1
|
Zemkova H, Tomić M, Kucka M, Aguilera G, Stojilkovic SS. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels. Endocrinology 2016; 157:1576-89. [PMID: 26901094 PMCID: PMC4816721 DOI: 10.1210/en.2015-1899] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transgenic mice expressing the tdimer2(12) form of Discosoma red fluorescent protein under control of the proopiomelanocortin gene's regulatory elements are a useful model for studying corticotrophs. Using these mice, we studied the ion channels and mechanisms controlling corticotroph excitability. Corticotrophs were either quiescent or electrically active, with a 22-mV difference in the resting membrane potential (RMP) between the 2 groups. In quiescent cells, CRH depolarized the membrane, leading to initial single spiking and sustained bursting; in active cells, CRH further facilitated or inhibited electrical activity and calcium spiking, depending on the initial activity pattern and CRH concentration. The stimulatory but not inhibitory action of CRH on electrical activity was mimicked by cAMP independently of the presence or absence of arachidonic acid. Removal of bath sodium silenced spiking and hyperpolarized the majority of cells; in contrast, the removal of bath calcium did not affect RMP but reduced CRH-induced depolarization, which abolished bursting electrical activity and decreased the spiking frequency but not the amplitude of single spikes. Corticotrophs with inhibited voltage-gated sodium channels fired calcium-dependent action potentials, whereas cells with inhibited L-type calcium channels fired sodium-dependent spikes; blockade of both channels abolished spiking without affecting the RMP. These results indicate that the background voltage-insensitive sodium conductance influences RMP, the CRH-depolarization current is driven by a cationic conductance, and the interplay between voltage-gated sodium and calcium channels plays a critical role in determining the status and pattern of electrical activity and calcium signaling.
Collapse
Affiliation(s)
- Hana Zemkova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic (H.Z.); and Sections on Cellular Signaling (H.Z., M.T., M.K., S.S.S.) and Endocrine Physiology (G.A.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510
| | - Melanija Tomić
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic (H.Z.); and Sections on Cellular Signaling (H.Z., M.T., M.K., S.S.S.) and Endocrine Physiology (G.A.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510
| | - Marek Kucka
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic (H.Z.); and Sections on Cellular Signaling (H.Z., M.T., M.K., S.S.S.) and Endocrine Physiology (G.A.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510
| | - Greti Aguilera
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic (H.Z.); and Sections on Cellular Signaling (H.Z., M.T., M.K., S.S.S.) and Endocrine Physiology (G.A.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510
| | - Stanko S Stojilkovic
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic (H.Z.); and Sections on Cellular Signaling (H.Z., M.T., M.K., S.S.S.) and Endocrine Physiology (G.A.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510
| |
Collapse
|
2
|
Rieg AD, Suleiman S, Perez-Bouza A, Braunschweig T, Spillner JW, Schröder T, Verjans E, Schälte G, Rossaint R, Uhlig S, Martin C. Milrinone relaxes pulmonary veins in guinea pigs and humans. PLoS One 2014; 9:e87685. [PMID: 24498166 PMCID: PMC3909212 DOI: 10.1371/journal.pone.0087685] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 01/01/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH). However, its action on pulmonary veins (PVs) is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs) and humans. Material and Methods Precision-cut lung slices (PCLS) were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL). Results In the IPL (GP), milrinone (10 µM) lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP), milrinone relaxed naïve and pre-constricted PVs (120%) and this relaxation was attenuated by inhibition of protein kinase G (KT 5823), adenyl cyclase (SQ 22536) and protein kinase A (KT 5720), but not by inhibition of NO-synthesis (L-NAME). In addition, milrinone-induced relaxation was dependent on the activation of KATP-, BKCa2+- and Kv-channels. Human PVs also relaxed to milrinone (121%), however only if pre-constricted. Discussion Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on KATP-, BKCa2+- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease.
Collapse
Affiliation(s)
- Annette D. Rieg
- Institute of Pharmacology and Toxicology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
- Department of Anesthesiology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
- * E-mail:
| | - Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Alberto Perez-Bouza
- Institute of Pathology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
- Institute of Pathology, Medical Faculty of Rhenish Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Jan W. Spillner
- Department of Cardiac and Thorax Surgery, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Thomas Schröder
- Department of Surgery, Luisenhospital Aachen, Aachen, Germany
| | - Eva Verjans
- Institute of Pharmacology and Toxicology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
- Department of Pediatrics, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Gereon Schälte
- Department of Anesthesiology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| |
Collapse
|
3
|
Kucka M, Bjelobaba I, Tomić M, Stojilkovic SS. The role of cyclic nucleotides in pituitary lactotroph functions. Front Endocrinol (Lausanne) 2013; 4:122. [PMID: 24062725 PMCID: PMC3772395 DOI: 10.3389/fendo.2013.00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/30/2013] [Indexed: 11/13/2022] Open
Abstract
Lactotrophs are one of the five secretory anterior pituitary cell types specialized to synthesize and release prolactin. In vitro, these cells fire action potentials (APs) spontaneously and the accompanied Ca(2+) transients are of sufficient amplitude to keep the exocytotic pathway, the transcription of prolactin gene, and de novo hormone synthesis continuously active. Basal cyclic nucleotide production is also substantial in cultured cells but not critical for the APs secretion/transcription coupling in lactotrophs. However, elevated intracellular cAMP levels enhance the excitability of lactotrophs by stimulating the depolarizing non-selective cationic hyperpolarization-activated cyclic nucleotide-regulated and background channels, whereas cGMP inhibits it by activating Ca(2+)-controlled K(+) channels. Elevated cAMP also modulates prolactin release downstream of Ca(2+) influx by changing the kinetic of secretory pores: stimulate at low and inhibit at high concentrations. Induction of prolactin gene and lactotroph proliferation is also stimulated by elevated cAMP through protein kinase A. Together, these observations suggest that in lactotrophs cAMP exhibits complex regulatory effects on voltage-gated Ca(2+) influx and Ca(2+)-dependent cellular processes.
Collapse
Affiliation(s)
- Marek Kucka
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- *Correspondence: Marek Kucka, Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, MD 20892-4510, USA e-mail:
| | - Ivana Bjelobaba
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Melanija Tomić
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Abstract
Regulated exocytosis mediates the release of hormones and transmitters. The last step of this process is represented by the merger between the vesicle and the plasma membranes, and the formation of a fusion pore. Once formed, the initially stable and narrow fusion pore may reversibly widen (transient exocytosis) or fully open (full-fusion exocytosis). Exocytosis is typically triggered by an elevation in cytosolic calcium activity. However, other second messengers, such as cAMP, have been reported to modulate secretion. The way in which cAMP influences the transitions between different fusion pore states remains unclear. Here, hormone release studies show that prolactin release from isolated rat lactotrophs stimulated by forskolin, an activator of adenylyl cyclases, and by membrane-permeable cAMP analog (dbcAMP), exhibit a biphasic concentration dependency. Although at lower concentrations (2-10 μm forskolin and 2.5-5 mm dbcAMP) these agents stimulate prolactin release, an inhibition is measured at higher concentrations (50 μm forskolin and 10-15 mm dbcAMP). By using high-resolution capacitance (Cm) measurements, we recorded discrete increases in Cm, which represent elementary exocytic events. An elevation of cAMP leaves the frequency of full-fusion events unchanged while increasing the frequency of transient events. These exhibited a wider fusion pore as measured by increased fusion pore conductance and a prolonged fusion pore dwell time. The probability of observing rhythmic reopening of transient fusion pores was elevated by dbcAMP. In conclusion, cAMP-mediated stabilization of wide fusion pores prevents vesicles from proceeding to the full-fusion stage of exocytosis, which hinders vesicle content discharge at high cAMP concentrations.
Collapse
|
5
|
Rieg AD, Rossaint R, Verjans E, Maihöfer NA, Uhlig S, Martin C. Levosimendan Relaxes Pulmonary Arteries and Veins in Precision-Cut Lung Slices - The Role of KATP-Channels, cAMP and cGMP. PLoS One 2013; 8:e66195. [PMID: 23824760 PMCID: PMC3688856 DOI: 10.1371/journal.pone.0066195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 05/05/2013] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Levosimendan is approved for left heart failure and is also used in right heart failure to reduce right ventricular afterload. Despite the fact that pulmonary arteries (PAs) and pulmonary veins (PVs) contribute to cardiac load, their responses to levosimendan are largely unknown. MATERIALS AND METHODS Levosimendan-induced vasorelaxation of PAs and PVs was studied in precision-cut lung slices from guinea pigs by videomicroscopy; baseline luminal area was defined as 100%. Intracellular cAMP- and cGMP-levels were measured by ELISA and NO end products were determined by the Griess reaction. RESULTS Levosimendan relaxed control PVs (116%) and those pre-constricted with an endothelinA-receptor agonist (119%). PAs were only relaxed if pre-constricted (115%). Inhibition of KATP-channels (glibenclamide), adenyl cyclase (SQ 22536) and protein kinase G (KT 5823) largely attenuated the levosimendan-induced relaxation in control PVs, as well as in pre-constricted PAs and PVs. Inhibition of BKCa (2+)-channels (iberiotoxin) and Kv-channels (4-aminopyridine) only contributed to the relaxant effect of levosimendan in pre-constricted PAs. In both PAs and PVs, levosimendan increased intracellular cAMP- and cGMP-levels, whereas NO end products remained unchanged. Notably, basal NO-levels were higher in PVs. The KATP-channel activator levcromakalim relaxed PAs dependent on cAMP/PKA/PKG and increased cAMP-levels in PAs. DISCUSSION Levosimendan initiates complex and divergent signaling pathways in PAs and PVs. Levosimendan relaxes PAs and PVs primarily via KATP-channels and cAMP/cGMP; in PAs, BKCa (2+)- and Kv-channels are also involved. Our findings with levcromakalim do further suggest that in PAs the activation of KATP-channels leads to the production of cAMP/PKA/PKG. In conclusion, these results suggest that levosimendan might reduce right ventricular afterload by relaxation of PAs as well as pulmonary hydrostatic pressure and pulmonary edema by relaxation of PVs.
Collapse
Affiliation(s)
- Annette D. Rieg
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
- Department of Anesthesiology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
- * E-mail:
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Eva Verjans
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
- Department of Pediatrics, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Nina A. Maihöfer
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| |
Collapse
|
6
|
Stojilkovic SS, Kretschmannova K, Tomić M, Stratakis CA. Dependence of the excitability of pituitary cells on cyclic nucleotides. J Neuroendocrinol 2012; 24:1183-200. [PMID: 22564128 PMCID: PMC3421050 DOI: 10.1111/j.1365-2826.2012.02335.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclic 3',5'-adenosine monophosphate and cyclic 3',5'-guanosine monophosphate are intracellular (second) messengers that are produced from the nucleotide triphosphates by a family of enzymes consisting of adenylyl and guanylyl cyclases. These enzymes are involved in a broad array of signal transduction pathways mediated by the cyclic nucleotide monophosphates and their kinases, which control multiple aspects of cell function through the phosphorylation of protein substrates. We review the findings and working hypotheses on the role of the cyclic nucleotides and their kinases in the control of electrical activity of the endocrine pituitary cells and the plasma membrane channels involved in this process.
Collapse
Affiliation(s)
- S S Stojilkovic
- Sections on Cellular Signalling and Endocrinology and Genetics, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
8
|
Constantin S, Caligioni CS, Stojilkovic S, Wray S. Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotropin-releasing hormone-1 neurons. Endocrinology 2009; 150:1400-12. [PMID: 18948403 PMCID: PMC2654742 DOI: 10.1210/en.2008-0979] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Kisspeptins, the natural ligands of the G-protein-coupled receptor (GPR)-54, are the most potent stimulators of GnRH-1 secretion and as such are critical to reproductive function. However, the mechanism by which kisspeptins enhance calcium-regulated neuropeptide secretion is not clear. In the present study, we used GnRH-1 neurons maintained in mice nasal explants to examine the expression and signaling of GPR54. Under basal conditions, GnRH-1 cells exhibited spontaneous baseline oscillations in intracellular calcium concentration ([Ca(2+)](i)), which were critically dependent on the operation of voltage-gated, tetrodotoxin (TTX)-sensitive sodium channels and were not coupled to calcium release from intracellular pools. Activation of native GPR54 by kisspeptin-10 initiated [Ca(2+)](i) oscillations in quiescent GnRH-1 cells, increased the frequency of calcium spiking in oscillating cells that led to summation of individual spikes into plateau-bursting type of calcium signals in a subset of active cells. These changes predominantly reflected the stimulatory effect of GPR54 activation on the plasma membrane oscillator activity via coupling of this receptor to phospholipase C signaling pathways. Both components of this pathway, inositol 1,3,4-trisphosphate and protein kinase C, contributed to the receptor-mediated modulation of baseline [Ca(2+)](i) oscillations. TTX and 2-aminoethyl diphenylborinate together abolished agonist-induced elevation in [Ca(2+)](i) in almost all cells, whereas flufenamic acid was less effective. Together these results indicate that a plasma membrane calcium oscillator is spontaneously operative in the majority of prenatal GnRH-1 neurons and is facilitated by kisspeptin-10 through phosphatidyl inositol diphosphate hydrolysis and depolarization of neurons by activating TTX-sensitive sodium channels and nonselective cationic channels.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorder and Stroke/National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
9
|
Rodríguez-Pacheco F, Luque RM, Tena-Sempere M, Malagón MM, Castaño JP. Ghrelin induces growth hormone secretion via a nitric oxide/cGMP signalling pathway. J Neuroendocrinol 2008; 20:406-12. [PMID: 18208548 DOI: 10.1111/j.1365-2826.2008.01645.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The presence of ghrelin and its receptor, growth hormone (GH) secretagogue receptor, in the hypothalamus and pituitary, and its ability to stimulate GH release in vivo and in vitro, strongly support a significant role for this peptide in the control of somatotroph function. We previously demonstrated that ghrelin elicits GH secretion directly in somatotrophs by activating two major signalling cascades, which involve inositol phosphate and cAMP. In as much as nitric oxide (NO) and its mediator cGMP have been recently shown to contribute substantially to the response of somatotrophs to key regulatory hormones, including GH-releasing hormone, somatostatin and leptin, we investigated the possible role of this signalling pathway in ghrelin-induced GH release in vitro. Accordingly, cultures of pituitary cells from prepuberal female pigs were challenged with ghrelin (10(-8) m, 30 min) in the absence or presence of activators or blockers of key steps of the NO synthase (NOS)/NO/guanylate cyclase (GC)/cGMP route and GH secretion was measured. Two distinct activators of the NO route, S-nitroso-N-acetylpenicillamine (SNAP) (5 x 10(-4) m) and L-arginine methyl ester hydrochloride (L-AME) (10(-3) m), comparably stimulated GH secretion when applied alone. The presence of L-AME enhanced ghrelin-stimulated GH secretion, whereas SNAP did not alter its effect. Conversely, two different NOS/NO pathway inhibitors, N(w)-nitro-L-arginine methyl ester hydrochloride (10(-5) m) or haemoglobin (20 microg/ml), similarly blocked ghrelin-induced (but not basal) GH release, thus indicating that NO contributes critically to ghrelin action in somatotrophs. Moreover, incubation with a permeable cGMP analogue, 8-Br-cGMP (10(-8) m) stimulated GH secretion, but did not modify the stimulatory action of ghrelin, suggesting that cGMP could mediate the action of NO. Indeed, inhibition of GC by 10 microm LY-53,583 did not alter basal GH secretion but abolished the GH-releasing action of ghrelin. Taken together, our results provide novel evidence indicating that ghrelin requires activation of the NOS/NO route, and its subsequent GC/cGMP signal transduction pathway, as necessary steps to induce GH secretion from somatotrophs.
Collapse
Affiliation(s)
- F Rodríguez-Pacheco
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | | | | | | | | |
Collapse
|
10
|
Jones JD, Carney ST, Vrana KE, Norford DC, Howlett AC. Cannabinoid receptor-mediated translocation of NO-sensitive guanylyl cyclase and production of cyclic GMP in neuronal cells. Neuropharmacology 2007; 54:23-30. [PMID: 17707868 PMCID: PMC3170565 DOI: 10.1016/j.neuropharm.2007.06.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/16/2007] [Accepted: 06/25/2007] [Indexed: 11/25/2022]
Abstract
Cannabinoid agonists regulate NO and cyclic AMP production in N18TG2 neuroblastoma cells, leading to the hypothesis that neuronal cyclic GMP production could be regulated by CB(1) cannabinoid receptors. NO (nitric oxide)-sensitive guanylyl cyclase (GC) is a heterodimeric cytosolic protein that mediates the down-stream effects of NO. Genes of proteins in the cyclic GMP pathway (alpha(1), alpha(2), and beta(1) subunits of NO-sensitive GC and PKG1, but not PKG2) were expressed in N18TG2 cells, as was the CB(1) but not the CB(2) cannabinoid receptor. Stimulation of N18TG2 cells by cannabinoid agonists CP55940 and WIN55212-2 increased cyclic GMP levels in an ODQ-sensitive manner. GC-beta(1) in membrane fractions was increased after 5 or 20 min stimulation, and was significantly depleted in the cytosol by 1h. The cytosolic pool of GC-beta(1) was replenished after 48 h of continued cannabinoid drug treatment. Translocation of GC-beta(1) from the cytosol was blocked by the CB(1) antagonist rimonabant (SR141716) and by the Gi/o inactivator pertussis toxin, indicating that the CB(1) receptor and Gi/o proteins are required for translocation. Long-term treatment with rimonabant or pertussis toxin reduced the amount of GC-beta(1) in the cytosolic pool. We conclude that CB(1) receptors stimulate cyclic GMP production and that intracellular translocation of GC from cytosol to the membranes is intrinsic to the mechanism and may be a tonically active or endocannabinoid-regulated process.
Collapse
Affiliation(s)
- Jenelle D. Jones
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, U.S.A
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27517, U.S.A
| | - Skyla T. Carney
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, U.S.A
| | - Kent E. Vrana
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27517, U.S.A
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Derek C. Norford
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, U.S.A
| | - Allyn C. Howlett
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, U.S.A
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27517, U.S.A
- Corresponding Author. Tel.: +1 336 716 8545; fax +1 336 716 8501, (A.C. Howlett), Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157 U.S.A
| |
Collapse
|
11
|
Tsaneva-Atanasova K, Sherman A, van Goor F, Stojilkovic SS. Mechanism of Spontaneous and Receptor-Controlled Electrical Activity in Pituitary Somatotrophs: Experiments and Theory. J Neurophysiol 2007; 98:131-44. [PMID: 17493919 DOI: 10.1152/jn.00872.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cultured pituitary somatotrophs release growth hormone in response to spontaneous Ca2+ entry through voltage-gated calcium channels (VGCCs) that is governed by plateau-bursting electrical activity and is regulated by several neurohormones, including GH-releasing hormone (GHRH) and somatostatin. Here we combine experiments and theory to clarify the mechanisms underlying spontaneous and receptor-controlled electrical activity. Experiments support a role of a Na+-conducting and tetrodotoxin-insensitive channel in controlling spontaneous and GHRH-stimulated pacemaking, the latter in a cAMP-dependent manner; an opposing role of spontaneously active inwardly rectifying K+ ( Kir) channels and G-protein-regulated Kir channels in somatostatin-mediated inhibition of pacemaking; as well as a role of VGCCs in spiking and large conductance (BK-type) Ca2+-activated K+ channels in plateau bursting. The mathematical model is compatible with a wide variety of experimental data involving pharmacology and extracellular ion substitution and supports the importance of constitutively active tetrodotoxin-insensitive Na+ and Kir channels in maintaining spontaneous pacemaking in pituitary somatotrophs. The model also suggests that these channels are involved in the up- and downregulation of electrical activity by GHRH and somatostatin. In the model, the plateau bursting is controlled by two functional populations of BK channels, characterized by distance from the VGCCs. The rapid activation of the proximal BK channels is critical for the establishment of the plateau, whereas slow recruitment of the distal BK channels terminates the plateau.
Collapse
|
12
|
Kretschmannova K, Gonzalez-Iglesias AE, Tomić M, Stojilkovic SS. Dependence of hyperpolarisation-activated cyclic nucleotide-gated channel activity on basal cyclic adenosine monophosphate production in spontaneously firing GH3 cells. J Neuroendocrinol 2006; 18:484-93. [PMID: 16774497 DOI: 10.1111/j.1365-2826.2006.01438.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels play a distinct role in the control of membrane excitability in spontaneously active cardiac and neuronal cells. Here, we studied the expression and role of HCN channels in pacemaking activity, Ca(2+) signalling, and prolactin secretion in GH(3) immortalised pituitary cells. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of mRNA transcripts for HCN2, HCN3 and HCN4 subunits in these cells. A hyperpolarisation of the membrane potential below - 60 mV elicited a slowly activating voltage-dependent inward current (I(h)) in the majority of tested cells, with a half-maximal activation voltage of -89.9 +/- 4.2 mV and with a time constant of 1.4 +/- 0.2 s at -120 mV. The bath application of 1 mM Cs(+), a commonly used inorganic blocker of I(h), and 100 microM ZD7288, a specific organic blocker of I(h), inhibited I(h) by 90 +/- 4.1% and 84.3 +/- 1.8%, respectively. Receptor- and nonreceptor-mediated activation of adenylyl and soluble guanylyl cyclase and the addition of a membrane permeable cyclic adenosine monophosphate (cAMP) analogue, 8-Br-cAMP, did not affect I(h). Inhibition of basal adenylyl cyclase activity, but not basal soluble guanylyl cyclase activity, led to a reduction in the peak amplitude and a leftward shift in the activation curve of I(h) by 23.7 mV. The inhibition of the current was reversed by stimulation of adenylyl cyclase with forskolin and by the addition of 8-Br-cAMP, but not 8-Br-cGMP. Application of Cs(+) had no significant effect on the resting membrane potential or electrical activity, whereas ZD7288 exhibited complex and I(h)-independent effects on spontaneous electrical activity, Ca(2+) signalling, and prolactin release. These results indicate that HCN channels in GH(3) cells are under tonic activation by basal level of cAMP and are not critical for spontaneous firing of action potentials.
Collapse
Affiliation(s)
- K Kretschmannova
- Section on Cellular Signalling, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | | | | | |
Collapse
|
13
|
Andric SA, Kostic TS, Stojilkovic SS. Contribution of multidrug resistance protein MRP5 in control of cyclic guanosine 5'-monophosphate intracellular signaling in anterior pituitary cells. Endocrinology 2006; 147:3435-45. [PMID: 16614078 DOI: 10.1210/en.2006-0091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The energy-dependent cyclic nucleotide cellular efflux is operative in numerous eukaryotic cells and could be mediated by multidrug resistance proteins MRP4, MRP5, and MRP8. In pituitary cells, however, the operation of export pumps and their contribution to the control of intracellular cyclic nucleotide levels were not studied previously. Here we show that cellular efflux of cyclic nucleotides was detectable in normal and immortalized GH(3) pituitary cells under resting conditions and was enlarged after concurrent stimulation of cAMP and cGMP production with GHRH, corticotropin-releasing factor, vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, and forskolin. In resting and stimulated cells, the efflux pumps transported the majority of de novo-produced cGMP, limiting its intracellular accumulation in a concentration range of 1-2 microm. In contrast, only a small fraction of cAMP was released and there was a time- and concentration-dependent accumulation of this messenger in the cytosol, ranging from 1-100 microm. Stimulation and inhibition of cGMP production alone did not affect cAMP efflux, suggesting the operation of two different transport pathways in pituitary cells. The rates of cAMP and cGMP effluxes were comparable, and both pathways were blocked by probenecid and progesterone. Pituitary cells expressed mRNA transcripts for MRP4, MRP5, and MRP8, whereas GH(3) cells expressed only transcripts for MRP5. Down-regulation of MRP5 expression in GH(3) cells decreased cGMP release without affecting cAMP efflux. These results indicate that cyclic nucleotide cellular efflux plays a critical role in elimination of intracellular cGMP but not cAMP in pituitary cells and that such selectivity is achieved by expression of MRP5.
Collapse
Affiliation(s)
- Silvana A Andric
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
14
|
Luque RM, Rodríguez-Pacheco F, Tena-Sempere M, Gracia-Navarro F, Malagón MM, Castaño JP. Differential contribution of nitric oxide and cGMP to the stimulatory effects of growth hormone-releasing hormone and low-concentration somatostatin on growth hormone release from somatotrophs. J Neuroendocrinol 2005; 17:577-82. [PMID: 16101896 DOI: 10.1111/j.1365-2826.2005.01345.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is increasing evidence that nitric oxide (NO) produced by NO synthase (NOS), and their signalling partners, guanylyl cyclase and cGMP, play a relevant role in growth hormone (GH) secretion from somatotrophs. We previously demonstrated that both GH-releasing hormone (GHRH; 10(-8) M) and low concentrations of somatostatin (10(-15) M) stimulate pig GH release in vitro, whereas a high somatostatin concentration (10(-7) M) inhibits GHRH-induced GH secretion. To ascertain the possible contribution of the NOS-NO and guanylyl cyclase-cGMP routes to these responses, cultures of pituitary cells from prepubertal female pigs were treated (30 min) with GHRH (10(-8) M) or somatostatin (10(-7) or 10(-15) M) in the absence or presence of activators or blockers of key steps of these signalling cascades, and GH release was measured. Two distinct activators of NO route, SNAP (5x10(-4) M) or L-AME (10(-3) M), similarly stimulated GH release when applied alone (with this effect being blocked by 10(-7) M somatostatin), but did not alter the stimulatory effect of GHRH or 10(-15) M somatostatin. Conversely, two NO pathway inhibitors, NAME (10(-5) M) or haemoglobin (20 microg/ml) similarly blocked GHRH- or 10(-15) M somatostatin-stimulated GH release. 8-Br-cGMP (10(-8) to 10(-4) M) strongly stimulated GH release, suggesting that cGMP may function as a subsequent step in the NO pathway in this system. Interestingly, 10(-7) M somatostatin did not inhibit the stimulatory effect of 8-Br-cGMP. Moreover, although 8-Br-cGMP did not modify the effect of GHRH, it enhanced GH release stimulated by 10(-15) M somatostatin. Accordingly, a specific guanylyl cyclase inhibitor, LY-83, 583 (10(-5) M) did not alter 10(-15) M somatostatin-induced GH release, whereas it blocked GHRH-induced GH secretion. These results demonstrate for the first time that the NOS/NO signalling pathway contributes critically to the stimulatory effects of both GHRH and low-concentration somatostatin on GH release, and that, conversely, the subsequent guanylyl cyclase/cGMP step only mediates GHRH- and not low-concentration somatostatin-induced GH secretion from somatotrophs.
Collapse
Affiliation(s)
- R M Luque
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Werry TD, Wilkinson GF, Willars GB. Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+. Biochem J 2003; 374:281-96. [PMID: 12790797 PMCID: PMC1223610 DOI: 10.1042/bj20030312] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 06/03/2003] [Accepted: 06/05/2003] [Indexed: 12/21/2022]
Abstract
Alteration in [Ca(2+)](i) (the intracellular concentration of Ca(2+)) is a key regulator of many cellular processes. To allow precise regulation of [Ca(2+)](i) and a diversity of signalling by this ion, cells possess many mechanisms by which they are able to control [Ca(2+)](i) both globally and at the subcellular level. Among these are many members of the superfamily of GPCRs (G-protein-coupled receptors), which are characterized by the presence of seven transmembrane domains. Typically, those receptors able to activate PLC (phospholipase C) enzymes cause release of Ca(2+) from intracellular stores and influence Ca(2+) entry across the plasma membrane. It has been well documented that Ca(2+) signalling by one type of GPCR can be influenced by stimulation of a different type of GPCR. Indeed, many studies have demonstrated heterologous desensitization between two different PLC-coupled GPCRs. This is not surprising, given our current understanding of negative-feedback regulation and the likely shared components of the signalling pathway. However, there are also many documented examples of interactions between GPCRs, often coupling preferentially to different signalling pathways, which result in a potentiation of Ca(2+) signalling. Such interactions have important implications for both the control of cell function and the interpretation of in vitro cell-based assays. However, there is currently no single mechanism that adequately accounts for all examples of this type of cross-talk. Indeed, many studies either have not addressed this issue or have been unable to determine the mechanism(s) involved. This review seeks to explore a range of possible mechanisms to convey their potential diversity and to provide a basis for further experimental investigation.
Collapse
Affiliation(s)
- Tim D Werry
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, UK
| | | | | |
Collapse
|