1
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y. Human IGF2 Gene Epigenetic and Transcriptional Regulation: At the Core of Developmental Growth and Tumorigenic Behavior. Biomedicines 2023; 11:1655. [PMID: 37371750 DOI: 10.3390/biomedicines11061655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression. Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly is responsible for the effects observed in terms of both abnormal fetal growth and increased cell proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding new light on its extended regulation. Overall, we focused on the functional integration between the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and regulatory protein target-degradation therapies.
Collapse
Key Words
- (IGF2/H19) IG-DMR, intergenic differentially methylated region
- BWS, Beckwith–Wiedemann syndrome
- CCD, centrally conserved domain
- CNV, copy number variation
- CTCF, CCCTC binding factor
- DMD, differentially methylated domain
- DMR, differentially methylated region
- GOM, gain of methylation
- ICR1, imprinting control region 1
- IGF-II, insulin-like growth factor-2 peptide
- IGF2, insulin-like growth factor 2 gene
- LOI, loss of imprinting
- LOM, loss of methylation
- MOI, maintenance of imprinting
- SRS, Silver Russel Syndrome
- TF: transcription factor
- UPD, uniparental disomy
- WT1, Wilms Tumor protein 1
- mRNA transcript
- p0–p4: IGF2 promoters 0–4
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Involvement of PGC7 and UHRF1 in the regulation of DNA methylation of the IG-DMR in the imprinted Dlk1-Dio3 locus. Acta Biochim Biophys Sin (Shanghai) 2022; 54:917-930. [PMID: 35866604 PMCID: PMC9828313 DOI: 10.3724/abbs.2022080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The gene dosage at the imprinted Dlk1-Dio3 locus is critical for cell growth and development. A relatively high gene expression within the Dlk1-Dio3 region, especially the active expression of Gtl2, has been identified as the only reliable marker for cell pluripotency. The DNA methylation state of the IG-DNA methylated regions (DMR), which is located upstream of the Gtl2 gene, dominantly contributes to the control of gene expression in the Dlk1-Dio3 locus. However, the precise mechanism underlying the regulation of DNA methylation in the IG-DMR remains largely unknown. Here, we use the F9 embryonal carcinoma cell line, a low pluripotent cell model, to identify the mechanism responsible for DNA methylation in the IG-DMR, and find that the interaction of PGC7 with UHRF1 is involved in maintaining DNA methylation and inducing DNA hypermethylation in the IG-DMR region. PGC7 and UHRF1 cooperatively bind in the IG-DMR to regulate the methylation of DNA and histones in this imprinted region. PGC7 promotes the recruitment of DNMT1 by UHRF1 to maintain DNA methylation in the IG-DMR locus. The interaction between PGC7 and UHRF1 strengthens their binding to H3K9me3 and leads to further enrichment of H3K9me3 in the IG-DMR by recruiting the specific histone methyltransferase SETDB1. Consequently, the abundance of H3K9me3 promotes DNMT3A to bind to the IG-DMR and increases DNA methylation level in this region. In summary, we propose a new mechanism of DNA methylation regulation in the IG-DMR locus and provide further insight into the understanding of the difference in Gtl2 expression levels between high and low pluripotent cells.
Collapse
|
3
|
Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. Int J Mol Sci 2021; 22:ijms222111321. [PMID: 34768751 PMCID: PMC8583549 DOI: 10.3390/ijms222111321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.
Collapse
|
4
|
Vanzan L, Soldati H, Ythier V, Anand S, Braun SMG, Francis N, Murr R. High throughput screening identifies SOX2 as a super pioneer factor that inhibits DNA methylation maintenance at its binding sites. Nat Commun 2021; 12:3337. [PMID: 34099689 PMCID: PMC8184831 DOI: 10.1038/s41467-021-23630-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Binding of mammalian transcription factors (TFs) to regulatory regions is hindered by chromatin compaction and DNA methylation of their binding sites. Nevertheless, pioneer transcription factors (PFs), a distinct class of TFs, have the ability to access nucleosomal DNA, leading to nucleosome remodelling and enhanced chromatin accessibility. Whether PFs can bind to methylated sites and induce DNA demethylation is largely unknown. Using a highly parallelized approach to investigate PF ability to bind methylated DNA and induce DNA demethylation, we show that the interdependence between DNA methylation and TF binding is more complex than previously thought, even within a select group of TFs displaying pioneering activity; while some PFs do not affect the methylation status of their binding sites, we identified PFs that can protect DNA from methylation and others that can induce DNA demethylation at methylated binding sites. We call the latter super pioneer transcription factors (SPFs), as they are seemingly able to overcome several types of repressive epigenetic marks. Finally, while most SPFs induce TET-dependent active DNA demethylation, SOX2 binding leads to passive demethylation, an activity enhanced by the co-binding of OCT4. This finding suggests that SPFs could interfere with epigenetic memory during DNA replication.
Collapse
Affiliation(s)
- Ludovica Vanzan
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hadrien Soldati
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Victor Ythier
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Diagnostic Department, Clinical Pathology Division, University Hospital of Geneva, Geneva, Switzerland
| | - Santosh Anand
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Department of Informatics, Systems and Communications (DISCo), University of Milano-Bicocca, Milan, Italy
| | - Simon M G Braun
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Nicole Francis
- Institut de Recherches Cliniques de Montréal (IRCM) and Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Rabih Murr
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
- Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Hirakawa K, Matsuzaki H, Tanimoto K. Transient establishment of imprinted DNA methylation of transgenic human IC1 sequence in mouse during the preimplantation period. Hum Mol Genet 2020; 29:3646-3661. [PMID: 33258474 DOI: 10.1093/hmg/ddaa253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/14/2020] [Accepted: 11/26/2020] [Indexed: 01/31/2023] Open
Abstract
Monoallelic gene expression at the Igf2/H19 locus is controlled by paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) that is established during spermatogenesis. We demonstrated that the H19 ICR fragment in transgenic mice acquires allele-specific methylation only after fertilization, which is essential for maintaining its allelic methylation during early embryogenesis. We identified a DNA element required for establishing postfertilization methylation within a 118 bp (m118) region. A previously generated knock-in mouse whose endogenous H19 ICR was substituted with the human H19 ICR (hIC1; 4.8 kb) sequence revealed that the hIC1 sequence was partially methylated in sperm, although this methylation was lost by the blastocyst stage, which we assume is due to a lack of an m118-equivalent sequence in the hIC1 transgene. To identify a cis sequence involved in postfertilization methylation within the hIC1 region, we generated three transgenic mouse lines (TgM): one carrying an 8.8 kb hIC1 sequence joined to m118 (hIC1+m118), one with the 8.8 kb hIC1 and one with the 5.8 kb hIC1 sequence joined to m118 (hIC1-3'+m118). We found that the hIC1-3' region was resistant to de novo DNA methylation throughout development. In contrast, the 5' portion of the hIC1 (hIC1-5') in both hIC1+m118 and hIC1 TgM were preferentially methylated on the paternal allele only during preimplantation. As DNA methylation levels were higher in hIC1+m118, the m118 sequence could also induce imprinted methylation of the human sequence. Most importantly, the hIC1-5' sequence appears to possess an activity equivalent to that of m118.
Collapse
Affiliation(s)
- Katsuhiko Hirakawa
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
6
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
7
|
Hori N, Kubo S, Sakasegawa T, Sakurai C, Hatsuzawa K. OCT3/4-binding sequence-dependent maintenance of the unmethylated state of CTCF-binding sequences with DNA demethylation and suppression of de novo DNA methylation in the H19 imprinted control region. Gene 2020; 743:144606. [DOI: 10.1016/j.gene.2020.144606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022]
|
8
|
Kubo S, Murata C, Okamura H, Sakasegawa T, Sakurai C, Hatsuzawa K, Hori N. Oct motif variants in Beckwith–Wiedemann syndrome patients disrupt maintenance of the hypomethylated state of the
H19/IGF2
imprinting control region. FEBS Lett 2020; 594:1517-1531. [DOI: 10.1002/1873-3468.13750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Shuichi Kubo
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Chihiro Murata
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Hanayo Okamura
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Taku Sakasegawa
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Chiye Sakurai
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Naohiro Hori
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| |
Collapse
|
9
|
Schaefer T, Lengerke C. SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond. Oncogene 2020; 39:278-292. [PMID: 31477842 PMCID: PMC6949191 DOI: 10.1038/s41388-019-0997-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
Research of the past view years expanded our understanding of the various physiological functions the cell-fate determining transcription factor SOX2 exerts in ontogenesis, reprogramming, and cancer. However, while scientific reports featuring novel and exciting aspects of SOX2-driven biology are published in near weekly routine, investigations in the underlying protein-biochemical processes that transiently tailor SOX2 activity to situational demand are underrepresented and have not yet been comprehensively summarized. Largely unrecognizable to modern array or sequencing-based technology, various protein secondary modifications and concomitant function modulations have been reported for SOX2. The chemical modifications imposed onto SOX2 are inherently heterogeneous, comprising singular or clustered events of phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, PARPylation, and O-glycosylation that reciprocally affect each other and critically impact SOX2 functionality, often in a tissue and species-specific manner. One recurring regulatory principle though is the canonical PI3K/AKT signaling axis to which SOX2 relates in various entangled, albeit not exclusive ways. Here we provide a comprehensive review of the current knowledge on SOX2 protein modifications, their proposed relationship to the PI3K/AKT pathway, and regulatory influence on SOX2 with regards to stemness, reprogramming, and cancer.
Collapse
Affiliation(s)
- Thorsten Schaefer
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland.
| | - Claudia Lengerke
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland
- University Hospital Basel, Division of Hematology, Basel, Switzerland
| |
Collapse
|
10
|
Farhadova S, Gomez-Velazquez M, Feil R. Stability and Lability of Parental Methylation Imprints in Development and Disease. Genes (Basel) 2019; 10:genes10120999. [PMID: 31810366 PMCID: PMC6947649 DOI: 10.3390/genes10120999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
DNA methylation plays essential roles in mammals. Of particular interest are parental methylation marks that originate from the oocyte or the sperm, and bring about mono-allelic gene expression at defined chromosomal regions. The remarkable somatic stability of these parental imprints in the pre-implantation embryo—where they resist global waves of DNA demethylation—is not fully understood despite the importance of this phenomenon. After implantation, some methylation imprints persist in the placenta only, a tissue in which many genes are imprinted. Again here, the underlying epigenetic mechanisms are not clear. Mouse studies have pinpointed the involvement of transcription factors, covalent histone modifications, and histone variants. These and other features linked to the stability of methylation imprints are instructive as concerns their conservation in humans, in which different congenital disorders are caused by perturbed parental imprints. Here, we discuss DNA and histone methylation imprints, and why unravelling maintenance mechanisms is important for understanding imprinting disorders in humans.
Collapse
|
11
|
The extent of DNA methylation anticipation due to a genetic defect in ICR1 in Beckwith-Wiedemann syndrome. J Hum Genet 2019; 64:937-943. [DOI: 10.1038/s10038-019-0634-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/02/2019] [Accepted: 06/09/2019] [Indexed: 11/08/2022]
|
12
|
De Donato M, Hussain T, Rodulfo H, Peters SO, Imumorin IG, Thomas BN. Conservation of Repeats at the Mammalian KCNQ1OT1-CDKN1C Region Suggests a Role in Genomic Imprinting. Evol Bioinform Online 2017; 13:1176934317715238. [PMID: 28659711 PMCID: PMC5476424 DOI: 10.1177/1176934317715238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
KCNQ1OT1 is located in the region with the highest number of genes showing genomic imprinting, but the mechanisms controlling the genes under its influence have not been fully elucidated. Therefore, we conducted a comparative analysis of the KCNQ1/KCNQ1OT1-CDKN1C region to study its conservation across the best assembled eutherian mammalian genomes sequenced to date and analyzed potential elements that may be implicated in the control of genomic imprinting in this region. The genomic features in these regions from human, mouse, cattle, and dog show a higher number of genes and CpG islands (detected using cpgplot from EMBOSS), but lower number of repetitive elements (including short interspersed nuclear elements and long interspersed nuclear elements), compared with their whole chromosomes (detected by RepeatMasker). The KCNQ1OT1-CDKN1C region contains the highest number of conserved noncoding sequences (CNS) among mammals, where we found 16 regions containing about 38 different highly conserved repetitive elements (using mVista), such as LINE1 elements: L1M4, L1MB7, HAL1, L1M4a, L1Med, and an LTR element: MLT1H. From these elements, we found 74 CNS showing high sequence identity (>70%) between human, cattle, and mouse, from which we identified 13 motifs (using Multiple Em for Motif Elicitation/Motif Alignment and Search Tool) with a significant probability of occurrence, 3 of which were the most frequent and were used to find transcription factor-binding sites. We detected several transcription factors (using JASPAR suite) from the families SOX, FOX, and GATA. A phylogenetic analysis of these CNS from human, marmoset, mouse, rat, cattle, dog, horse, and elephant shows branches with high levels of support and very similar phylogenetic relationships among these groups, confirming previous reports. Our results suggest that functional DNA elements identified by comparative genomics in a region densely populated with imprinted mammalian genes may be related to the regulation of imprinted gene expression.
Collapse
Affiliation(s)
- Marcos De Donato
- Animal Genetics and Genomics Laboratory, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.,Escuela de Bioingenierias, Tecnologico de Monterrey, Campus Querétaro, Santiago de Querétaro, Mexico
| | - Tanveer Hussain
- Animal Genetics and Genomics Laboratory, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.,Department Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Hectorina Rodulfo
- Escuela de Bioingenierias, Tecnologico de Monterrey, Campus Querétaro, Santiago de Querétaro, Mexico
| | - Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA, USA
| | - Ikhide G Imumorin
- Animal Genetics and Genomics Laboratory, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.,African Institute for Biosciences Research and Training, Ibadan, Nigeria.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bolaji N Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
13
|
Sanli I, Feil R. Chromatin mechanisms in the developmental control of imprinted gene expression. Int J Biochem Cell Biol 2015; 67:139-47. [PMID: 25908531 DOI: 10.1016/j.biocel.2015.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Hundreds of protein-coding genes and regulatory non-coding RNAs (ncRNAs) are subject to genomic imprinting. The mono-allelic DNA methylation marks that control imprinted gene expression are somatically maintained throughout development, and this process is linked to specific chromatin features. Yet, at many imprinted genes, the mono-allelic expression is lineage or tissue-specific. Recent studies provide mechanistic insights into the developmentally-restricted action of the 'imprinting control regions' (ICRs). At several imprinted domains, the ICR expresses a long ncRNA that mediates chromatin repression in cis (and probably in trans as well). ICRs at other imprinted domains mediate higher-order chromatin structuration that enhances, or prevents, transcription of close-by genes. Here, we present how chromatin and ncRNAs contribute to developmental control of imprinted gene expression and discuss implications for disease. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Ildem Sanli
- Institute of Molecular Genetics (IGMM), UMR-5535, CNRS, University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), UMR-5535, CNRS, University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
14
|
Hogan MS, Parfitt DE, Zepeda-Mendoza CJ, Shen MM, Spector DL. Transient pairing of homologous Oct4 alleles accompanies the onset of embryonic stem cell differentiation. Cell Stem Cell 2015; 16:275-288. [PMID: 25748933 PMCID: PMC4355581 DOI: 10.1016/j.stem.2015.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/03/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
Abstract
The relationship between chromatin organization and transcriptional regulation is an area of intense investigation. We characterized the spatial relationships between alleles of the Oct4, Sox2, and Nanog genes in single cells during the earliest stages of mouse embryonic stem cell (ESC) differentiation and during embryonic development. We describe homologous pairing of the Oct4 alleles during ESC differentiation and embryogenesis, and we present evidence that pairing is correlated with the kinetics of ESC differentiation. Importantly, we identify critical DNA elements within the Oct4 promoter/enhancer region that mediate pairing of Oct4 alleles. Finally, we show that mutation of OCT4/SOX2 binding sites within this region abolishes inter-chromosomal interactions and affects accumulation of the repressive H3K9me2 modification at the Oct4 enhancer. Our findings demonstrate that chromatin organization and transcriptional programs are intimately connected in ESCs and that the dynamic positioning of the Oct4 alleles is associated with the transition from pluripotency to lineage specification.
Collapse
Affiliation(s)
- Megan S Hogan
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - David-Emlyn Parfitt
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cinthya J Zepeda-Mendoza
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Michael M Shen
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
15
|
Bruno C, Carmignac V, Netchine I, Choux C, Duffourd Y, Faivre L, Thauvin-Robinet C, Le Bouc Y, Sagot P, Bourc'his D, Fauque P. Germline correction of an epimutation related to Silver-Russell syndrome. Hum Mol Genet 2015; 24:3314-21. [DOI: 10.1093/hmg/ddv079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/26/2015] [Indexed: 12/23/2022] Open
|
16
|
Azzi S, Steunou V, Tost J, Rossignol S, Thibaud N, Das Neves C, Le Jule M, Habib WA, Blaise A, Koudou Y, Busato F, Le Bouc Y, Netchine I. Exhaustive methylation analysis revealed uneven profiles of methylation at IGF2/ICR1/H19 11p15 loci in Russell Silver syndrome. J Med Genet 2014; 52:53-60. [PMID: 25395389 DOI: 10.1136/jmedgenet-2014-102732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The structural organisation of the human IGF2/ICR1/H19 11p15 domain is very complex, and the mechanisms underlying its regulation are poorly understood. The Imprinted Center Region 1 (ICR1) contains seven binding sites for the zinc-finger protein CTCF (CBS: CTCF Binding Sites); three additional differentially methylated regions (DMR) are located at the H19 promoter (H19DMR) and two in the IGF2 gene (DMR0 and DMR2), respectively. Loss of imprinting at the IGF2/ICR1/H19 domain results in two growth disorders with opposite phenotypes: Beckwith-Wiedemann syndrome and Russell Silver syndrome (RSS). Despite the IGF2/ICR1/H19 locus being widely studied, the extent of hypomethylation across the domain remains not yet addressed in patients with RSS. METHODS We assessed a detailed investigation of the methylation status of the 11p15 ICR1 CBS1-7, IGF2DMR0 and H19DMR (H19 promoter) in a population of controls (n=50) and RSS carrying (n=104) or not (n=65) carrying a hypomethylation at the 11p15 ICR1 region. RESULTS The methylation indexes (MI) were balanced at all regions in the control population and patients with RSS without any as yet identified molecular anomaly. Interestingly, patients with RSS with ICR1 hypomethylation showed uneven profiles of methylation among the CBSs and DMRs. Furthermore, normal MIs at CBS1 and CBS7 were identified in 9% of patients. CONCLUSIONS The hypomethylation does not spread equally throughout the IGF2/ICR1/H19 locus, and some loci could have normal MI, which may lead to underdiagnosis of patients with RSS with ICR1 hypomethylation. The uneven pattern of methylation suggests that some CBSs may play different roles in the tridimensional chromosomal looping regulation of this locus.
Collapse
Affiliation(s)
- Salah Azzi
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | | | - Jörg Tost
- Laboratory for Epigenetics and Environment (LEE), National Genotyping Center, CEA-Institute of Genomics, Evry, France
| | - Sylvie Rossignol
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Nathalie Thibaud
- Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Cristina Das Neves
- Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Marilyne Le Jule
- Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Walid Abi Habib
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Annick Blaise
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Yves Koudou
- INSERM, Centre for research in Epidemiology and Population Health (CESP), U1018, Lifelong epidemiology of obesity, diabetes and renal disease team, Villejuif, France Paris-Sud University, UMRS 1018, Villejuif, France
| | - Florence Busato
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Yves Le Bouc
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Irène Netchine
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| |
Collapse
|
17
|
Fu M, Wu X, He J, Zhang Y, Hua S. Natrium fluoride influences methylation modifications and induces apoptosis in mouse early embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10398-10405. [PMID: 25102367 DOI: 10.1021/es503026e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study epigenetically examined the effect of fluoride on early embryos of Kunming mice administered with 0, 20 (low), 60 (medium), and 120 mg/L (high) sodium fluoride (NaF). The results showed that NaF repressed oocyte maturation, fertilization and blastocyst formation in all NaF-treated groups. Meanwhile, TUNEL assay showed that embryo apoptosis was induced dramatically in blastocyst stage at either low or medium doses, and in 8-cell stage at high dose, compared to the control, suggesting a dose-dependent effect. Furthermore, the immunostaining displayed global increases of DNA methylation, H3K9m2 and H3K4m2 with increasing dose, which were consistent with gene expression results, exhibiting general increases of DNMT1, DNMT3a, G9a, LSD1, and MLL1 and a reduction of JHDM2a in transcription and protein levels. More closely, the differential methylation domain in parentally imprinted gene H19 showed low methylation, while materanlly imprinted gene IGF2 showed high methylaiton in NaF-treated groups compared to the control group, which corresponded with high expression of H19 and low expression of IGF2 confirmed by qPCR. Collectively, we demonstrated that fluoride epigenetically impaired mouse oocyte maturation and embryonic development, supplying a better knowledge of fluoride in toxicology and a deeper evaluation of its potential influence in physiological and clinical implications.
Collapse
Affiliation(s)
- Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi Province The People's Republic of China 712100
| | | | | | | | | |
Collapse
|
18
|
Abi Habib W, Azzi S, Brioude F, Steunou V, Thibaud N, Das Neves C, Le Jule M, Chantot-Bastaraud S, Keren B, Lyonnet S, Michot C, Rossi M, Pasquier L, Gicquel C, Rossignol S, Le Bouc Y, Netchine I. Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome. Hum Mol Genet 2014; 23:5763-73. [PMID: 24916376 DOI: 10.1093/hmg/ddu290] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Isolated gain of methylation (GOM) at the IGF2/H19 imprinting control region 1 (ICR1) accounts for about 10% of patients with BWS. A subset of these patients have genetic defects within ICR1, but the frequency of these defects has not yet been established in a large cohort of BWS patients with isolated ICR1 GOM. Here, we carried out a genetic analysis in a large cohort of 57 BWS patients with isolated ICR1 GOM and analyzed the methylation status of the entire domain. We found a new point mutation in two unrelated families and a 21 bp deletion in another unrelated child, both of which were maternally inherited and affected the OCT4/SOX2 binding site in the A2 repeat of ICR1. Based on data from this and previous studies, we estimate that cis genetic defects account for about 20% of BWS patients with isolated ICR1 GOM. Methylation analysis at eight loci of the IGF2/H19 domain revealed that sites surrounding OCT4/SOX2 binding site mutations were fully methylated and methylation indexes declined as a function of distance from these sites. This was not the case in BWS patients without genetic defects identified. Thus, GOM does not spread uniformly across the IGF2/H19 domain, suggesting that OCT4/SOX2 protects against methylation at local sites. These findings add new insights to the mechanism of the regulation of the ICR1 domain. Our data show that mutations and deletions within ICR1 are relatively common. Systematic identification is therefore necessary to establish appropriate genetic counseling for BWS patients with isolated ICR1 GOM.
Collapse
Affiliation(s)
- Walid Abi Habib
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Salah Azzi
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Frédéric Brioude
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | | | - Nathalie Thibaud
- Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | | | - Marilyne Le Jule
- Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Sandra Chantot-Bastaraud
- INSERM U933, Service de Génétique et D'Embryologie Médicales, Paris 75571, France, AP-HP, Hôpital Trousseau, Service de Génétique et D'Embryologie Médicales, Paris 75571, France
| | - Boris Keren
- Département de Génétique, CRICM UPMC INSERM UMR_S975/CNRS UMR 7225, GH Pitié-Salpêtrière, APHP, Paris, France
| | - Stanislas Lyonnet
- University Paris Descartes-Sorbonne, Paris Cité, Institut Imagine, INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| | - Caroline Michot
- University Paris Descartes-Sorbonne, Paris Cité, Institut Imagine, INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| | - Massimiliano Rossi
- Service de Génétique, Centre de Référence des Anomalies du Développement Centre-Est, Hospices Civils de Lyon, Bron, France, INSERM U1028 UMR CNRS 5292, UCBL, CRNL TIGER Team, Lyon, France
| | - Laurent Pasquier
- Service de Génétique Médicale-CLAD Ouest, Hôpital Sud, CHU Rennes, Rennes, France and
| | - Christine Gicquel
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Sylvie Rossignol
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Yves Le Bouc
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Irène Netchine
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France,
| |
Collapse
|
19
|
Azzi S, Abi Habib W, Netchine I. Beckwith-Wiedemann and Russell-Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes 2014; 21:30-8. [PMID: 24322424 DOI: 10.1097/med.0000000000000037] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The imprinted human 11p15.5 region encompasses two imprinted domains important for the control of fetal growth: the H19/IGF2 domain in the telomeric region and the KCNQ1OT1/CDKN1C domain in the centromeric region. These two domains are differentially methylated and each is regulated by its own imprinting control region (ICR): ICR1 in the telomeric region and ICR2 in the centromeric region. Aberrant methylation of the 11p15.5 imprinted region, through genetic or epigenetic mechanisms, leads to two clinical syndromes, with opposite growth phenotypes: Russell-Silver Syndrome (RSS; with severe fetal and postnatal growth retardation) and Beckwith-Wiedemann Syndrome (BWS; an overgrowth syndrome). RECENT FINDINGS In this review, we discuss the recently identified molecular abnormalities at 11p15.5 involved in RSS and BWS, which have led to the identification of cis-acting elements and trans-acting regulatory factors involved in the regulation of imprinting in this region. We also discuss the multilocus imprinting disorders identified in various human syndromes, their clinical outcomes and their impact on commonly identified metabolism disorders. SUMMARY These new findings and progress in this field will have direct consequence for diagnostic and predictive tools, risk assessment and genetic counseling for these syndromes.
Collapse
Affiliation(s)
- Salah Azzi
- aAP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes bUPMC Paris 6, UMR_S938, Centre de Recherche de Saint-Antoine cINSERM, UMR_S938, Centre de Recherche de Saint-Antoine, Paris, France
| | | | | |
Collapse
|
20
|
Higashimoto K, Jozaki K, Kosho T, Matsubara K, Fuke T, Yamada D, Yatsuki H, Maeda T, Ohtsuka Y, Nishioka K, Joh K, Koseki H, Ogata T, Soejima H. A novel de novo point mutation of the OCT-binding site in the IGF2/H19-imprinting control region in a Beckwith-Wiedemann syndrome patient. Clin Genet 2013; 86:539-44. [PMID: 24299031 DOI: 10.1111/cge.12318] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/21/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
The IGF2/H19-imprinting control region (ICR1) functions as an insulator to methylation-sensitive binding of CTCF protein, and regulates imprinted expression of IGF2 and H19 in a parental origin-specific manner. ICR1 methylation defects cause abnormal expression of imprinted genes, leading to Beckwith-Wiedemann syndrome (BWS) or Silver-Russell syndrome (SRS). Not only ICR1 microdeletions involving the CTCF-binding site, but also point mutations and a small deletion of the OCT-binding site have been shown to trigger methylation defects in BWS. Here, mutational analysis of ICR1 in 11 BWS and 12 SRS patients with ICR1 methylation defects revealed a novel de novo point mutation of the OCT-binding site on the maternal allele in one BWS patient. In BWS, all reported mutations and the small deletion of the OCT-binding site, including our case, have occurred within repeat A2. These findings indicate that the OCT-binding site is important for maintaining an unmethylated status of maternal ICR1 in early embryogenesis.
Collapse
Affiliation(s)
- K Higashimoto
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Girardot M, Feil R, Llères D. Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics 2013; 5:715-28. [DOI: 10.2217/epi.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian genes controlled by genomic imprinting play important roles in development and diverse postnatal processes. A growing number of congenital disorders have been linked to genomic imprinting. Each of these is caused by perturbed gene expression at one principal imprinted domain. Some imprinting disorders, including the Prader–Willi and Angelman syndromes, are caused almost exclusively by genetic mutations. In several others, including the Beckwith–Wiedemann and Silver–Russell growth syndromes, and transient neonatal diabetes mellitus, imprinted expression is perturbed mostly by epigenetic alterations at ‘imprinting control regions’ and at other specific regulatory sequences. In a minority of these patients, DNA methylation is altered at multiple imprinted loci, suggesting that common trans-acting factors are affected. Here, we review the epimutations involved in congenital imprinting disorders and the associated clinical features. Trans-acting factors known to be causally involved are discussed and other trans-acting factors that are potentially implicated are also presented.
Collapse
Affiliation(s)
- Michael Girardot
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
| | - David Llères
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| |
Collapse
|
22
|
Zimmerman DL, Boddy CS, Schoenherr CS. Aberrant methylation of the H19 imprinting control region may increase the risk of spontaneous abortion. Epigenomics 2013; 8:e81962. [PMID: 24324735 PMCID: PMC3855764 DOI: 10.1371/journal.pone.0081962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/18/2013] [Indexed: 12/02/2022] Open
Abstract
A central question in genomic imprinting is how parental-specific DNA methylation of imprinting control regions (ICR) is established during gametogenesis and maintained after fertilization. At the imprinted Igf2/H19 locus, CTCF binding maintains the unmethylated state of the maternal ICR after the blastocyst stage. In addition, evidence from Beckwith-Wiedemann patients and cultured mouse cells suggests that two Sox-Oct binding motifs within the Igf2/H19 ICR also participate in maintaining hypomethylation of the maternal allele. We found that the Sox and octamer elements from both Sox-Oct motifs were required to drive hypomethylation of integrated transgenes in mouse embryonic carcinoma cells. Oct4 and Sox2 showed cooperative binding to the Sox-Oct motifs, and both were present at the endogenous ICR. Using a mouse with mutations in the Oct4 binding sites, we found that maternally transmitted mutant ICRs acquired partial methylation in somatic tissues, but there was little effect on imprinted expression of H19 and Igf2. A subset of mature oocytes also showed partial methylation of the mutant ICR, which suggested that the Sox-Oct motifs provide some protection from methylation during oogenesis. The Sox-Oct motifs, however, were not required for erasure of paternal methylation in primordial germ cells, which indicated that the oocyte methylation was acquired post-natally. Maternally inherited mutant ICRs were unmethylated in blastocysts, which suggested that at least a portion of the methylation in somatic tissues occurred after implantation. These findings provide evidence that Sox-Oct motifs contribute to ICR hypomethylation in post-implantation embryos and maturing oocytes and link imprinted DNA methylation with key stem cell/germline transcription factors.
Collapse
Affiliation(s)
- David L. Zimmerman
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Biology Department, College of the Ozarks, Point Lookout, Missouri, United States of America
- * E-mail:
| | - Craig S. Boddy
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Division of Medical Education, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Christopher S. Schoenherr
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
23
|
Sakaguchi R, Okamura E, Matsuzaki H, Fukamizu A, Tanimoto K. Sox-Oct motifs contribute to maintenance of the unmethylated H19 ICR in YAC transgenic mice. Hum Mol Genet 2013; 22:4627-37. [DOI: 10.1093/hmg/ddt311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
24
|
Evidence for anticipation in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2013; 21:1344-8. [PMID: 23572028 PMCID: PMC3831082 DOI: 10.1038/ejhg.2013.71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/02/2013] [Accepted: 03/12/2013] [Indexed: 12/16/2022] Open
Abstract
Classical Beckwith-Wiedemann syndrome (BWS) was diagnosed in two sisters and their male cousin. The children's mothers and a third sister were tall statured (178, 185 and 187 cm) and one had mild BWS features as a child. Their parents had average heights of 173 cm (mother) and 180 cm (father). This second generation tall stature and third generation BWS correlated with increased methylation of the maternal H19/IGF2-locus. The results were obtained by bisulphite treatment and subclone Sanger sequencing or next generation sequencing to quantitate the degree of CpG-methylation on three locations: the H19 promoter region and two CTCF binding sites in the H19 imprinting control region (ICR1), specifically in ICR1 repeats B1 and B7. Upon ICR1 copy number analysis and sequencing, the same maternal point variant NCBI36:11:g.1979595T>C that had been described previously as a cause of BWS in three brothers, was found. As expected, this point variant was on the paternal allele in the non-affected grandmother. This nucleotide variant has been shown to affect OCTamer-binding transcription factor-4 (OCT4) binding, which may be necessary for maintaining the unmethylated state of the maternal allele. Our data extend these findings by showing that the OCT4 binding site mutation caused incomplete switching from paternal to maternal ICR1 methylation imprint, and that upon further maternal transmission, methylation of the incompletely demethylated variant ICR1 allele was further increased. This suggests that maternal and paternal ICR1 alleles are treated differentially in the female germline, and only the paternal allele appears to be capable of demethylation.
Collapse
|
25
|
Okamura E, Matsuzaki H, Sakaguchi R, Takahashi T, Fukamizu A, Tanimoto K. The H19 imprinting control region mediates preimplantation imprinted methylation of nearby sequences in yeast artificial chromosome transgenic mice. Mol Cell Biol 2013; 33:858-71. [PMID: 23230275 PMCID: PMC3571351 DOI: 10.1128/mcb.01003-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022] Open
Abstract
In the mouse Igf2/H19 imprinted locus, differential methylation of the imprinting control region (H19 ICR) is established during spermatogenesis and is maintained in offspring throughout development. Previously, however, we observed that the paternal H19 ICR, when analyzed in yeast artificial chromosome transgenic mice (YAC-TgM), was preferentially methylated only after fertilization. To identify the DNA sequences that confer methylation imprinting, we divided the H19 ICR into two fragments (1.7 and 1.2 kb), ligated them to both ends of a λ DNA fragment into which CTCF binding sites had been inserted, and analyzed this in YAC-TgM. The maternally inherited λ sequence, normally methylated after implantation in the absence of H19 ICR sequences, became hypomethylated, demonstrating protective activity against methylation within the ICR. Meanwhile, the paternally inherited λ sequence was hypermethylated before implantation only when a 1.7-kb fragment was ligated. Consistently, when two subfragments of the H19 ICR were individually investigated for their activities in YAC-TgM, only the 1.7-kb fragment was capable of introducing paternal allele-specific DNA methylation. These results show that postfertilization methylation imprinting is conferred by a paternal allele-specific methylation activity present in a 1.7-kb DNA fragment of the H19 ICR, while maternal allele-specific activities protect the allele from de novo DNA methylation.
Collapse
Affiliation(s)
- Eiichi Okamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryuuta Sakaguchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|