1
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
2
|
Zhong X, Li Q, Polacco BJ, Patil T, Marley A, Foussard H, Khare P, Vartak R, Xu J, DiBerto JF, Roth BL, Eckhardt M, von Zastrow M, Krogan NJ, Hüttenhain R. A proximity proteomics pipeline with improved reproducibility and throughput. Mol Syst Biol 2024; 20:952-971. [PMID: 38951684 PMCID: PMC11297269 DOI: 10.1038/s44320-024-00049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Proximity labeling (PL) via biotinylation coupled with mass spectrometry (MS) captures spatial proteomes in cells. Large-scale processing requires a workflow minimizing hands-on time and enhancing quantitative reproducibility. We introduced a scalable PL pipeline integrating automated enrichment of biotinylated proteins in a 96-well plate format. Combining this with optimized quantitative MS based on data-independent acquisition (DIA), we increased sample throughput and improved protein identification and quantification reproducibility. We applied this pipeline to delineate subcellular proteomes across various compartments. Using the 5HT2A serotonin receptor as a model, we studied temporal changes of proximal interaction networks induced by receptor activation. In addition, we modified the pipeline for reduced sample input to accommodate CRISPR-based gene knockout, assessing dynamics of the 5HT2A network in response to perturbation of selected interactors. This PL approach is universally applicable to PL proteomics using biotinylation-based PL enzymes, enhancing throughput and reproducibility of standard protocols.
Collapse
Affiliation(s)
- Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Qiongyu Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Trupti Patil
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Aaron Marley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, 94158, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Prachi Khare
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Rasika Vartak
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mark von Zastrow
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA.
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Gimple RC, Zhang G, Wang S, Huang T, Lee J, Taori S, Lv D, Dixit D, Halbert ME, Morton AR, Kidwell RL, Dong Z, Prager BC, Kim LJ, Qiu Z, Zhao L, Xie Q, Wu Q, Agnihotri S, Rich JN. Sorting nexin 10 sustains PDGF receptor signaling in glioblastoma stem cells via endosomal protein sorting. JCI Insight 2023; 8:158077. [PMID: 36795488 PMCID: PMC10070110 DOI: 10.1172/jci.insight.158077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Glioblastoma is the most malignant primary brain tumor, the prognosis of which remains dismal even with aggressive surgical, medical, and radiation therapies. Glioblastoma stem cells (GSCs) promote therapeutic resistance and cellular heterogeneity due to their self-renewal properties and capacity for plasticity. To understand the molecular processes essential for maintaining GSCs, we performed an integrative analysis comparing active enhancer landscapes, transcriptional profiles, and functional genomics profiles of GSCs and non-neoplastic neural stem cells (NSCs). We identified sorting nexin 10 (SNX10), an endosomal protein sorting factor, as selectively expressed in GSCs compared with NSCs and essential for GSC survival. Targeting SNX10 impaired GSC viability and proliferation, induced apoptosis, and reduced self-renewal capacity. Mechanistically, GSCs utilized endosomal protein sorting to promote platelet-derived growth factor receptor β (PDGFRβ) proliferative and stem cell signaling pathways through posttranscriptional regulation of the PDGFR tyrosine kinase. Targeting SNX10 expression extended survival of orthotopic xenograft-bearing mice, and high SNX10 expression correlated with poor glioblastoma patient prognosis, suggesting its potential clinical importance. Thus, our study reveals an essential connection between endosomal protein sorting and oncogenic receptor tyrosine kinase signaling and suggests that targeting endosomal sorting may represent a promising therapeutic approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Shuai Wang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Tengfei Huang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jina Lee
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Suchet Taori
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Matthew E Halbert
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew R Morton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Zhen Dong
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Leo Jy Kim
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Qi Xie
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Sameer Agnihotri
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurosciences, UCSD, La Jolla, California, USA
| |
Collapse
|
4
|
Kervin TA, Wiseman BC, Overduin M. Phosphoinositide Recognition Sites Are Blocked by Metabolite Attachment. Front Cell Dev Biol 2021; 9:690461. [PMID: 34368138 PMCID: PMC8340361 DOI: 10.3389/fcell.2021.690461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane readers take part in trafficking and signaling processes by localizing proteins to organelle surfaces and transducing molecular information. They accomplish this by engaging phosphoinositides (PIs), a class of lipid molecules which are found in different proportions in various cellular membranes. The prototypes are the PX domains, which exhibit a range of specificities for PIs. Our meta-analysis indicates that recognition of membranes by PX domains is specifically controlled by modification of lysine and arginine residues including acetylation, hydroxyisobutyrylation, glycation, malonylation, methylation and succinylation of sidechains that normally bind headgroups of phospholipids including organelle-specific PI signals. Such metabolite-modulated residues in lipid binding elements are named MET-stops here to highlight their roles as erasers of membrane reader functions. These modifications are concentrated in the membrane binding sites of half of all 49 PX domains in the human proteome and correlate with phosphoregulatory sites, as mapped using the Membrane Optimal Docking Area (MODA) algorithm. As these motifs are mutated and modified in various cancers and the responsible enzymes serve as potential drug targets, the discovery of MET-stops as a widespread inhibitory mechanism may aid in the development of diagnostics and therapeutics aimed at the readers, writers and erasers of the PI code.
Collapse
Affiliation(s)
- Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Brittany C Wiseman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Molecular and Cellular Biology, MacEwan University, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| |
Collapse
|
5
|
Kervin TA, Overduin M. Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers. Cells 2021; 10:cells10051205. [PMID: 34069055 PMCID: PMC8156045 DOI: 10.3390/cells10051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership.
Collapse
|
6
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Sugawara S, Takayanagi M, Honda S, Tatsuta T, Fujii Y, Ozeki Y, Ito J, Sato M, Hosono AM. Catfish egg lectin affects influx and efflux rates of sunitinib in human cervical carcinoma HeLa cells. Glycobiology 2020; 30:802-816. [PMID: 32248228 DOI: 10.1093/glycob/cwaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 11/15/2022] Open
Abstract
New treatment protocols are aiming to reduce the dose of the multitargeted tyrosine kinase inhibitor sunitinib, as sunitinib elicits many adverse effects depending on its dosage. Silurus asotus egg lectin (SAL) has been reported to enhance the incorporation of propidium iodide as well as doxorubicin into Burkitt's lymphoma Raji cells through binding to globotriaosylceramide (Gb3) on the cell surface. The objective of this study was to examine whether SAL enhances the cytotoxic effect of sunitinib in Gb3-expressing HeLa cells. Although the treatment with SAL delayed the cell growth and enhanced the propidium iodide uptake, cell death accompanied by membrane collapse was not observed. The viability of sunitinib-treated HeLa cells was significantly reduced when the treatment occurred in combination with SAL compared to their separate usage. Sunitinib uptake significantly increased for 30 min in SAL-treated cells, and this increment was almost completely abolished by the addition of L-rhamnose, a hapten sugar of SAL, but not by D-glucose. After removal of SU from the medium, the intracellular sunitinib level in SAL-treated cells was higher than in untreated cells for 24 h, which was not observed in Gb3-deficient HeLa cells. Furthermore, we observed that SAL promoted the formation of lysosome-like structures, which are LAMP1 positive but not acidic in HeLa cells, which can trap sunitinib. Interestingly, SAL-induced vacuolation in HeLa cells was not observed in another Gb3 positive Raji cells. Our findings suggest that SAL/Gb3 interaction promoted sunitinib uptake and suppressed sunitinib excretion and that sunitinib efficiently exerted cytotoxicity against HeLa cells.
Collapse
Affiliation(s)
- Shigeki Sugawara
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Madoka Takayanagi
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.,Chemiluminescent Reagents Department, R&D Section, Kagamida Factory, DENKA SEIKEN Co. Ltd., 1359-1 Kagamida, Kigoshi Gosen-shi, Niigata 959-1695, Japan
| | - Shota Honda
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takeo Tatsuta
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Laboratory of Glycobiology and Marine Biochemistry, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Jun Ito
- Department of Urology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Makoto Sato
- Department of Urology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - And Masahiro Hosono
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
8
|
Molecular Basis for PI(3,5)P2 Recognition by SNX11, a Protein Involved in Lysosomal Degradation and Endosome Homeostasis Regulation. J Mol Biol 2020; 432:4750-4761. [DOI: 10.1016/j.jmb.2020.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022]
|
9
|
Abstract
Sorting nexins anchor trafficking machines to membranes by binding phospholipids. The paradigm of the superfamily is sorting nexin 3 (SNX3), which localizes to early endosomes by recognizing phosphatidylinositol 3-phosphate (PI3P) to initiate retromer-mediated segregation of cargoes to the trans-Golgi network (TGN). Here we report the solution structure of full length human SNX3, and show that PI3P recognition is accompanied by bilayer insertion of a proximal loop in its extended Phox homology (PX) domain. Phosphoinositide (PIP) binding is completely blocked by cancer-linked phosphorylation of a conserved serine beside the stereospecific PI3P pocket. This “PIP-stop” releases endosomal SNX3 to the cytosol, and reveals how protein kinases control membrane assemblies. It constitutes a widespread regulatory element found across the PX superfamily and throughout evolution including of fungi and plants. This illuminates the mechanism of a biological switch whereby structured PIP sites are phosphorylated to liberate protein machines from organelle surfaces. Sorting nexin 3 (SNX3) is a phosphatidylinositol 3-phosphate binding protein that localizes to early endosomes. Here the authors use NMR to resolve SNX3′s membrane interactions, revealing that membrane binding is regulated through phosphorylation of a conserved serine by its lipid recognition site.
Collapse
|
10
|
Abstract
The phox-homology (PX) domain is a phosphoinositide-binding domain conserved in all eukaryotes and present in 49 human proteins. Proteins containing PX domains, many of which are also known as sorting nexins (SNXs), have a large variety of functions in membrane trafficking, cell signaling, and lipid metabolism in association with membranes of the secretory and endocytic system. In this review we discuss the structural basis for both canonical lipid interactions with the endosome-enriched lipid phosphatidylinositol-3-phosphate (PtdIns3P) as well as non-canonical lipids that promote membrane association. We also describe recent advances in defining the diverse mechanisms by which PX domains interact with other proteins including the retromer trafficking complex and proteins secreted by bacterial pathogens. Like other membrane interacting domains, the attachment of PX domain proteins to specific membranes is often facilitated by additional interactions that contribute to binding avidity, and we discuss this coincidence detection for several known examples.
Collapse
|
11
|
Genome-wide association study and meta-analysis in multiple populations identifies new loci for peanut allergy and establishes C11orf30/EMSY as a genetic risk factor for food allergy. J Allergy Clin Immunol 2017; 141:991-1001. [PMID: 29030101 DOI: 10.1016/j.jaci.2017.09.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 09/05/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Peanut allergy (PA) is a complex disease with both environmental and genetic risk factors. Previously, PA loci were identified in filaggrin (FLG) and HLA in candidate gene studies, and loci in HLA were identified in a genome-wide association study and meta-analysis. OBJECTIVE We sought to investigate genetic susceptibility to PA. METHODS Eight hundred fifty cases and 926 hyper-control subjects and more than 7.8 million genotyped and imputed single nucleotide polymorphisms (SNPs) were analyzed in a genome-wide association study to identify susceptibility variants for PA in the Canadian population. A meta-analysis of 2 phenotypes (PA and food allergy) was conducted by using 7 studies from the Canadian, American (n = 2), Australian, German, and Dutch (n = 2) populations. RESULTS An SNP near integrin α6 (ITGA6) reached genome-wide significance with PA (P = 1.80 × 10-8), whereas SNPs associated with Src kinase-associated phosphoprotein 1 (SKAP1), matrix metallopeptidase 12 (MMP12)/MMP13, catenin α3 (CTNNA3), rho GTPase-activating protein 24 (ARHGAP24), angiopoietin 4 (ANGPT4), chromosome 11 open reading frame (C11orf30/EMSY), and exocyst complex component 4 (EXOC4) reached a threshold suggestive of association (P ≤ 1.49 × 10-6). In the meta-analysis of PA, loci in or near ITGA6, ANGPT4, MMP12/MMP13, C11orf30, and EXOC4 were significant (P ≤ 1.49 × 10-6). When a phenotype of any food allergy was used for meta-analysis, the C11orf30 locus reached genome-wide significance (P = 7.50 × 10-11), whereas SNPs associated with ITGA6, ANGPT4, MMP12/MMP13, and EXOC4 and additional C11orf30 SNPs were suggestive (P ≤ 1.49 × 10-6). Functional annotation indicated that SKAP1 regulates expression of CBX1, which colocalizes with the EMSY protein coded by C11orf30. CONCLUSION This study identifies multiple novel loci as risk factors for PA and food allergy and establishes C11orf30 as a risk locus for both PA and food allergy. Multiple genes (C11orf30/EMSY, SKAP1, and CTNNA3) identified by this study are involved in epigenetic regulation of gene expression.
Collapse
|
12
|
Lou J, Li X, Huang W, Liang J, Zheng M, Xu T, Lyu J, Li D, Xu Q, Jin X, Fu G, Wang D, Lu L. SNX10 promotes phagosome maturation in macrophages and protects mice against Listeria monocytogenes infection. Oncotarget 2017; 8:53935-53947. [PMID: 28903313 PMCID: PMC5589552 DOI: 10.18632/oncotarget.19644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes), which is a facultative intracellular bacterial pathogen that causes listeriosis, is widely used to study the mammalian immune response to infection. After phagocytosis by professional phagocytes, L. monocytogenes is initially contained within phagosomes, which mature into phagolysosomes, where the bacteria are degraded. Although phagocytosis and subsequent phagosome maturation is essential for the clearance of infectious microbial pathogens, the underlying regulatory mechanisms are still unclear. SNX10 (Sorting nexin 10) has the simplest structure of the SNX family and has been reported to regulate endosomal morphology, which might be crucial for macrophage function, including phagocytosis and digestion of pathogens, inflammatory response, and antigen presentation. Our results showed that SNX10 expression was upregulated following L. monocytogenes infection in macrophages. It was also revealed that SNX10 promoted phagosome maturation by recruiting the Mon1-Ccz1 complex to endosomes and phagosomes. As a result, SNX10 deficiency decreased the bacterial killing ability of macrophages, and SNX10-deficient mice showed increased susceptibility to L. monocytogenes infection in vivo. Thus, this study revealed an essential role of SNX10 in controlling bacterial infection.
Collapse
Affiliation(s)
- Jun Lou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiawei Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Huang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Liang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingzhu Zheng
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lyu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuexiao Jin
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Guotong Fu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Stattin EL, Henning P, Klar J, McDermott E, Stecksen-Blicks C, Sandström PE, Kellgren TG, Rydén P, Hallmans G, Lönnerholm T, Ameur A, Helfrich MH, Coxon FP, Dahl N, Wikström J, Lerner UH. SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts. Sci Rep 2017; 7:3012. [PMID: 28592808 PMCID: PMC5462793 DOI: 10.1038/s41598-017-02533-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Autosomal recessive osteopetrosis (ARO) is a heterogeneous disorder, characterized by defective osteoclastic resorption of bone that results in increased bone density. We have studied nine individuals with an intermediate form of ARO, from the county of Västerbotten in Northern Sweden. All afflicted individuals had an onset in early infancy with optic atrophy, and in four patients anemia was present at diagnosis. Tonsillar herniation, foramen magnum stenosis, and severe osteomyelitis of the jaw were common clinical features. Whole exome sequencing, verified by Sanger sequencing, identified a splice site mutation c.212 + 1 G > T in the SNX10 gene encoding sorting nexin 10. Sequence analysis of the SNX10 transcript in patients revealed activation of a cryptic splice site in intron 4 resulting in a frame shift and a premature stop (p.S66Nfs * 15). Haplotype analysis showed that all cases originated from a single mutational event, and the age of the mutation was estimated to be approximately 950 years. Functional analysis of osteoclast progenitors isolated from peripheral blood of patients revealed that stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL) resulted in a robust formation of large, multinucleated osteoclasts which generated sealing zones; however these osteoclasts exhibited defective ruffled borders and were unable to resorb bone in vitro.
Collapse
Affiliation(s)
- Eva-Lena Stattin
- Department of Medical Biosciences, Medical and Clinical Genetics, Umeå University, 901 87, Umeå, Sweden. .,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
| | - Petra Henning
- Centre for Bone and Arthritis Research, Department of internal medicine and clinical nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Emma McDermott
- Arthritis and Musculoskeletal Medicine Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Christina Stecksen-Blicks
- Pediatric Dentistry, Department of Odontology, Faculty of Medicine, Umeå University, 901 87, Umeå, Sweden
| | | | - Therese G Kellgren
- Department of Mathematics and Mathematical Statistics, Computational Life science Cluster (CLiC), Umeå University, 901 87, Umeå, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Computational Life science Cluster (CLiC), Umeå University, 901 87, Umeå, Sweden
| | - Göran Hallmans
- Department of Biobank Research, Umeå University, 901 87, Umeå, Sweden
| | - Torsten Lönnerholm
- Department of Surgical Sciences, Radiology, Uppsala University, 751 85, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Miep H Helfrich
- Arthritis and Musculoskeletal Medicine Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Fraser P Coxon
- Arthritis and Musculoskeletal Medicine Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Radiology, Uppsala University, 751 85, Uppsala, Sweden
| | - Ulf H Lerner
- Centre for Bone and Arthritis Research, Department of internal medicine and clinical nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.,Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
14
|
Bhosle VK, Rivera JC, Chemtob S. New insights into mechanisms of nuclear translocation of G-protein coupled receptors. Small GTPases 2017; 10:254-263. [PMID: 28125336 DOI: 10.1080/21541248.2017.1282402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The G-protein coupled receptor (GPCR) signaling was long believed to involve activation of receptor exclusively at the cell surface, followed by its binding to heterotrimeric G-proteins and arrestins to trigger various intracellular signaling cascades, and termination of signaling by internalization of the receptor. It is now accepted that many GPCRs continue to signal after internalization in the endosomes. Since the breakthrough discoveries of nuclear binding sites for their ligands in 1980s, several GPCRs have been detected at cell nuclei. But mechanisms of nuclear localization of GPCRs, many of whom contain putative nuclear localization signals, remain poorly understood to date. Nevertheless, it is known that subcellular trafficking of GPCRs is regulated by members of Ras superfamily of small GTPases, most notably by Rab and Arf GTPases. In this commentary, we highlight several recent studies which suggest novel roles of small GTPases, importins and sorting nexin proteins in the nuclear translocation of GPCRs via vesicular transport pathways. Taken together with increasing evidence for in vivo functionality of the nuclear GPCRs, better understanding of their trafficking will provide valuable clues in cell biology.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- a Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec , Canada.,b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,e Cell Biology Program , Peter Gilgan Centre for Research and Learning , Toronto , Ontario , Canada
| | - José Carlos Rivera
- b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada
| | - Sylvain Chemtob
- a Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec , Canada.,b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,d Departments of Pediatrics, Ophthalmology and Pharmacology , University of Montréal , Montréal , Québec , Canada
| |
Collapse
|
15
|
Li C, Ma W, Yin S, Liang X, Shu X, Pei D, Egan TM, Huang J, Pan A, Li Z. Sorting Nexin 11 Regulates Lysosomal Degradation of Plasma Membrane TRPV3. Traffic 2016; 17:500-14. [DOI: 10.1111/tra.12379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Caiyue Li
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Wenbo Ma
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Shikui Yin
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Xin Liang
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Xiaodong Shu
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Terrance M. Egan
- Pharmacological and Physiological Science, School of Medicine; Saint Louis University; St. Louis MO USA
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine; Central South University; Changsha China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine; Central South University; Changsha China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
- Department of Anatomy and Neurobiology, Xiangya School of Medicine; Central South University; Changsha China
| |
Collapse
|
16
|
Xu T, Xu J, Ye Y, Wang Q, Shu X, Pei D, Liu J. Structure of human SNX10 reveals insights into its role in human autosomal recessive osteopetrosis. Proteins 2014; 82:3483-9. [DOI: 10.1002/prot.24689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
- School of Life Sciences, University of Science and Technology of China; Hefei 230026 China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Yinghua Ye
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Qi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Xiaodong Shu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
- School of Life Sciences, University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
17
|
Mas C, Norwood SJ, Bugarcic A, Kinna G, Leneva N, Kovtun O, Ghai R, Ona Yanez LE, Davis JL, Teasdale RD, Collins BM. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling. J Biol Chem 2014; 289:28554-68. [PMID: 25148684 DOI: 10.1074/jbc.m114.595959] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking.
Collapse
Affiliation(s)
- Caroline Mas
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Suzanne J Norwood
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrea Bugarcic
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Genevieve Kinna
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Oleksiy Kovtun
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajesh Ghai
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lorena E Ona Yanez
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jasmine L Davis
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Brett M Collins
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
18
|
|