 was also required for enhanced survival, despite having little or no influence on the ability of wild‐type animals to survive ER stress. The requirement for hsf‐1 led us to re‐evaluate the role of eIF4G/IFG‐1 on thermotolerance. Results show that lowering expression of this translation factor enhanced thermotolerance, but only after prolonged attenuation, the timing of which corresponded to increased transcription of heat‐shock factor transcriptional targets. Results indicate that restricting overall translation through eIF4G/IFG‐1 enhances ER and cytoplasmic proteostasis through a mechanism that relies heavily on hsf‐1.
Collapse
Affiliation(s)
- Amber C. Howard
- MDI Biological Laboratory Davis Center for Regenerative Biology and Medicine 159 Old Bar Harbor Road Salisbury Cove ME 04672 USA
| | - Jarod Rollins
- MDI Biological Laboratory Davis Center for Regenerative Biology and Medicine 159 Old Bar Harbor Road Salisbury Cove ME 04672 USA
| | - Santina Snow
- MDI Biological Laboratory Davis Center for Regenerative Biology and Medicine 159 Old Bar Harbor Road Salisbury Cove ME 04672 USA
| | - Sarah Castor
- The Jackson Laboratory 600 Main Street Bar Harbor ME 04609 USA
| | - Aric N. Rogers
- MDI Biological Laboratory Davis Center for Regenerative Biology and Medicine 159 Old Bar Harbor Road Salisbury Cove ME 04672 USA
| |
Collapse
|
15
|
Veit G, Oliver K, Apaja PM, Perdomo D, Bidaud-Meynard A, Lin ST, Guo J, Icyuz M, Sorscher EJ, Hartman JL, Lukacs GL. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect. PLoS Biol 2016; 14:e1002462. [PMID: 27168400 PMCID: PMC4864299 DOI: 10.1371/journal.pbio.1002462] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/14/2016] [Indexed: 01/05/2023] Open
Abstract
The most common cystic fibrosis (CF) causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del), results in functional expression defect of the CF transmembrane conductance regulator (CFTR) at the apical plasma membrane (PM) of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER). Deletion of phenylalanine 670 (ΔF670) in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter) of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic) analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor) restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect. Reducing the rate of translational elongation by silencing ribosomal stalk proteins ameliorates the folding and stability defect of the cystic fibrosis mutant protein ΔF508-CFTR, partially restoring the plasma membrane chloride conductance. Cystic fibrosis (CF) is one of the most common autosomal recessive diseases in Caucasians. It is caused by mutations in the CF transmembrane conductance regulator (CFTR), which functions as an anion channel at the apical plasma membrane of secretory epithelia. The most common CF mutation, a deletion of the phenylalanine residue at position 508 (ΔF508), results in the channel misfolding and subsequent intracellular degradation. Our previous genome-wide phenotypic screens, using a yeast variant, have predicted modifier genes for ΔF508-CFTR biogenesis. Here, we show that silencing of one of these candidate genes, RPL12, a component of the ribosomal stalk, increased the folding and stabilization of ΔF508-CFTR, resulting in its increased plasma membrane expression and function. Our data suggest that reducing the translational elongation rate via RPL12 silencing can partially reverse the ΔF508-CFTR folding defect. Importantly, RPL12 silencing in combination with the corrector drug VX-809 (lumacaftor), increased the mutant function to 50% of the wild-type CFTR channel, suggesting that the ribosomal stalk perturbation may represent a therapeutic target for rescuing the ΔF508-CFTR biogenesis defect.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Kathryn Oliver
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Pirjo M. Apaja
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Doranda Perdomo
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | | | - Sheng-Ting Lin
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Jingyu Guo
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mert Icyuz
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eric J. Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (JLH); (GLL)
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Quebec, Canada
- * E-mail: (JLH); (GLL)
| |
Collapse
|
16
|
Bill RM, von der Haar T. Hijacked then lost in translation: the plight of the recombinant host cell in membrane protein structural biology projects. Curr Opin Struct Biol 2015; 32:147-55. [PMID: 26037971 PMCID: PMC4521084 DOI: 10.1016/j.sbi.2015.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/10/2015] [Accepted: 04/10/2015] [Indexed: 11/13/2022]
Abstract
Membrane protein structural biologists need high-quality protein for crystallisation. Recombinant proteins are central to the structural biology supply chain. Understanding quality control in protein production is an emerging trend. The roles of translation and protein folding in the host cell are examined.
Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a ‘cell factory’ each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells.
Collapse
Affiliation(s)
- Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
17
|
Gandin V, Topisirovic I. Co-translational mechanisms of quality control of newly synthesized polypeptides. ACTA ACUST UNITED AC 2014; 2:e28109. [PMID: 26779401 PMCID: PMC4705825 DOI: 10.4161/trla.28109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/30/2013] [Accepted: 02/04/2014] [Indexed: 01/23/2023]
Abstract
During protein synthesis, nascent polypeptides emerge from ribosomes to fold into functional proteins. Misfolding of newly synthesized polypeptides (NSPs) at this stage leads to their aggregation. These misfolded NSPs must be expediently cleared to circumvent the deleterious effects of protein aggregation on cell physiology. To this end, a sizable portion of NSPs are ubiquitinated and rapidly degraded by the proteasome. This suggests the existence of co-translational mechanisms that play a pivotal role in the quality control of NSPs. It is generally thought that ribosomes play a central role in this process. During mRNA translation, ribosomes sense errors that lead to the accumulation of aberrant polypeptides, and serve as a hub for protein complexes that are required for optimal folding and/or proteasome-dependent degradation of misfolded polypeptides. In this review, we discuss recent findings that shed light on the molecular underpinnings of the co-translational quality control of NSPs.
Collapse
Affiliation(s)
- Valentina Gandin
- Lady Davis Institute for Medical Research; Sir Mortimer B. Davis-Jewish General Hospital; Montréal, QC Canada; Department of Oncology; McGill University; Montréal, QC Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research; Sir Mortimer B. Davis-Jewish General Hospital; Montréal, QC Canada; Department of Oncology; McGill University; Montréal, QC Canada
| |
Collapse
|
18
|
O’Brien EP, Vendruscolo M, Dobson CM. Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates. Nat Commun 2014; 5:2988. [DOI: 10.1038/ncomms3988] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/21/2013] [Indexed: 11/10/2022] Open
|
19
|
Pan X, Whitten DA, Wilkerson CG, Pestka JJ. Dynamic changes in ribosome-associated proteome and phosphoproteome during deoxynivalenol-induced translation inhibition and ribotoxic stress. Toxicol Sci 2013; 138:217-33. [PMID: 24284785 DOI: 10.1093/toxsci/kft270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium that commonly contaminates cereal-based food, interacts with the ribosome to cause translation inhibition and activate stress kinases in mononuclear phagocytes via the ribotoxic stress response (RSR). The goal of this study was to test the hypothesis that the ribosome functions as a platform for spatiotemporal regulation of translation inhibition and RSR. Specifically, we employed stable isotope labeling of amino acids in cell culture (SILAC)-based proteomics to quantify the early (≤ 30 min) DON-induced changes in ribosome-associated proteins in RAW 264.7 murine macrophage. Changes in the proteome and phosphoproteome were determined using off-gel isoelectric focusing and titanium dioxide chromatography, respectively, in conjunction with LC-MS/MS. Following exposure of RAW 264.7 to a toxicologically relevant concentration of DON (250 ng/ml), we observed an overall decrease in translation-related proteins interacting with the ribosome, concurrently with a compensatory increase in proteins that mediate protein folding, biosynthesis, and cellular organization. Alterations in the ribosome-associated phosphoproteome reflected proteins that modulate translational and transcriptional regulation, and others that converged with signaling pathways known to overlap with phosphorylation changes characterized previously in intact RAW 264.7 cells. These results suggest that the ribosome plays a central role as a hub for association and phosphorylation of proteins involved in the coordination of early translation inhibition as well as recruitment and maintenance of stress-related proteins-both of which enable cells to adapt and respond to ribotoxin exposure. This study provides a template for elucidating the molecular mechanisms of DON and other ribosome-targeting agents.
Collapse
Affiliation(s)
- Xiao Pan
- * Department of Biochemistry and Molecular Biology
| | | | | | | |
Collapse
|
20
|
Sherman MY, Qian SB. Less is more: improving proteostasis by translation slow down. Trends Biochem Sci 2013; 38:585-91. [PMID: 24126073 DOI: 10.1016/j.tibs.2013.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 11/29/2022]
Abstract
Protein homeostasis, or proteostasis, refers to a proper balance between synthesis, maturation, and degradation of cellular proteins. A growing body of evidence suggests that the ribosome serves as a hub for co-translational folding, chaperone interaction, degradation, and stress response. Accordingly, in addition to the chaperone network and proteasome system, the ribosome has emerged as a major factor in protein homeostasis. Recent work revealed that high rates of elongation of translation negatively affect both the fidelity of translation and the co-translational folding of nascent polypeptides. Accordingly, by slowing down translation one can significantly improve protein folding. In this review, we discuss how to target translational processes to improve proteostasis and implications in treating protein misfolding diseases.
Collapse
Affiliation(s)
- Michael Y Sherman
- Department of Biochemistry, Boston University Medical School, Boston, MA 02118, USA.
| | | |
Collapse
|
21
|
Bruel N, Castanié-Cornet MP, Cirinesi AM, Koningstein G, Georgopoulos C, Luirink J, Genevaux P. Hsp33 controls elongation factor-Tu stability and allows Escherichia coli growth in the absence of the major DnaK and trigger factor chaperones. J Biol Chem 2012; 287:44435-46. [PMID: 23148222 DOI: 10.1074/jbc.m112.418525] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Intracellular de novo protein folding is assisted by cellular networks of molecular chaperones. In Escherichia coli, cooperation between the chaperones trigger factor (TF) and DnaK is central to this process. Accordingly, the simultaneous deletion of both chaperone-encoding genes leads to severe growth and protein folding defects. Herein, we took advantage of such defective phenotypes to further elucidate the interactions of chaperone networks in vivo. We show that disruption of the TF/DnaK chaperone pathway is efficiently rescued by overexpression of the redox-regulated chaperone Hsp33. Consistent with this observation, the deletion of hslO, the Hsp33 structural gene, is no longer tolerated in the absence of the TF/DnaK pathway. However, in contrast with other chaperones like GroEL or SecB, suppression by Hsp33 was not attributed to its potential overlapping general chaperone function(s). Instead, we show that overexpressed Hsp33 specifically binds to elongation factor-Tu (EF-Tu) and targets it for degradation by the protease Lon. This synergistic action of Hsp33 and Lon was responsible for the rescue of bacterial growth in the absence of TF and DnaK, by presumably restoring the coupling between translation and the downstream folding capacity of the cell. In support of this hypothesis, we show that overexpression of the stress-responsive toxin HipA, which inhibits EF-Tu, also rescues bacterial growth and protein folding in the absence of TF and DnaK. The relevance for such a convergence of networks of chaperones and proteases acting directly on EF-Tu to modulate the intracellular rate of protein synthesis in response to protein aggregation is discussed.
Collapse
Affiliation(s)
- Nicolas Bruel
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS) and Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|