1
|
Walker LM, Sherpa RN, Ivaturi S, Brock DA, Larsen TJ, Walker JR, Strassmann JE, Queller DC. Parallel evolution of the G protein-coupled receptor GrlG and the loss of fruiting body formation in the social amoeba Dictyostelium discoideum evolved under low relatedness. G3 (BETHESDA, MD.) 2023; 14:jkad235. [PMID: 37832511 PMCID: PMC10755179 DOI: 10.1093/g3journal/jkad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Aggregative multicellularity relies on cooperation among formerly independent cells to form a multicellular body. Previous work with Dictyostelium discoideum showed that experimental evolution under low relatedness profoundly decreased cooperation, as indicated by the loss of fruiting body formation in many clones and an increase of cheaters that contribute proportionally more to spores than to the dead stalk. Using whole-genome sequencing and variant analysis of these lines, we identified 38 single nucleotide polymorphisms in 29 genes. Each gene had 1 variant except for grlG (encoding a G protein-coupled receptor), which had 10 unique SNPs and 5 structural variants. Variants in the 5' half of grlG-the region encoding the signal peptide and the extracellular binding domain-were significantly associated with the loss of fruiting body formation; the association was not significant in the 3' half of the gene. These results suggest that the loss of grlG was adaptive under low relatedness and that at least the 5' half of the gene is important for cooperation and multicellular development. This is surprising given some previous evidence that grlG encodes a folate receptor involved in predation, which occurs only during the single-celled stage. However, non-fruiting mutants showed little increase in a parallel evolution experiment where the multicellular stage was prevented from happening. This shows that non-fruiting mutants are not generally selected by any predation advantage but rather by something-likely cheating-during the multicellular stage.
Collapse
Affiliation(s)
- Laura M Walker
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rintsen N Sherpa
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sindhuri Ivaturi
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Debra A Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tyler J Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jason R Walker
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
2
|
Kippenberger S, Pipa G, Steinhorst K, Zöller N, Kleemann J, Özistanbullu D, Kaufmann R, Scheller B. Learning in the Single-Cell Organism Physarum polycephalum: Effect of Propofol. Int J Mol Sci 2023; 24:ijms24076287. [PMID: 37047260 PMCID: PMC10094176 DOI: 10.3390/ijms24076287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Propofol belongs to a class of molecules that are known to block learning and memory in mammals, including rodents and humans. Interestingly, learning and memory are not tied to the presence of a nervous system. There are several lines of evidence indicating that single-celled organisms also have the capacity for learning and memory which may be considered as basal intelligence. Here, we introduce a new experimental model for testing the learning ability of Physarum polycephalum, a model organism frequently used to study single-celled “intelligence”. In this study, the impact of propofol on Physarum’s “intelligence” was tested. The model consists of a labyrinth of subsequent bifurcations in which food (oat flakes soaked with coconut oil-derived medium chain triglycerides [MCT] and soybean oil-derived long chain triglycerides [LCT]) or propofol in MCT/LCT) is placed in one of each Y-branch. In this setting, it was tested whether Physarum memorized the rewarding branch. We saw that Physarum was a quick learner when capturing the first bifurcations of the maze; thereafter, the effect decreased, perhaps due to reaching a state of satiety. In contrast, when oat flakes were soaked with propofol, Physarum’s preference for oat flakes declined significantly. Several possible actions, including the blocking of gamma-aminobutyric acid (GABA) receptor signaling, are suggested to account for this behavior, many of which can be tested in our new model.
Collapse
|
3
|
Hall G, Kelly S, Schaap P, Schilde C. Phylogeny-wide analysis of G-protein coupled receptors in social amoebas and implications for the evolution of multicellularity. OPEN RESEARCH EUROPE 2023; 2:134. [PMID: 37645274 PMCID: PMC10445921 DOI: 10.12688/openreseurope.15250.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 08/31/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven-transmembrane proteins and constitute the largest group of receptors within eukaryotes. The presence of a large set of GPCRs in the unicellular Amoebozoa was surprising and is indicative of the largely undiscovered environmental sensing capabilities in this group. Evolutionary transitions from unicellular to multicellular lifestyles, like we see in social amoebas, have occurred several times independently in the Amoebozoa, and GPCRs may have been co-opted for new functions in cell-cell communication. Methods We have analysed a set of GPCRs from fully sequenced Amoebozoan genomes by Bayesian inference, compared their phylogenetic distribution and domain composition, and analysed their temporal and spatial expression patterns in five species of dictyostelids. Results We found evidence that most GPCRs are conserved deeply in the Amoebozoa and are probably performing roles in general cell functions and complex environmental sensing. All families of GPCRs (apart from the family 4 fungal pheromone receptors) are present in dictyostelids with family 5 being the largest and family 2 the one with the fewest members. For the first time, we identify the presence of family 1 rhodopsin-like GPCRs in dictyostelids. Some GPCRs have been amplified in the dictyostelids and in specific lineages thereof and through changes in expression patterns may have been repurposed for signalling in multicellular development. Discussion Our phylogenetic analysis suggests that GPCR families 1, 2 and 6 already diverged early in the Amoebozoa, whereas families 3 and 5 expanded later within the dictyostelids. The family 6 cAMP receptors that have experimentally supported roles in multicellular development in dictyostelids ( carA-carD; tasA/B) originated at the root of all dictyostelids and only have weakly associated homologs in Physarum polycephalum. Our analysis identified candidate GPCRs which have evolved in the dictyostelids and could have been co-opted for multicellular development.
Collapse
Affiliation(s)
- Grant Hall
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Sarah Kelly
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | |
Collapse
|
4
|
Nugraha RYB, Jeelani G, Nozaki T. Physiological roles and metabolism of γ-aminobutyric acid (GABA) in parasitic protozoa. Trends Parasitol 2022; 38:462-477. [DOI: 10.1016/j.pt.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
|
5
|
Mitochondrial Processes during Early Development of Dictyostelium discoideum: From Bioenergetic to Proteomic Studies. Genes (Basel) 2021; 12:genes12050638. [PMID: 33923051 PMCID: PMC8145953 DOI: 10.3390/genes12050638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The slime mold Dictyostelium discoideum’s life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria’s structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.
Collapse
|
6
|
Transcriptional Profiling of the Probiotic Escherichia coli Nissle 1917 Strain under Simulated Microgravity. Int J Mol Sci 2020; 21:ijms21082666. [PMID: 32290466 PMCID: PMC7215827 DOI: 10.3390/ijms21082666] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
Long-term space missions affect the gut microbiome of astronauts, especially the viability of some pathogens. Probiotics may be an effective solution for the management of gut microbiomes, but there is a lack of studies regarding the physiology of probiotics in microgravity. Here, we investigated the effects of microgravity on the probiotic Escherichia coli Nissle 1917 (EcN) by comparing transcriptomic data during exponential and stationary growth phases under simulated microgravity and normal gravity. Microgravity conditions affected several physiological features of EcN, including its growth profile, biofilm formation, stress responses, metal ion transport/utilization, and response to carbon starvation. We found that some changes, such as decreased adhesion ability and acid resistance, may be disadvantageous to EcN relative to gut pathogens under microgravity, indicating the need to develop probiotics optimized for space flight.
Collapse
|
7
|
Pan M, Neilson MP, Grunfeld AM, Cruz P, Wen X, Insall RH, Jin T. A G-protein-coupled chemoattractant receptor recognizes lipopolysaccharide for bacterial phagocytosis. PLoS Biol 2018; 16:e2005754. [PMID: 29799847 PMCID: PMC5969738 DOI: 10.1371/journal.pbio.2005754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Phagocytes locate microorganisms via chemotaxis and then consume them using phagocytosis. Dictyostelium amoebas are stereotypical phagocytes that prey on diverse bacteria using both processes. However, as typical phagocytic receptors, such as complement receptors or Fcγ receptors, have not been found in Dictyostelium, it remains mysterious how these cells recognize bacteria. Here, we show that a single G-protein-coupled receptor (GPCR), folic acid receptor 1 (fAR1), simultaneously recognizes the chemoattractant folate and the phagocytic cue lipopolysaccharide (LPS), a major component of bacterial surfaces. Cells lacking fAR1 or its cognate G-proteins are defective in chemotaxis toward folate and phagocytosis of Klebsiella aerogenes. Computational simulations combined with experiments show that responses associated with chemotaxis can also promote engulfment of particles coated with chemoattractants. Finally, the extracellular Venus-Flytrap (VFT) domain of fAR1 acts as the binding site for both folate and LPS. Thus, fAR1 represents a new member of the pattern recognition receptors (PRRs) and mediates signaling from both bacterial surfaces and diffusible chemoattractants to reorganize actin for chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Alexander M. Grunfeld
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xi Wen
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
8
|
An Autocrine Proliferation Repressor Regulates Dictyostelium discoideum Proliferation and Chemorepulsion Using the G Protein-Coupled Receptor GrlH. mBio 2018; 9:mBio.02443-17. [PMID: 29440579 PMCID: PMC5821085 DOI: 10.1128/mbio.02443-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In eukaryotic microbes, little is known about signals that inhibit the proliferation of the cells that secrete the signal, and little is known about signals (chemorepellents) that cause cells to move away from the source of the signal. Autocrine proliferation repressor protein A (AprA) is a protein secreted by the eukaryotic microbe Dictyostelium discoideum. AprA is a chemorepellent for and inhibits the proliferation of D. discoideum. We previously found that cells sense AprA using G proteins, suggesting the existence of a G protein-coupled AprA receptor. To identify the AprA receptor, we screened mutants lacking putative G protein-coupled receptors. We found that, compared to the wild-type strain, cells lacking putative receptor GrlH (grlH¯ cells) show rapid proliferation, do not have large numbers of cells moving away from the edges of colonies, are insensitive to AprA-induced proliferation inhibition and chemorepulsion, and have decreased AprA binding. Expression of GrlH in grlH¯ cells (grlH¯/grlHOE) rescues the phenotypes described above. These data indicate that AprA signaling may be mediated by GrlH in D. discoideum. Little is known about how eukaryotic cells can count themselves and thus regulate the size of a tissue or density of cells. In addition, little is known about how eukaryotic cells can sense a repellant signal and move away from the source of the repellant, for instance, to organize the movement of cells in a developing embryo or to move immune cells out of a tissue. In this study, we found that a eukaryotic microbe uses G protein-coupled receptors to mediate both cell density sensing and chemorepulsion.
Collapse
|
9
|
Suess PM, Watson J, Chen W, Gomer RH. Extracellular polyphosphate signals through Ras and Akt to prime Dictyostelium discoideum cells for development. J Cell Sci 2017; 130:2394-2404. [PMID: 28584190 DOI: 10.1242/jcs.203372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/27/2017] [Indexed: 12/21/2022] Open
Abstract
Linear chains of five to hundreds of phosphates called polyphosphate are found in organisms ranging from bacteria to humans, but their function is poorly understood. In Dictyostelium discoideum, polyphosphate is used as a secreted signal that inhibits cytokinesis in an autocrine negative feedback loop. To elucidate how cells respond to this unusual signal, we undertook a proteomic analysis of cells treated with physiological levels of polyphosphate and observed that polyphosphate causes cells to decrease levels of actin cytoskeleton proteins, possibly explaining how polyphosphate inhibits cytokinesis. Polyphosphate also causes proteasome protein levels to decrease, and in both Dictyostelium and human leukemia cells, decreases proteasome activity and cell proliferation. Polyphosphate also induces Dictyostelium cells to begin development by increasing expression of the cell-cell adhesion molecule CsA (also known as CsaA) and causing aggregation, and this effect, as well as the inhibition of proteasome activity, is mediated by Ras and Akt proteins. Surprisingly, Ras and Akt do not affect the ability of polyphosphate to inhibit proliferation, suggesting that a branching pathway mediates the effects of polyphosphate, with one branch affecting proliferation, and the other branch affecting development.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jacob Watson
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Wensheng Chen
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA.,Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
10
|
Traynor D, Kay RR. A polycystin-type transient receptor potential (Trp) channel that is activated by ATP. Biol Open 2017; 6:200-209. [PMID: 28011630 PMCID: PMC5312093 DOI: 10.1242/bio.020685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ATP and ADP are ancient extra-cellular signalling molecules that in Dictyostelium amoebae cause rapid, transient increases in cytosolic calcium due to an influx through the plasma membrane. This response is independent of hetero-trimeric G-proteins, the putative IP3 receptor IplA and all P2X channels. We show, unexpectedly, that it is abolished in mutants of the polycystin-type transient receptor potential channel, TrpP. Responses to the chemoattractants cyclic-AMP and folic acid are unaffected in TrpP mutants. We report that the DIF morphogens, cyclic-di-GMP, GABA, glutamate and adenosine all induce strong cytoplasmic calcium responses, likewise independently of TrpP. Thus, TrpP is dedicated to purinergic signalling. ATP treatment causes cell blebbing within seconds but this does not require TrpP, implicating a separate purinergic receptor. We could detect no effect of ATP on chemotaxis and TrpP mutants grow, chemotax and develop almost normally in standard conditions. No gating ligand is known for the human homologue of TrpP, polycystin-2, which causes polycystic kidney disease. Our results now show that TrpP mediates purinergic signalling in Dictyostelium and is directly or indirectly gated by ATP. Summary: We show that a Trp channel related to the mammalian polycystin channel, rather than a P2X receptor, is responsible for the purinergic stimulation of cytosolic calcium levels in Dictyostelium cells.
Collapse
Affiliation(s)
- David Traynor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB1 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB1 0QH, UK
| |
Collapse
|
11
|
Tang J, Chen Z. The protective effect of γ-aminobutyric acid on the development of immune function in chickens under heat stress. J Anim Physiol Anim Nutr (Berl) 2015; 100:768-77. [DOI: 10.1111/jpn.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/09/2015] [Indexed: 11/27/2022]
Affiliation(s)
- J. Tang
- Ministry of Education Key Laboratory for Tropical Animal and Plant Ecology; Hainan Normal University; Haikou China
| | - Z. Chen
- Ministry of Education Key Laboratory for Tropical Animal and Plant Ecology; Hainan Normal University; Haikou China
| |
Collapse
|
12
|
Singh SP, Dhakshinamoorthy R, Jaiswal P, Schmidt S, Thewes S, Baskar R. The thyroxine inactivating gene, type III deiodinase, suppresses multiple signaling centers in Dictyostelium discoideum. Dev Biol 2014; 396:256-68. [PMID: 25446527 DOI: 10.1016/j.ydbio.2014.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/26/2022]
Abstract
Thyroxine deiodinases, the enzymes that regulate thyroxine metabolism, are essential for vertebrate growth and development. In the genome of Dictyostelium discoideum, a single intronless gene (dio3) encoding type III thyroxine 5' deiodinase is present. The amino acid sequence of D. discoideum Dio3 shares 37% identity with human T4 deiodinase and is a member of the thioredoxin reductase superfamily. dio3 is expressed throughout growth and development and by generating a knockout of dio3, we have examined the role of thyroxine 5' deiodinase in D. discoideum. dio3(-) had multiple defects that affected growth, timing of development, aggregate size, cell streaming, and cell-type differentiation. A prominent phenotype of dio3(-) was the breaking of late aggregates into small signaling centers, each forming a fruiting body of its own. cAMP levels, its relay, photo- and chemo-taxis were also defective in dio3(-). Quantitative RT-PCR analyses suggested that expression levels of genes encoding adenylyl cyclase A (acaA), cAMP-receptor A (carA) and cAMP-phosphodiesterases were reduced. There was a significant reduction in the expression of CadA and CsaA, which are involved in cell-cell adhesion. The dio3(-) slugs had prestalk identity, with pronounced prestalk marker ecmA expression. Thus, Dio3 seems to have roles in mediating cAMP synthesis/relay, cell-cell adhesion and slug patterning. The phenotype of dio3(-) suggests that Dio3 may prevent the formation of multiple signaling centers during D. discoideum development. This is the first report of a gene involved in thyroxine metabolism that is also involved in growth and development in a lower eukaryote.
Collapse
Affiliation(s)
- Shashi Prakash Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Ranjani Dhakshinamoorthy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Pundrik Jaiswal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Stefanie Schmidt
- Institute for Biology - Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sascha Thewes
- Institute for Biology - Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India.
| |
Collapse
|