1
|
Fayazi M, Rostami M, Amiri Moghaddam M, Nasiri K, Tadayonfard A, Roudsari MB, Ahmad HM, Parhizgar Z, Majbouri Yazdi A. A state-of-the-art review of the recent advances in drug delivery systems for different therapeutic agents in periodontitis. J Drug Target 2025; 33:612-647. [PMID: 39698877 DOI: 10.1080/1061186x.2024.2445051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Periodontitis (PD) is a chronic gum illness that may be hard to cure for a number of reasons, including the fact that no one knows what causes it, the side effects of anti-microbial treatment, and how various kinds of bacteria interact with one another. As a result, novel therapeutic approaches for PD treatment must be developed. Additionally, supplementary antibacterial regimens, including local and systemic medication administration of chemical agents, are necessary for deep pockets to assist with mechanical debridement of tooth surfaces. As our knowledge of periodontal disease and drug delivery systems (DDSs) grows, new targeted delivery systems like extracellular vesicles, lipid-based nanoparticles (NPs), metallic NPs, and polymer NPs have been developed. These systems aim to improve the targeting and precision of PD treatments while reducing the systemic side effects of antibiotics. Nanozymes, photodermal therapy, antibacterial metallic NPs, and traditional PD therapies have all been reviewed in this research. Medicinal herbs, antibiotics, photothermal therapy, nanozymes, antibacterial metallic NPs, and conventional therapies for PD have all been examined in this research. After that, we reviewed the key features of many innovative DDSs and how they worked for PD therapy. Finally, we have discussed the advantages and disadvantages of these DDSs.
Collapse
Affiliation(s)
- Mehrnaz Fayazi
- School of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Azadeh Tadayonfard
- Department of Prosthodontics, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Behnam Roudsari
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Parhizgar
- Resident of Periodontology, Department of Periodontics, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Rocha ST, Shah DD, Shrivastava A. Ecological, beneficial, and pathogenic functions of the Type 9 Secretion System. Microb Biotechnol 2024; 17:e14516. [PMID: 38924452 PMCID: PMC11205867 DOI: 10.1111/1751-7915.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The recently discovered Type 9 Secretion System (T9SS) is present in bacteria of the Fibrobacteres-Bacteroidetes-Chlorobi superphylum, which are key constituents of diverse microbiomes. T9SS is instrumental in the extracellular secretion of over 270,000 proteins, including peptidases, sugar hydrolases, metal ion-binding proteins, and metalloenzymes. These proteins are essential for the interaction of bacteria with their environment. This mini-review explores the extensive array of proteins secreted by the T9SS. It highlights the diverse functions of these proteins, emphasizing their roles in pathogenesis, bacterial interactions, host colonization, and the overall health of the ecosystems inhabited by T9SS-containing bacteria.
Collapse
Affiliation(s)
- Sofia T. Rocha
- Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Dhara D. Shah
- Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Mathematical and Natural SciencesArizona State UniversityGlendaleArizonaUSA
| | - Abhishek Shrivastava
- Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| |
Collapse
|
3
|
From bitter to delicious: properties and uses of microbial aminopeptidases. World J Microbiol Biotechnol 2023; 39:72. [PMID: 36625962 DOI: 10.1007/s11274-022-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
Protein hydrolysates are easily digested and utilized by humans and animals, and are less likely to cause allergies. Protein hydrolysis caused by endopeptidases often leads to the exposure of hydrophobic amino acids at the ends of peptides, which consequently causes bitter taste. Microbial aminopeptidases remove the exposed hydrophobic amino acids at the ends of aminopeptides, which improves taste, allowing for easier production. This processe is attacking significant attention from industry and laboratories. Aminopeptidases selectively hydrolyze peptide bonds from the N-terminal of proteins or peptides to produce free amino acids. Aminopeptidases can be classified into leucine, lysine, methionine and proline aminopeptidases by hydrolyzed N-terminal residues; metallo-, serine- and cysteine- aminopeptidases by the reaction mechanisms; dipeptide and triphoptide enzymes by the released number of amino acid residues at the end of hydrolyzed peptides; or acidic, neutral and basic aminopeptidases by their optimal hydrolysis pH. Commercial aminopeptidases are generally produced by microbial fermentation, and are mainly applied in the debittering of protein hydrolysates, the deep hydrolysis of protein, and the production of condiments, cheese, and bioactive peptides, as well as for disease detection in the medical industry.
Collapse
|
4
|
Chow YC, Yam HC, Gunasekaran B, Lai WY, Wo WY, Agarwal T, Ong YY, Cheong SL, Tan SA. Implications of Porphyromonas gingivalis peptidyl arginine deiminase and gingipain R in human health and diseases. Front Cell Infect Microbiol 2022; 12:987683. [PMID: 36250046 PMCID: PMC9559808 DOI: 10.3389/fcimb.2022.987683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis is a major pathogenic bacterium involved in the pathogenesis of periodontitis. Citrullination has been reported as the underlying mechanism of the pathogenesis, which relies on the interplay between two virulence factors of the bacterium, namely gingipain R and the bacterial peptidyl arginine deiminase. Gingipain R cleaves host proteins to expose the C-terminal arginines for peptidyl arginine deiminase to citrullinate and generate citrullinated proteins. Apart from carrying out citrullination in the periodontium, the bacterium is found capable of citrullinating proteins present in the host synovial tissues, atherosclerotic plaques and neurons. Studies have suggested that both virulence factors are the key factors that trigger distal effects mediated by citrullination, leading to the development of some non-communicable diseases, such as rheumatoid arthritis, atherosclerosis, and Alzheimer’s disease. Thus, inhibition of these virulence factors not only can mitigate periodontitis, but also can provide new therapeutic solutions for systematic diseases involving bacterial citrullination. Herein, we described both these proteins in terms of their unique structural conformations and biological relevance to different human diseases. Moreover, investigations of inhibitory actions on the enzymes are also enumerated. New approaches for identifying inhibitors for peptidyl arginine deiminase through drug repurposing and virtual screening are also discussed.
Collapse
Affiliation(s)
- Yoke Chan Chow
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Weng Yeen Lai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Weng Yue Wo
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Tarun Agarwal
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Yien Yien Ong
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Siew Lee Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Sheri-Ann Tan, ; Siew Lee Cheong,
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
- *Correspondence: Sheri-Ann Tan, ; Siew Lee Cheong,
| |
Collapse
|
5
|
Tetrahydroimidazo[4,5- c]pyridine-Based Inhibitors of Porphyromonas gingivalis Glutaminyl Cyclase. Pharmaceuticals (Basel) 2021; 14:ph14121206. [PMID: 34959608 PMCID: PMC8709289 DOI: 10.3390/ph14121206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Periodontitis is a severe yet underestimated oral disease. Since it is linked to several systemic diseases, such as diabetes, artheriosclerosis, and even Alzheimer’s disease, growing interest in treating periodontitis has emerged recently. The major cause of periodontitis is a shift in the oral microbiome. A keystone pathogen that is associated with this shift is Porphyromonas gingivalis. Hence, targeting P. gingivalis came into focus of drug discovery for the development of novel antiinfective compounds. Among others, glutaminyl cyclases (QCs) of oral pathogens might be promising drug targets. Here, we report the discovery and structure–activity relationship of a novel class of P. gingivalis QC inhibitors according to a tetrahydroimidazo[4,5-c]pyridine scaffold. Some compounds exhibited activity in the lower nanomolar range and thus were further characterized with regard to their selectivity and toxicity.
Collapse
|
6
|
Mizgalska D, Goulas T, Rodríguez-Banqueri A, Veillard F, Madej M, Małecka E, Szczesniak K, Ksiazek M, Widziołek M, Guevara T, Eckhard U, Solà M, Potempa J, Gomis-Rüth FX. Intermolecular latency regulates the essential C-terminal signal peptidase and sortase of the Porphyromonas gingivalis type-IX secretion system. Proc Natl Acad Sci U S A 2021; 118:e2103573118. [PMID: 34593635 PMCID: PMC8501833 DOI: 10.1073/pnas.2103573118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen of the human dysbiotic oral microbiome that causes severe periodontitis. It employs a type-IX secretion system (T9SS) to shuttle proteins across the outer membrane (OM) for virulence. Uniquely, T9SS cargoes carry a C-terminal domain (CTD) as a secretion signal, which is cleaved and replaced with anionic lipopolysaccharide by transpeptidation for extracellular anchorage to the OM. Both reactions are carried out by PorU, the only known dual-function, C-terminal signal peptidase and sortase. PorU is itself secreted by the T9SS, but its CTD is not removed; instead, intact PorU combines with PorQ, PorV, and PorZ in the OM-inserted "attachment complex." Herein, we revealed that PorU transits between active monomers and latent dimers and solved the crystal structure of the ∼260-kDa dimer. PorU has an elongated shape ∼130 Å in length and consists of seven domains. The first three form an intertwined N-terminal cluster likely engaged in substrate binding. They are followed by a gingipain-type catalytic domain (CD), two immunoglobulin-like domains (IGL), and the CTD. In the first IGL, a long "latency β-hairpin" protrudes ∼30 Å from the surface to form an intermolecular β-barrel with β-strands from the symmetric CD, which is in a latent conformation. Homology modeling of the competent CD followed by in vivo validation through a cohort of mutant strains revealed that PorU is transported and functions as a monomer through a C690/H657 catalytic dyad. Thus, dimerization is an intermolecular mechanism for PorU regulation to prevent untimely activity until joining the attachment complex.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, 43100 Karditsa, Greece
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ewelina Małecka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Szczesniak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Miroslaw Ksiazek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Magda Widziołek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Ulrich Eckhard
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Maria Solà
- Structural MitoLab, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain;
| |
Collapse
|
7
|
Knowles A, Campbell S, Cross N, Stafford P. Bacterial Manipulation of the Integrated Stress Response: A New Perspective on Infection. Front Microbiol 2021; 12:645161. [PMID: 33967983 PMCID: PMC8100032 DOI: 10.3389/fmicb.2021.645161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Host immune activation forms a vital line of defence against bacterial pathogenicity. However, just as hosts have evolved immune responses, bacteria have developed means to escape, hijack and subvert these responses to promote survival. In recent years, a highly conserved group of signalling cascades within the host, collectively termed the integrated stress response (ISR), have become increasingly implicated in immune activation during bacterial infection. Activation of the ISR leads to a complex web of cellular reprogramming, which ultimately results in the paradoxical outcomes of either cellular homeostasis or cell death. Therefore, any pathogen with means to manipulate this pathway could induce a range of cellular outcomes and benefit from favourable conditions for long-term survival and replication. This review aims to outline what is currently known about bacterial manipulation of the ISR and present key hypotheses highlighting areas for future research.
Collapse
Affiliation(s)
- Alex Knowles
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Susan Campbell
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Neil Cross
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Prachi Stafford
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
8
|
Tušar L, Usenik A, Turk B, Turk D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int J Mol Sci 2021; 22:997. [PMID: 33498210 PMCID: PMC7863939 DOI: 10.3390/ijms22030997] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.
Collapse
Affiliation(s)
- Livija Tušar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Hirai K, Yamaguchi-Tomikawa T, Eguchi T, Maeda H, Takashiba S. Identification and Modification of Porphyromonas gingivalis Cysteine Protease, Gingipain, Ideal for Screening Periodontitis. Front Immunol 2020; 11:1017. [PMID: 32582160 PMCID: PMC7290125 DOI: 10.3389/fimmu.2020.01017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic periodontitis is an inflammatory disease caused by the formation of oral microbial biofilms. Periodontitis is associated with general health and not only oral diseases. Porphyromonas gingivalis is a well-known keystone pathogen for periodontitis and is associated with several systemic diseases, such as diabetes mellitus and Alzheimer's disease. We previously developed a system for screening periodontitis using P. gingivalis-specific serum immunoglobulin G (IgG) in an enzyme-linked immunosorbent assay with a sensitivity of 0.774 and a specificity of 0.586 and an area under the receiver operating characteristic curve of 0.708. However, the antigens elicited non-specific responses, since they were obtained from whole extracts of sonicated cultured bacteria. The purpose of this study was to identify antigens ideal for a sensitive and specific serum test. We identified the specific antigens using immunoaffinity columns immobilized with IgG antibodies from periodontitis patients. Liquid chromatography-tandem mass spectrometry identified 29 antigens from the elutes. Recombinant proteins for these candidates were synthesized using the wheat germ cell-free translation system and screened by dot blot analysis with serum from the columns. Three of the 16 candidates that reacted showed strongest affinities upon dot blot analysis; they included outer membrane protein 28, cysteine proteases, lysine gingipain Kgp, and arginine gingipain RgpA. Outer membrane protein 28 was not suitable for screening P. gingivalis infection because of its high false-negative rates. Kgp and RgpA were unstable antigens since they underwent self-digestion. They were made stable by substituting the active cysteine residues in Kgp and RgpA with alanine using site-directed mutagenesis. Using the modified antigens, we demonstrated that the patient serum IgG level against RgpA was the highest among all the antigens expressed in P. gingivalis. Moreover, the N-terminus of recombinant RgpA was excellent in differentiating between diseased and non-diseased states (with sensitivity of 0.85, specificity of 0.9, and area under the curve of 0.915). Although dot blot analysis was the only experiment used, the N-terminus of RgpA is an excellent antigen to immunologically test for P. gingivalis infection, especially for estimating the risks for periodontitis-associated systemic diseases. In conclusion, we have developed a P. gingivalis antigen for screening periodontitis.
Collapse
Affiliation(s)
- Kimito Hirai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoko Yamaguchi-Tomikawa
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | - Hiroshi Maeda
- Department of Endodontology, Osaka Dental University, Osaka, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
10
|
Jia L, Han N, Du J, Guo L, Luo Z, Liu Y. Pathogenesis of Important Virulence Factors of Porphyromonas gingivalis via Toll-Like Receptors. Front Cell Infect Microbiol 2019; 9:262. [PMID: 31380305 PMCID: PMC6657652 DOI: 10.3389/fcimb.2019.00262] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022] Open
Abstract
Periodontitis is a common intraoral infection and is inextricably linked to systemic diseases. Recently, the regulation between host immunologic response and periodontal pathogens has become a hotspot to explain the mechanism of periodontitis and related systemic diseases. Since Porphyromonas gingivalis (P. gingivalis) was proved as critical periodontal pathogen above all, researches focusing on the mechanism of its virulence factors have received extensive attention. Studies have shown that in the development of periodontitis, in addition to the direct release of virulent factors by periodontal pathogens to destroy periodontal tissues, over-low or over-high intrinsic immune and inflammatory response mediated by Toll-like receptors (TLRs) can lead to more lasting destruction of periodontal tissues. It is very necessary to sort out how various cytopathic factors of P. gingivalis mediate inflammation and immune responses between the host through TLRs so as to help precisely prevent, diagnose, and treat periodontitis in clinic. This review summarizes the role of three most widely studied pathogenic factors produced by P. gingivalis (lipopolysaccharide, gingipains, pili) and their interactions with TLRs at the cellular and molecular level in the progress of periodontitis.
Collapse
Affiliation(s)
- Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Nannan Han
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Veillard F, Sztukowska M, Nowakowska Z, Mizgalska D, Thøgersen IB, Enghild JJ, Bogyo M, Potempa B, Nguyen KA, Potempa J. Proteolytic processing and activation of gingipain zymogens secreted by T9SS of Porphyromonas gingivalis. Biochimie 2019; 166:161-172. [PMID: 31212040 DOI: 10.1016/j.biochi.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
Porphyromonas gingivalis uses a type IX secretion system (T9SS) to deliver more than 30 proteins to the bacterial surface using a conserved C-terminal domain (CTD) as an outer membrane translocation signal. On the surface, the CTD is cleaved and an anionic lipopolysaccharide (A-PLS) is attached by PorU sortase. Among T9SS cargo proteins are cysteine proteases, gingipains, which are secreted as inactive zymogens requiring removal of an inhibiting N-terminal prodomain (PD) for activation. Here, we have shown that the gingipain proRgpB isolated from the periplasm of a T9SS-deficient P. gingivalis strain was stable and did not undergo autocatalytic activation. Addition of purified, active RgpA or RgpB, but not Lys-specific Kgp, efficiently cleaved the PD of proRgpB but catalytic activity remained inhibited because of inhibition of the catalytic domain in trans by the PD. In contrast, active RgpB was generated from the zymogen, although at a slow rate, by gingipain-null P. gingivalis lysate or intact bacterial cell suspension. This activation was dependent on the presence of the PorU sortase. Interestingly, maturation of proRgpB with the catalytic cysteine residues mutated to Ala expressed in the ΔRgpA mutant strain was indistinguishable from that in the parental strain. Cumulatively, this suggests that PorU not only has sortase activity but is also engaged in activation of gingipain zymogens on the bacterial cell surface.
Collapse
Affiliation(s)
- Florian Veillard
- Université de Strasbourg, CNRS, Insect Models of Innate Immunity (M3I; UPR9022), 67084, Strasbourg, France; Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| | - Maryta Sztukowska
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA; University of Information Technology and Management, Rzeszow, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ida B Thøgersen
- Interdisciplinary Nanoscience Center (iNANO), and the Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK-8000, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO), and the Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK-8000, Denmark
| | - Matthew Bogyo
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Barbara Potempa
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Ky-Anh Nguyen
- Discipline of Life Sciences, School of Dentistry, University of Sydney, Sydney, NSW, 2006, Australia; Institute of Dental Research, Westmead Centre for Oral Health, Sydney, NSW, 2145, Australia
| | - Jan Potempa
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
12
|
Khan J, Puchimada B, Kadouri D, Zusman T, Javed F, Eliav E. The anti-nociceptive effects of Porphyromonas gingivalis lipopolysaccharide. Arch Oral Biol 2019; 102:193-198. [PMID: 31071639 DOI: 10.1016/j.archoralbio.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The objective of this study was to assess the effect of Porphyromonas gingivalis lipopolysaccharide (PG LPS) on acute pain-related behaviour induced in rats and to measure its impact on the levels of pro-inflammatory cytokines (IL-1β, IL-6) and anti-inflammatory (IL-10) cytokines. DESIGN The Brennan model was used to induce acute pain like signs in rats' hind paw. Twenty-four hours following the surgery the rats were divided into 5 groups and the affected paws were injected with 0.2 m l of one of three commercialized forms PG LPS doses (high - 1 mg/ml, medium - 0.6 mg/m l and low - 0.2 mg/m l), diclofenac sodium (1 mg/kg) or saline. Tactile allodynia, mechanical hyperalgesia, body temperature and paw swelling were assessed at baseline, 24 h postoperatively and 2 h after the paw injection. The affected and contra-lateral paw tissue was assessed for the mentioned above cytokines levels employing enzyme-linked immunosorbent assay. RESULTS This study may suggest that PG LPS can reduce pain like behaviour via increased levels of anti-inflammatory cytokine IL-10 (5900 ± 748, p < 0.05). The high PG LPS dose and diclofenac reduced the tactile allodynia and mechanical hyperalgesia significantly (42.2 ± 4 and1.6 ± 0.3, p < 0.05). PG LPS high dose increase IL-10 levels while diclofenac reduces IL-1β levels significantly (5900 ± 748 and 1760 ± 271.2). The LPS administration had no effect on paw swelling and did not increase rat's body temperature. CONCLUSION The results demonstrated that PG LPS local application could possess anti- nociceptive properties, which at least in part is mediated by an increase in IL-10 levels.
Collapse
Affiliation(s)
- Junad Khan
- Orofacial Pain and Temporomandibular Joint Disorders, Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Avenue, Rochester, NY, 14620, USA.
| | - Bollama Puchimada
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, NJ, USA
| | - Daniel Kadouri
- Oral Biology, Rutgers School of Dental Medicine, NJ, USA
| | - Tali Zusman
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, NJ, USA
| | - Fawad Javed
- Department of Periodontology, Stony Brook University, Stony Brook, NY, USA; Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Eli Eliav
- Eastman Institute for Oral Health, University of Rochester, NY, USA
| |
Collapse
|
13
|
Type 9 secretion system structures reveal a new protein transport mechanism. Nature 2018; 564:77-82. [PMID: 30405243 DOI: 10.1038/s41586-018-0693-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022]
Abstract
The type 9 secretion system (T9SS) is the protein export pathway of bacteria of the Gram-negative Fibrobacteres-Chlorobi-Bacteroidetes superphylum and is an essential determinant of pathogenicity in severe periodontal disease. The central element of the T9SS is a so-far uncharacterized protein-conducting translocon located in the bacterial outer membrane. Here, using cryo-electron microscopy, we provide structural evidence that the translocon is the T9SS protein SprA. SprA forms an extremely large (36-strand) single polypeptide transmembrane β-barrel. The barrel pore is capped on the extracellular end, but has a lateral opening to the external membrane surface. Structures of SprA bound to different components of the T9SS show that partner proteins control access to the lateral opening and to the periplasmic end of the pore. Our results identify a protein transporter with a distinctive architecture that uses an alternating access mechanism in which the two ends of the protein-conducting channel are open at different times.
Collapse
|
14
|
Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M, Takebe K, Narita Y, Naito M, Nakane D, Abiko Y, Hiratsuka K, Suzuki M, Nakayama K. Immunoglobulin‐like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64-81. [DOI: 10.1111/mmi.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Shinji Kakuda
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Katsuki Takebe
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology Fukuoka Dental College Matsudo, Tamura, Sawara, Fukuoka 814‐0913Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Daisuke Nakane
- Department of Physics, Faculty of Science Gakushuin University Toshima‐ku, Tokyo 171‐8588Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Mamoru Suzuki
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| |
Collapse
|
15
|
Zhang L, Veith PD, Huq NL, Chen YY, Seers CA, Cross KJ, Gorasia DG, Reynolds EC. Porphyromonas gingivalis Gingipains Display Transpeptidation Activity. J Proteome Res 2018; 17:2803-2818. [PMID: 29984580 DOI: 10.1021/acs.jproteome.8b00286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Porphyromonas gingivalis is a keystone periodontal pathogen that has been associated with autoimmune disorders. The cell surface proteases Lys-gingipain (Kgp) and Arg-gingipains (RgpA and RgpB) are major virulence factors, and their proteolytic activity is enhanced by small peptides such as glycylglycine (GlyGly). The reaction kinetics suggested that GlyGly may function as an acceptor molecule for gingipain-catalyzed transpeptidation. Purified gingipains and P. gingivalis whole cells were used to digest selected substrates including human hemoglobin in the presence or absence of peptide acceptors. Mass spectrometric analysis of the substrates digested with gingipains in the presence of GlyGly showed that transpeptidation outcompeted hydrolysis, whereas the trypsin-digested controls exhibited predominantly hydrolysis activity. The transpeptidation levels increased with increasing concentration of GlyGly. Purified gingipains and whole cells exhibited extensive transpeptidation activities on human hemoglobin. All hemoglobin cleavage sites were found to be suitable for GlyGly transpeptidation, and this transpeptidation enhanced hemoglobin digestion. The transpeptidation products were often more abundant than the corresponding hydrolysis products. In the absence of GlyGly, hemoglobin peptides produced during digestion were utilized as acceptors leading to the detection of up to 116 different transpeptidation products in a single reaction. P. gingivalis cells were able to digest hemoglobin faster when acceptor peptides derived from human serum albumin were included in the reaction, suggesting that gingipain-catalyzed transpeptidation may be relevant for substrates encountered in vivo. The transpeptidation of host proteins in vivo may potentially lead to the breakdown of immunological tolerance, culminating in autoimmune reactions.
Collapse
Affiliation(s)
- Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - N Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Yu-Yen Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Christine A Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Keith J Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Dhana G Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
16
|
Pomowski A, Usón I, Nowakowska Z, Veillard F, Sztukowska MN, Guevara T, Goulas T, Mizgalska D, Nowak M, Potempa B, Huntington JA, Potempa J, Gomis-Rüth FX. Structural insights unravel the zymogenic mechanism of the virulence factor gingipain K from Porphyromonas gingivalis, a causative agent of gum disease from the human oral microbiome. J Biol Chem 2017; 292:5724-5735. [PMID: 28196869 DOI: 10.1074/jbc.m117.776724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/06/2017] [Indexed: 01/11/2023] Open
Abstract
Skewing of the human oral microbiome causes dysbiosis and preponderance of bacteria such as Porphyromonas gingivalis, the main etiological agent of periodontitis. P. gingivalis secretes proteolytic gingipains (Kgp and RgpA/B) as zymogens inhibited by a pro-domain that is removed during extracellular activation. Unraveling the molecular mechanism of Kgp zymogenicity is essential to design inhibitors blocking its activity. Here, we found that the isolated 209-residue Kgp pro-domain is a boomerang-shaped all-β protein similar to the RgpB pro-domain. Using composite structural information of Kgp and RgpB, we derived a plausible homology model and mechanism of Kgp-regulating zymogenicity. Accordingly, the pro-domain would laterally attach to the catalytic moiety in Kgp and block the active site through an exposed inhibitory loop. This loop features a lysine (Lys129) likely occupying the S1 specificity pocket and exerting latency. Lys129 mutation to glutamate or arginine led to misfolded protein that was degraded in vivo Mutation to alanine gave milder effects but still strongly diminished proteolytic activity, without affecting the subcellular location of the enzyme. Accordingly, the interactions of Lys129 within the S1 pocket are also essential for correct folding. Uniquely for gingipains, the isolated Kgp pro-domain dimerized through an interface, which partially overlapped with that between the catalytic moiety and the pro-domain within the zymogen, i.e. both complexes are mutually exclusive. Thus, pro-domain dimerization, together with partial rearrangement of the active site upon activation, explains the lack of inhibition of the pro-domain in trans. Our results reveal that the specific latency mechanism of Kgp differs from those of Rgps.
Collapse
Affiliation(s)
- Anja Pomowski
- From the Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Isabel Usón
- the Proteolysis Lab and Crystallographic Methods Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Catalonia, Spain.,the Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Catalonia, Spain
| | - Zuzanna Nowakowska
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland, and
| | - Florian Veillard
- the Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Maryta N Sztukowska
- the Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Tibisay Guevara
- the Proteolysis Lab and Crystallographic Methods Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Catalonia, Spain
| | - Theodoros Goulas
- the Proteolysis Lab and Crystallographic Methods Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Catalonia, Spain
| | - Danuta Mizgalska
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland, and
| | - Magdalena Nowak
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland, and
| | - Barbara Potempa
- the Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - James A Huntington
- From the Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Jan Potempa
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland, and .,the Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - F Xavier Gomis-Rüth
- the Proteolysis Lab and Crystallographic Methods Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Catalonia, Spain,
| |
Collapse
|
17
|
The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain. Sci Rep 2016; 6:23123. [PMID: 27005013 PMCID: PMC4804311 DOI: 10.1038/srep23123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
In the recently characterized Type IX Secretion System (T9SS), the conserved C-terminal domain (CTD) in secreted proteins functions as an outer membrane translocation signal for export of virulence factors to the cell surface in the Gram-negative Bacteroidetes phylum. In the periodontal pathogen Porphyromonas gingivalis, the CTD is cleaved off by PorU sortase in a sequence-independent manner, and anionic lipopolysaccharide (A-LPS) is attached to many translocated proteins, thus anchoring them to the bacterial surface. Here, we solved the atomic structure of the CTD of gingipain B (RgpB) from P. gingivalis, alone and together with a preceding immunoglobulin-superfamily domain (IgSF). The CTD was found to possess a typical Ig-like fold encompassing seven antiparallel β-strands organized in two β-sheets, packed into a β-sandwich structure that can spontaneously dimerise through C-terminal strand swapping. Small angle X-ray scattering (SAXS) revealed no fixed orientation of the CTD with respect to the IgSF. By introducing insertion or substitution of residues within the inter-domain linker in the native protein, we were able to show that despite the region being unstructured, it nevertheless is resistant to general proteolysis. These data suggest structural motifs located in the two adjacent Ig-like domains dictate the processing of CTDs by the T9SS secretion pathway.
Collapse
|
18
|
Smalley JW, Olczak T. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment. Mol Oral Microbiol 2016; 32:1-23. [PMID: 26662717 DOI: 10.1111/omi.12149] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 01/14/2023]
Abstract
Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore.
Collapse
Affiliation(s)
- J W Smalley
- School of Dentistry, University of Liverpool, Liverpool, UK
| | - T Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
19
|
Veillard F, Potempa B, Guo Y, Ksiazek M, Sztukowska MN, Houston JA, Koneru L, Nguyen KA, Potempa J. Purification and characterisation of recombinant His-tagged RgpB gingipain from Porphymonas gingivalis. Biol Chem 2015; 396:377-84. [PMID: 25720118 DOI: 10.1515/hsz-2014-0304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/02/2015] [Indexed: 12/16/2022]
Abstract
Gingipain proteases are important virulence factors from the periodontal pathogen Porphyromonas gingivalis and are the target of many in vitro studies. Due to their close biochemical properties, purification of individual gingipains is difficult and requires multiple chromatographic steps. In this study, we demonstrate that insertion of a hexahistidine affinity tag upstream of a C-terminal outer membrane translocation signal in RgpB gingipain leads to the secretion of a soluble, mature form of RgpB bearing the affinity tag that can easily be purified by nickel-chelating affinity chromatography. The final product obtained high yielding high purity is biochemically indistinguishable from the native RgpB enzyme.
Collapse
|
20
|
Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase. Sci Rep 2015; 5:11969. [PMID: 26132828 PMCID: PMC4487231 DOI: 10.1038/srep11969] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/12/2015] [Indexed: 01/08/2023] Open
Abstract
Citrullination is a post-translational modification of higher organisms that deiminates arginines in proteins and peptides. It occurs in physiological processes but also pathologies such as multiple sclerosis, fibrosis, Alzheimer’s disease and rheumatoid arthritis (RA). The reaction is catalyzed by peptidylarginine deiminases (PADs), which are found in vertebrates but not in lower organisms. RA has been epidemiologically associated with periodontal disease, whose main infective agent is Porphyromonas gingivalis. Uniquely among microbes, P. gingivalis secretes a PAD, termed PPAD (Porphyromonas peptidylarginine deiminase), which is genetically unrelated to eukaryotic PADs. Here, we studied function of PPAD and its substrate-free, substrate-complex, and substrate-mimic-complex structures. It comprises a flat cylindrical catalytic domain with five-fold α/β-propeller architecture and a C-terminal immunoglobulin-like domain. The PPAD active site is a funnel located on one of the cylinder bases. It accommodates arginines from peptide substrates after major rearrangement of a “Michaelis loop” that closes the cleft. The guanidinium and carboxylate groups of substrates are tightly bound, which explains activity of PPAD against arginines at C-termini but not within peptides. Catalysis is based on a cysteine-histidine-asparagine triad, which is shared with human PAD1-PAD4 and other guanidino-group modifying enzymes. We provide a working mechanism hypothesis based on 18 structure-derived point mutants.
Collapse
|
21
|
Rocker A, Meinhart A. A
cis
‐acting antitoxin domain within the chromosomal toxin–antitoxin module
EzeT
of
E
scherichia coli
quenches toxin activity. Mol Microbiol 2015; 97:589-604. [DOI: 10.1111/mmi.13051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Andrea Rocker
- Department of Biomolecular Mechanisms Max Planck Institute for Medical Research Jahnstrasse 29 Heidelberg 69120 Germany
| | - Anton Meinhart
- Department of Biomolecular Mechanisms Max Planck Institute for Medical Research Jahnstrasse 29 Heidelberg 69120 Germany
| |
Collapse
|
22
|
McLuskey K, Mottram J. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases. Biochem J 2015; 466:219-32. [PMID: 25697094 PMCID: PMC4357240 DOI: 10.1042/bj20141324] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Abstract
Clan CD forms a structural group of cysteine peptidases, containing seven individual families and two subfamilies of structurally related enzymes. Historically, it is most notable for containing the mammalian caspases, on which the structures of the clan were founded. Interestingly, the caspase family is split into two subfamilies: the caspases, and a second subfamily containing both the paracaspases and the metacaspases. Structural data are now available for both the paracaspases and the metacaspases, allowing a comprehensive structural analysis of the entire caspase family. In addition, a relative plethora of structural data has recently become available for many of the other families in the clan, allowing both the structures and the structure-function relationships of clan CD to be fully explored. The present review compares the enzymes in the caspase subfamilies with each other, together with a comprehensive comparison of all the structural families in clan CD. This reveals a diverse group of structures with highly conserved structural elements that provide the peptidases with a variety of substrate specificities and activation mechanisms. It also reveals conserved structural elements involved in substrate binding, and potential autoinhibitory functions, throughout the clan, and confirms that the metacaspases are structurally diverse from the caspases (and paracaspases), suggesting that they should form a distinct family of clan CD peptidases.
Collapse
Key Words
- caspase
- clan cd
- crystallography
- metacaspase
- peptidase
- protein structure
- ap, activation peptide
- card, caspase recruitment domain
- chf, caspase/haemoglobinase fold
- cpd, cysteine peptidase domain
- csd, c-terminal subdomain
- dd, death domain
- ded, death effector domain
- insp6, myo-inositol hexakisphosphate
- lsam, legumain stabilization and activity modulation
- lsd1, lesion-simulating disease 1
- malt1, mucosa-associated lymphoid tissue translocation protein 1
- martx, multi-functional, autoprocessing repeat in toxin
- rmsd, root-mean-square deviation
- sse, secondary structural element
- xiap, x-linked inhibitor of apoptosis
- z-vrpr-fmk, benzoxycarbonyl-val-arg-pro-arg-fluoromethylketone
Collapse
Affiliation(s)
- Karen McLuskey
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Jeremy C. Mottram
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
23
|
Gorman MA, Seers CA, Michell BJ, Feil SC, Huq NL, Cross KJ, Reynolds EC, Parker MW. Structure of the lysine specific protease Kgp from Porphyromonas gingivalis, a target for improved oral health. Protein Sci 2014; 24:162-6. [PMID: 25327141 DOI: 10.1002/pro.2589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023]
Abstract
The oral pathogen Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Gingipains, the principle virulence factors of P. gingivalis are multidomain, cell-surface proteins containing a cysteine protease domain. The lysine specific gingipain, Kgp, is a critical virulence factor of P. gingivalis. We have determined the X-ray crystal structure of the lysine-specific protease domain of Kgp to 1.6 Å resolution. The structure provides insights into the mechanism of substrate specificity and catalysis.
Collapse
Affiliation(s)
- Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Maeda K, Nagata H, Ojima M, Amano A. Proteomic and Transcriptional Analysis of Interaction between Oral Microbiota Porphyromonas gingivalis and Streptococcus oralis. J Proteome Res 2014; 14:82-94. [DOI: 10.1021/pr500848e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kazuhiko Maeda
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Hideki Nagata
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Miki Ojima
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Atsuo Amano
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
de Diego I, Veillard F, Sztukowska MN, Guevara T, Potempa B, Pomowski A, Huntington JA, Potempa J, Gomis-Rüth FX. Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. J Biol Chem 2014; 289:32291-32302. [PMID: 25266723 DOI: 10.1074/jbc.m114.602052] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine peptidases are key proteolytic virulence factors of the periodontopathogen Porphyromonas gingivalis, which causes chronic periodontitis, the most prevalent dysbiosis-driven disease in humans. Two peptidases, gingipain K (Kgp) and R (RgpA and RgpB), which differ in their selectivity after lysines and arginines, respectively, collectively account for 85% of the extracellular proteolytic activity of P. gingivalis at the site of infection. Therefore, they are promising targets for the design of specific inhibitors. Although the structure of the catalytic domain of RgpB is known, little is known about Kgp, which shares only 27% sequence identity. We report the high resolution crystal structure of a competent fragment of Kgp encompassing the catalytic cysteine peptidase domain and a downstream immunoglobulin superfamily-like domain, which is required for folding and secretion of Kgp in vivo. The structure, which strikingly resembles a tooth, was serendipitously trapped with a fragment of a covalent inhibitor targeting the catalytic cysteine. This provided accurate insight into the active site and suggested that catalysis may require a catalytic triad, Cys(477)-His(444)-Asp(388), rather than the cysteine-histidine dyad normally found in cysteine peptidases. In addition, a 20-Å-long solvent-filled interior channel traverses the molecule and links the bottom of the specificity pocket with the molecular surface opposite the active site cleft. This channel, absent in RgpB, may enhance the plasticity of the enzyme, which would explain the much lower activity in vitro toward comparable specific synthetic substrates. Overall, the present results report the architecture and molecular determinants of the working mechanism of Kgp, including interaction with its substrates.
Collapse
Affiliation(s)
- Iñaki de Diego
- Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council (Consejo Superior de Investigaciones Cientificas), Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Florian Veillard
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Maryta N Sztukowska
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Tibisay Guevara
- Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council (Consejo Superior de Investigaciones Cientificas), Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Barbara Potempa
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Anja Pomowski
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - James A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Jan Potempa
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202,; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland, and.
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council (Consejo Superior de Investigaciones Cientificas), Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain,.
| |
Collapse
|
26
|
Olsen I, Potempa J. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases. J Oral Microbiol 2014; 6:24800. [PMID: 25206939 PMCID: PMC4138498 DOI: 10.3402/jom.v6.24800] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Gingipains are the major virulence factors of Porphyromonas gingivalis, the main periodontopathogen. It is expected that inhibition of gingipain activity in vivo could prevent or slow down the progression of adult periodontitis. To date, several classes of gingipain inhibitors have been recognized. These include gingipain N-terminal prodomains, synthetic compounds, inhibitors from natural sources, antibiotics, antiseptics, antibodies, and bacteria. Several synthetic compounds are potent gingipain inhibitors but inhibit a broad spectrum of host proteases and have undesirable side effects. Synthetic compounds with high specificity for gingipains have unknown toxicity effects, making natural inhibitors more promising as therapeutic gingipain blockers. Cranberry and rice extracts interfere with gingipain activity and prevent the growth and biofilm formation of periodontopathogens. Although the ideal gingipain inhibitor has yet to be discovered, gingipain inhibition represents a novel approach to treat and prevent periodontitis. Gingipain inhibitors may also help treat systemic disorders that are associated with periodontitis, including cardiovascular disease, rheumatoid arthritis, aspiration pneumonia, pre-term birth, and low birth weight.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland ; Department of Oral Immunology and Infectious Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
27
|
Synthesis of sulfonamides with effective inhibitory action against Porphyromonas gingivalis γ-carbonic anhydrase. Bioorg Med Chem Lett 2014; 24:4006-10. [DOI: 10.1016/j.bmcl.2014.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 01/24/2023]
|
28
|
Guo M, Wang Z, Fan X, Bian Y, Wang T, Zhu L, Lan J. kgp, rgpA, and rgpB DNA vaccines induce antibody responses in experimental peri-implantitis. J Periodontol 2014; 85:1575-81. [PMID: 24921431 DOI: 10.1902/jop.2014.140240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Peri-implantitis is the key factor for implant failure. This study aims to evaluate kgp, rgpA, and rgpB DNA vaccines to induce an immune response and prevent peri-implantitis. METHODS The kgp, rgpA, and rgpB genes were amplified by polymerase chain reaction (PCR) from Porphyromonas gingivalis (Pg) ATCC 33277 and cloned into the pVAX1 vector. Titanium implants were placed into the mandibular bone of dogs. Three months later, the animals were divided into four groups, immunized with pVAX1-kgp, pVAX1-rgpA, pVAX1-rgpB, or pVAX1. Cotton ligatures infiltrated with Pg were tied around the neck of the implants. Immunoglobulin (Ig)G and IgA antibodies were detected by enzyme-linked immunosorbent assay before and after immunization. RESULTS The kgp, rgpA, and rgpB genes were successfully cloned into the pVAX1 plasmid. Animals immunized with pVAX1-kgp and pVAX1-rgpA showed higher titers of IgG and IgA antibodies compared to those before immunization (P <0.05) and compared to those that were immunized with pVAX1 and pVAX1-rgpB, whereas there were no significant differences in the animals treated with pVAX1 and pVAX1-rgpB. Furthermore, among these, the kgp DNA vaccine was more effective. The bone losses of the groups with pVAX1-kgp and pVAX1-rgpA were significantly attenuated. CONCLUSION pVAX1-kgp and pVAX1-rgpA DNA vaccines enhanced immunity responses and significantly retarded bone loss in experimental peri-implantitis animal models, whereas pVAX1-rgpB was ineffective.
Collapse
Affiliation(s)
- Meihua Guo
- Department of Prosthodontics, Dental School, University of Shandong, Jinan City, Shandong Province, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Vullo D, Del Prete S, Osman SM, De Luca V, Scozzafava A, Alothman Z, Supuran CT, Capasso C. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the oral pathogen Porphyromonas gingivalis. Bioorg Med Chem Lett 2013; 24:240-4. [PMID: 24316122 DOI: 10.1016/j.bmcl.2013.11.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
A carbonic anhydrase (CA, EC 4.2.1.1) denominated PgiCA, belonging to the γ-class, from the oral pathogenic bacteria Porphyromonas gingivalis, the main causative agent of periodontitis, was investigated for its inhibition profile with sulfonamides and one sulfamate. Dichlorophenamide, topiramate and many simple aromatic/heterocyclic sulfonamides were ineffective as PgiCA inhibitors whereas the best inhibition was observed with halogenosulfanilamides incorporating heavy halogens, 4-hydroxy- and 4-hydroxyalkyl-benzenesulfonamides, acetazolamide, methazolamide, zonisamide, indisulam, celecoxib, saccharin and hydrochlorothiazide (KIs in the range of 131-380nM). The inhibition profile of PgiCA was very different from that of CAM, hCA I and II or the β-CA from a protozoan parasite (Leishmania donovani chagasii). Identification of potent and possibly selective inhibitors of PgiCA may lead to pharmacological tools useful for understanding the physiological role(s) of this enzyme.
Collapse
Affiliation(s)
- Daniela Vullo
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Sonia Del Prete
- Istituto di Biochimica delle Proteine and Institute of Bioscience and Bioresources (IBBR), CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Viviana De Luca
- Istituto di Biochimica delle Proteine and Institute of Bioscience and Bioresources (IBBR), CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Andrea Scozzafava
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Zeid Alothman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy; Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; Università degli Studi di Firenze, Polo Scientifico, Dipartimento NEIROFABA, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Clemente Capasso
- Istituto di Biochimica delle Proteine and Institute of Bioscience and Bioresources (IBBR), CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
30
|
Huq NL, Seers CA, Toh ECY, Dashper SG, Slakeski N, Zhang L, Ward BR, Meuric V, Chen D, Cross KJ, Reynolds EC. Propeptide-mediated inhibition of cognate gingipain proteinases. PLoS One 2013; 8:e65447. [PMID: 23762374 PMCID: PMC3677877 DOI: 10.1371/journal.pone.0065447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism’s cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB) and the Lys-specific proteinase (Kgp), which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp) that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with Ki values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.
Collapse
Affiliation(s)
- N. Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Elena C. Y. Toh
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Nada Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Brent R. Ward
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Vincent Meuric
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Keith J. Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
31
|
Arêde P, Botelho T, Guevara T, Usón I, Oliveira DC, Gomis-Rüth FX. Structure-function studies of the staphylococcal methicillin resistance antirepressor MecR2. J Biol Chem 2013; 288:21267-21278. [PMID: 23733184 DOI: 10.1074/jbc.m112.448134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Methicillin resistance in Staphylococcus aureus is elicited by the MecI-MecR1-MecA axis encoded by the mec locus. Recently, MecR2 was also identified as a regulator of mec through binding of the methicillin repressor, MecI. Here we show that plasmid-encoded full-length MecR2 restores resistance in a sensitive S. aureus mecR2 deletion mutant of the resistant strain N315. The crystal structure of MecR2 reveals an N-terminal DNA-binding domain, an intermediate scaffold domain, and a C-terminal dimerization domain that contributes to oligomerization. The protein shows structural similarity to ROK (repressors, open reading frames, and kinases) family proteins, which bind DNA and/or sugar molecules. We found that functional cell-based assays of three point mutants affecting residues participating in sugar binding in ROK proteins had no effect on the resistance phenotype. By contrast, MecR2 bound short double-stranded DNA oligonucleotides nonspecifically, and a deletion mutant affecting the N-terminal DNA-binding domain showed a certain effect on activity, thus contributing to resistance less than the wild-type protein. Similarly, a deletion mutant, in which a flexible segment of intermediate scaffold domain had been replaced by four glycines, significantly reduced MecR2 function, thus indicating that this domain may likewise be required for activity. Taken together, these results provide the structural basis for the activity of a methicillin antirepressor, MecR2, which would sequester MecI away from its cognate promoter region and facilitate its degradation.
Collapse
Affiliation(s)
- Pedro Arêde
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - Tiago Botelho
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, E-08028 Barcelona, Catalonia, Spain
| | - Tibisay Guevara
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, E-08028 Barcelona, Catalonia, Spain
| | - Isabel Usón
- the Institució Catalana de Recerca i Estudis Avançats, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, E-08028 Barcelona, Catalonia, Spain
| | - Duarte C Oliveira
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - F Xavier Gomis-Rüth
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, E-08028 Barcelona, Catalonia, Spain,.
| |
Collapse
|