1
|
Sharma N, Qi X, Kessler P, Sen GC. Inflammatory Cytokines Can Induce Synthesis Of Type-I Interferon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574713. [PMID: 38260325 PMCID: PMC10802393 DOI: 10.1101/2024.01.08.574713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Type I interferon (IFN) is induced in virus infected cells, secreted and it inhibits viral replication in neighboring cells. IFN is also an important player in many non-viral diseases and in the development of normal immune cells. Although the signaling pathways for IFN induction by viral RNA or DNA have been extensively studied, its mode of induction in uninfected cells remains obscure. Here, we report that inflammatory cytokines, such as TNF-α and IL-1β, can induce IFN-β through activation of the cytoplasmic RIG-I signaling pathway. However, RIG-I is activated not by RNA, but by PACT, the protein activator of PKR. In cell lines or primary cells expressing RIG-I and PACT, activation of the MAPK, p38, by cytokine signaling, leads to phosphorylation of PACT, which binds to primed RIG-I and activates its signaling pathway. Thus, a new mode of type I IFN induction by ubiquitous inflammatory cytokines has been revealed. Key points Cytochalasin D followed by TNF-α / IL-1β treatment activates IFN-β expression.IFN-β expression happens due to activation of RIG-I signaling.Interaction between RIG-I and PACT activates IFN-β expression.
Collapse
|
2
|
Shi G, Song C, Torres Robles J, Salichos L, Lou HJ, Lam TT, Gerstein M, Turk BE. Proteome-wide screening for mitogen-activated protein kinase docking motifs and interactors. Sci Signal 2023; 16:eabm5518. [PMID: 36626580 PMCID: PMC9995140 DOI: 10.1126/scisignal.abm5518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Essential functions of mitogen-activated protein kinases (MAPKs) depend on their capacity to selectively phosphorylate a limited repertoire of substrates. MAPKs harbor a conserved groove located outside of the catalytic cleft that binds to short linear sequence motifs found in substrates and regulators. However, the weak and transient nature of these "docking" interactions poses a challenge to defining MAPK interactomes and associated sequence motifs. Here, we describe a yeast-based genetic screening pipeline to evaluate large collections of MAPK docking sequences in parallel. Using this platform, we analyzed a combinatorial library based on the docking sequences from the MAPK kinases MKK6 and MKK7, defining features critical for binding to the stress-activated MAPKs JNK1 and p38α. Our screen of a library consisting of ~12,000 sequences from the human proteome revealed multiple MAPK-selective interactors, including many that did not conform to previously defined docking motifs. Analysis of p38α/JNK1 exchange mutants identified specific docking groove residues that mediate selective binding. Last, we verified that docking sequences identified in the screen functioned in substrate recruitment in vitro and in cultured cells. Together, these studies establish an approach to characterize MAPK docking sequences and provide a resource for future investigation of signaling downstream of p38 and JNK.
Collapse
Affiliation(s)
- Guangda Shi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claire Song
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Leonidas Salichos
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA.,Keck MS and Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Zang Y, Wang H, Hao D, Kang Y, Zhang J, Li X, Zhang L, Yang Z, Zhang S. p38α Kinase Auto-Activation through Its Conformational Transition Induced by Tyr323 Phosphorylation. J Chem Inf Model 2022; 62:6639-6648. [PMID: 36394912 DOI: 10.1021/acs.jcim.2c00236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
p38α is a key serine/threonine kinase that can enable atypical auto-activation through Zap70 phosphorylation and initiate T cell receptor signaling. The auto-activation plays an important role in autoimmune diseases. Although the classical activation mechanism of p38α has been studied in-depth, the atypical activation mechanism of Y323 phosphorylation-induced p38α auto-activation remains largely unexplained, especially the regulatory effects of phosphorylation on different sites (Y323 vs T180). From the X-ray experimental data, we identified the inactive and active states of p38α using principal component analysis. To understand the auto-activation process and the internal driving mechanism, a computational paradigm that couples the targeted molecular dynamics simulations, the String Method, and the umbrella sampling strategy were employed to generate the conformational landscape of p38α, including p38α T180-Y323, p38α T180-pY323, and p38α pT180-pY323 systems (pT180/pY323: phosphorylated T180/Y323). We explored that pY323 could change the conformational distribution and promote the conformational transition of p38α from the inactive state to the active state. Auto-activation of p38α is regulated by pY323 through destabilization of the hydrophobic core structure and aided by R173. This study will further explain the conformational transition of p38α induced by Y323 phosphorylation and provide insights into the universal molecular auto-activation mechanism of the p38 subfamily at the atomic level.
Collapse
Affiliation(s)
- Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Dongxiao Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Ying Kang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Jianwen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
4
|
Nagao H, Kitagawa D, Nakajima F, Sawa M, Kinoshita T. Identification of an allosteric and Smad3-selective inhibitor of p38αMAPK using a substrate-based approach. Bioorg Med Chem Lett 2021; 43:128056. [PMID: 33892104 DOI: 10.1016/j.bmcl.2021.128056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 11/26/2022]
Abstract
p38α mitogen activated protein kinase (MAPK) plays important roles in multiple cellular functions by phosphorylating a wide variety of substrates, and therefore, p38α MAPK has been considered as an important drug target. In this study, we designed peptide-based inhibitors for p38α MAPK, which can only inhibit the Smad3 phosphorylation specifically, by targeting the KIM binding site of p38α MAPK. Peptide 6 showed a significant inhibitory potency for the Smad3 phosphorylation by p38α MAPK. Peptide 6 showed no ATP dependency, and did not inhibit the phosphorylation of other substrates by p38α MAPK. The discovery of peptide 6 by targeting the KIM binding site likely provide an opportunity for the discovery of a novel class of allosteric and substrate-specific p38α MAPK inhibitors.
Collapse
Affiliation(s)
- Haruna Nagao
- Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Daisuke Kitagawa
- Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Fumio Nakajima
- Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masaaki Sawa
- Carna Biosciences, Inc., BMA 3F, 1-5-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| |
Collapse
|
5
|
Kirsch K, Zeke A, Tőke O, Sok P, Sethi A, Sebő A, Kumar GS, Egri P, Póti ÁL, Gooley P, Peti W, Bento I, Alexa A, Reményi A. Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38. Nat Commun 2020; 11:5769. [PMID: 33188182 PMCID: PMC7666158 DOI: 10.1038/s41467-020-19582-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023] Open
Abstract
Transcription factor phosphorylation at specific sites often activates gene expression, but how environmental cues quantitatively control transcription is not well-understood. Activating protein 1 transcription factors are phosphorylated by mitogen-activated protein kinases (MAPK) in their transactivation domains (TAD) at so-called phosphoswitches, which are a hallmark in response to growth factors, cytokines or stress. We show that the ATF2 TAD is controlled by functionally distinct signaling pathways (JNK and p38) through structurally different MAPK binding sites. Moreover, JNK mediated phosphorylation at an evolutionarily more recent site diminishes p38 binding and made the phosphoswitch differently sensitive to JNK and p38 in vertebrates. Structures of MAPK-TAD complexes and mechanistic modeling of ATF2 TAD phosphorylation in cells suggest that kinase binding motifs and phosphorylation sites line up to maximize MAPK based co-regulation. This study shows how the activity of an ancient transcription controlling phosphoswitch became dependent on the relative flux of upstream signals.
Collapse
Affiliation(s)
- Klára Kirsch
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - András Zeke
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Orsolya Tőke
- Laboratory for NMR Spectroscopy, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anna Sebő
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | | | - Péter Egri
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Ádám L Póti
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Paul Gooley
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wolfgang Peti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Isabel Bento
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Anita Alexa
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Attila Reményi
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary.
| |
Collapse
|
6
|
Vihinen M. Functional effects of protein variants. Biochimie 2020; 180:104-120. [PMID: 33164889 DOI: 10.1016/j.biochi.2020.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Genetic and other variations frequently affect protein functions. Scientific articles can contain confusing descriptions about which function or property is affected, and in many cases the statements are pure speculation without any experimental evidence. To clarify functional effects of protein variations of genetic or non-genetic origin, a systematic conceptualisation and framework are introduced. This framework describes protein functional effects on abundance, activity, specificity and affinity, along with countermeasures, which allow cells, tissues and organisms to tolerate, avoid, repair, attenuate or resist (TARAR) the effects. Effects on abundance discussed include gene dosage, restricted expression, mis-localisation and degradation. Enzymopathies, effects on kinetics, allostery and regulation of protein activity are subtopics for the effects of variants on activity. Variation outcomes on specificity and affinity comprise promiscuity, specificity, affinity and moonlighting. TARAR mechanisms redress variations with active and passive processes including chaperones, redundancy, robustness, canalisation and metabolic and signalling rewiring. A framework for pragmatic protein function analysis and presentation is introduced. All of the mechanisms and effects are described along with representative examples, most often in relation to diseases. In addition, protein function is discussed from evolutionary point of view. Application of the presented framework facilitates unambiguous, detailed and specific description of functional effects and their systematic study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22 184, Lund, Sweden.
| |
Collapse
|
7
|
Nuclear P38: Roles in Physiological and Pathological Processes and Regulation of Nuclear Translocation. Int J Mol Sci 2020; 21:ijms21176102. [PMID: 32847129 PMCID: PMC7504396 DOI: 10.3390/ijms21176102] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK, termed here p38) cascade is a central signaling pathway that transmits stress and other signals to various intracellular targets in the cytoplasm and nucleus. More than 150 substrates of p38α/β have been identified, and this number is likely to increase. The phosphorylation of these substrates initiates or regulates a large number of cellular processes including transcription, translation, RNA processing and cell cycle progression, as well as degradation and the nuclear translocation of various proteins. Being such a central signaling cascade, its dysregulation is associated with many pathologies, particularly inflammation and cancer. One of the hallmarks of p38α/β signaling is its stimulated nuclear translocation, which occurs shortly after extracellular stimulation. Although p38α/β do not contain nuclear localization or nuclear export signals, they rapidly and robustly translocate to the nucleus, and they are exported back to the cytoplasm within minutes to hours. Here, we describe the physiological and pathological roles of p38α/β phosphorylation, concentrating mainly on the ill-reviewed regulation of p38α/β substrate degradation and nuclear translocation. In addition, we provide information on the p38α/β ’s substrates, concentrating mainly on the nuclear targets and their role in p38α/β functions. Finally, we also provide information on the mechanisms of nuclear p38α/β translocation and its use as a therapeutic target for p38α/β-dependent diseases.
Collapse
|
8
|
Gur-Arie L, Eitan-Wexler M, Weinberger N, Rosenshine I, Livnah O. The bacterial metalloprotease NleD selectively cleaves mitogen-activated protein kinases that have high flexibility in their activation loop. J Biol Chem 2020; 295:9409-9420. [PMID: 32404367 DOI: 10.1074/jbc.ra120.013590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Indexed: 01/07/2023] Open
Abstract
Microbial pathogens often target the host mitogen-activated protein kinase (MAPK) network to suppress host immune responses. We previously identified a bacterial type III secretion system effector, termed NleD, a metalloprotease that inactivates MAPKs by specifically cleaving their activation loop. Here, we show that NleDs form a growing family of virulence factors harbored by human and plant pathogens as well as insect symbionts. These NleDs disable specifically Jun N-terminal kinases (JNKs) and p38s that are required for host immune response, whereas extracellular signal-regulated kinase (ERK), which is essential for host cell viability, remains intact. We investigated the mechanism that makes ERK resistant to NleD cleavage. Biochemical and structural analyses revealed that NleD exclusively targets activation loops with high conformational flexibility. Accordingly, NleD cleaved the flexible loops of JNK and p38 but not the rigid loop of ERK. Our findings elucidate a compelling mechanism of native substrate proteolysis that is promoted by entropy-driven specificity. We propose that such entropy-based selectivity is a general attribute of proteolytic enzymes.
Collapse
Affiliation(s)
- Lihi Gur-Arie
- Department Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Eitan-Wexler
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nina Weinberger
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Rosenshine
- Department Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Livnah
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Fogha J, Diharce J, Obled A, Aci-Sèche S, Bonnet P. Computational Analysis of Crystallization Additives for the Identification of New Allosteric Sites. ACS OMEGA 2020; 5:2114-2122. [PMID: 32064372 PMCID: PMC7016913 DOI: 10.1021/acsomega.9b02697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Allosteric effect can modulate the biological activity of a protein. Thus, the discovery of new allosteric sites is very attractive for designing new modulators or inhibitors. Here, we propose an innovative way to identify allosteric sites, based on crystallization additives (CA), used to stabilize proteins during the crystallization process. Density and clustering analyses of CA, applied on protein kinase and nuclear receptor families, revealed that CA are not randomly distributed around protein structures, but they tend to aggregate near common sites. All orthosteric and allosteric cavities described in the literature are retrieved from the analysis of CA distribution. In addition, new sites were identified, which could be associated to putative allosteric sites. We proposed an efficient and easy way to use the structural information of CA to identify allosteric sites. This method could assist medicinal chemists for the design of new allosteric compounds targeting cavities of new drug targets.
Collapse
|
10
|
Yueh C, Rettenmaier J, Xia B, Hall DR, Alekseenko A, Porter KA, Barkovich K, Keseru G, Whitty A, Wells JA, Vajda S, Kozakov D. Kinase Atlas: Druggability Analysis of Potential Allosteric Sites in Kinases. J Med Chem 2019; 62:6512-6524. [PMID: 31274316 DOI: 10.1021/acs.jmedchem.9b00089] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The inhibition of kinases has been pursued by the pharmaceutical industry for over 20 years. While the locations of the sites that bind type II and III inhibitors at or near the adenosine 5'-triphosphate binding sites are well defined, the literature describes 10 different regions that were reported as regulatory hot spots in some kinases and thus are potential target sites for type IV inhibitors. Kinase Atlas is a systematic collection of binding hot spots located at the above ten sites in 4910 structures of 376 distinct kinases available in the Protein Data Bank. The hot spots are identified by FTMap, a computational analogue of experimental fragment screening. Users of Kinase Atlas ( https://kinase-atlas.bu.edu ) may view summarized results for all structures of a particular kinase, such as which binding sites are present and how druggable they are, or they may view hot spot information for a particular kinase structure of interest.
Collapse
Affiliation(s)
| | - Justin Rettenmaier
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology , University of California , 1700 Fourth Street , San Francisco , California 9415 , United States
| | | | - David R Hall
- Acpharis Incorporated , Holliston , Massachusetts 01746 , United States
| | | | | | - Krister Barkovich
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology , University of California , 1700 Fourth Street , San Francisco , California 9415 , United States
| | - Gyorgy Keseru
- Medicinal Chemistry Research Group , Research Center for Natural Sciences , Magyar tudósok krt. 2 , H-1117 Budapest , Hungary
| | | | - James A Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology , University of California , 1700 Fourth Street , San Francisco , California 9415 , United States
| | | | | |
Collapse
|
11
|
Deredge D, Wintrode PL, Tulapurkar ME, Nagarsekar A, Zhang Y, Weber DJ, Shapiro P, Hasday JD. A temperature-dependent conformational shift in p38α MAPK substrate-binding region associated with changes in substrate phosphorylation profile. J Biol Chem 2019; 294:12624-12637. [PMID: 31213525 DOI: 10.1074/jbc.ra119.007525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/13/2019] [Indexed: 01/09/2023] Open
Abstract
Febrile-range hyperthermia worsens and hypothermia mitigates lung injury, and temperature dependence of lung injury is blunted by inhibitors of p38 mitogen-activated protein kinase (MAPK). Of the two predominant p38 isoforms, p38α is proinflammatory and p38β is cytoprotective. Here, we analyzed the temperature dependence of p38 MAPK activation, substrate interaction, and tertiary structure. Incubating HeLa cells at 39.5 °C stimulated modest p38 activation, but did not alter tumor necrosis factor-α (TNFα)-induced p38 activation. In in vitro kinase assays containing activated p38α and MAPK-activated kinase-2 (MK2), MK2 phosphorylation was 14.5-fold greater at 39.5 °C than at 33 °C. By comparison, we observed only 3.1- and 1.9-fold differences for activating transcription factor-2 (ATF2) and signal transducer and activator of transcription-1α (STAT1α) and a 7.7-fold difference for p38β phosphorylation of MK2. The temperature dependence of p38α:substrate binding affinity, as measured by surface plasmon resonance, paralleled substrate phosphorylation. Hydrogen-deuterium exchange MS (HDX-MS) of p38α performed at 33, 37, and 39.5 °C indicated temperature-dependent conformational changes in an α helix near the common docking and glutamate:aspartate substrate-binding domains at the known binding site for MK2. In contrast, HDX-MS analysis of p38β did not detect significant temperature-dependent conformational changes in this region. We observed no conformational changes in the catalytic domain of either isoform and no corresponding temperature dependence in the C-terminal p38α-interacting region of MK2. Because MK2 participates in the pathogenesis of lung injury, the observed changes in the structure and function of proinflammatory p38α may contribute to the temperature dependence of acute lung injury.
Collapse
Affiliation(s)
- Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Mohan E Tulapurkar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ashish Nagarsekar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yinghua Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - David J Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201 .,Medicine and Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
12
|
Shah NG, Tulapurkar ME, Ramarathnam A, Brophy A, Martinez R, Hom K, Hodges T, Samadani R, Singh IS, MacKerell AD, Shapiro P, Hasday JD. Novel Noncatalytic Substrate-Selective p38α-Specific MAPK Inhibitors with Endothelial-Stabilizing and Anti-Inflammatory Activity. THE JOURNAL OF IMMUNOLOGY 2017; 198:3296-3306. [PMID: 28298524 DOI: 10.4049/jimmunol.1602059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
The p38 MAPK family is composed of four kinases of which p38α/MAPK14 is the major proinflammatory member. These kinases contribute to many inflammatory diseases, but the currently available p38 catalytic inhibitors (e.g., SB203580) are poorly effective and cause toxicity. We reasoned that the failure of catalytic p38 inhibitors may derive from their activity against noninflammatory p38 isoforms (e.g., p38β/MAPK11) and loss of all p38α-dependent responses, including anti-inflammatory, counterregulatory responses via mitogen- and stress-activated kinase (MSK) 1/2 and Smad3. We used computer-aided drug design to target small molecules to a pocket near the p38α glutamate-aspartate (ED) substrate-docking site rather than the catalytic site, the sequence of which had only modest homology among p38 isoforms. We identified a lead compound, UM101, that was at least as effective as SB203580 in stabilizing endothelial barrier function, reducing inflammation, and mitigating LPS-induced mouse lung injury. Differential scanning fluorimetry and saturation transfer difference-nuclear magnetic resonance demonstrated specific binding of UM101 to the computer-aided drug design-targeted pockets in p38α but not p38β. RNA sequencing analysis of TNF-α-stimulated gene expression revealed that UM101 inhibited only 28 of 61 SB203580-inhibited genes and 7 of 15 SB203580-inhibited transcription factors, but spared the anti-inflammatory MSK1/2 pathway. We provide proof of principle that small molecules that target the ED substrate-docking site may exert anti-inflammatory effects similar to the catalytic p38 inhibitors, but their isoform specificity and substrate selectivity may confer inherent advantages over catalytic inhibitors for treating inflammatory diseases.
Collapse
Affiliation(s)
- Nirav G Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Mohan E Tulapurkar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aparna Ramarathnam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Amanda Brophy
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Ramon Martinez
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Theresa Hodges
- University of Maryland Institute for Genome Science, Baltimore, MD 21201
| | - Ramin Samadani
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Ishwar S Singh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201.,Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201; and
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201; .,Medicine and Research Services, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| |
Collapse
|
13
|
Katsumura KR, Ong IM, DeVilbiss AW, Sanalkumar R, Bresnick EH. GATA Factor-Dependent Positive-Feedback Circuit in Acute Myeloid Leukemia Cells. Cell Rep 2016; 16:2428-41. [PMID: 27545880 DOI: 10.1016/j.celrep.2016.07.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/17/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Abstract
The master regulatory transcription factor GATA-2 triggers hematopoietic stem and progenitor cell generation. GATA2 haploinsufficiency is implicated in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), and GATA2 overexpression portends a poor prognosis for AML. However, the constituents of the GATA-2-dependent genetic network mediating pathogenesis are unknown. We described a p38-dependent mechanism that phosphorylates GATA-2 and increases GATA-2 target gene activation. We demonstrate that this mechanism establishes a growth-promoting chemokine/cytokine circuit in AML cells. p38/ERK-dependent GATA-2 phosphorylation facilitated positive autoregulation of GATA2 transcription and expression of target genes, including IL1B and CXCL2. IL-1β and CXCL2 enhanced GATA-2 phosphorylation, which increased GATA-2-mediated transcriptional activation. p38/ERK-GATA-2 stimulated AML cell proliferation via CXCL2 induction. As GATA2 mRNA correlated with IL1B and CXCL2 mRNAs in AML-M5 and high expression of these genes predicted poor prognosis of cytogenetically normal AML, we propose that the circuit is functionally important in specific AML contexts.
Collapse
Affiliation(s)
- Koichi R Katsumura
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Andrew W DeVilbiss
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rajendran Sanalkumar
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
14
|
Wilson BAP, Alam MS, Guszczynski T, Jakob M, Shenoy SR, Mitchell CA, Goncharova EI, Evans JR, Wipf P, Liu G, Ashwell JD, O'Keefe BR. Discovery and Characterization of a Biologically Active Non-ATP-Competitive p38 MAP Kinase Inhibitor. ACTA ACUST UNITED AC 2015; 21:277-89. [PMID: 26538432 DOI: 10.1177/1087057115615518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) p38 is part of a broad and ubiquitously expressed family of MAPKs whose activity is responsible for mediating an intracellular response to extracellular stimuli through a phosphorylation cascade. p38 is central to this signaling node and is activated by upstream kinases while being responsible for activating downstream kinases and transcription factors via phosphorylation. Dysregulated p38 activity is associated with numerous autoimmune disorders and has been implicated in the progression of several types of cancer. A number of p38 inhibitors have been tested in clinical trials, with none receiving regulatory approval. One characteristic shared by all of the compounds that failed clinical trials is that they are all adenosine triphosphate (ATP)-competitive p38 inhibitors. Seeing this lack of mechanistic diversity as an opportunity, we screened ~32,000 substances in search of novel p38 inhibitors. Among the inhibitors discovered is a compound that is both non-ATP competitive and biologically active in cell-based models for p38 activity. This is the first reported discovery of a non-ATP-competitive p38 inhibitor that is active in cells and, as such, may enable new pharmacophore designs for both therapeutic and basic research to better understand and exploit non-ATP-competitive inhibitors of p38 activity.
Collapse
Affiliation(s)
- Brice A P Wilson
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tad Guszczynski
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Michal Jakob
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Shilpa R Shenoy
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Carter A Mitchell
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ekaterina I Goncharova
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA Data Management Services, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason R Evans
- Data Management Services, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gang Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua-Peking Center for Life Sciences and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing China
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
15
|
Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf. Biochem J 2015; 467:425-38. [PMID: 25695333 DOI: 10.1042/bj20131571] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Constitutive activation of the extracellular-signal-regulated kinases 1 and 2 (ERK1/2) are central to regulating the proliferation and survival of many cancer cells. The current inhibitors of ERK1/2 target ATP binding or the catalytic site and are therefore limited in their utility for elucidating the complex biological roles of ERK1/2 through its phosphorylation and regulation of over 100 substrate proteins. To overcome this limitation, a combination of computational and experimental methods was used to identify low-molecular-mass inhibitors that are intended to target ERK1/2 substrate-docking domains and selectively interfere with ERK1/2 regulation of substrate proteins. In the present study, we report the identification and characterization of compounds with a thienyl benzenesulfonate scaffold that were designed to inhibit ERK1/2 substrates containing an F-site or DEF (docking site for ERK, FXF) motif. Experimental evidence shows the compounds inhibit the expression of F-site containing immediate early genes (IEGs) of the Fos family, including c-Fos and Fra1, and transcriptional regulation of the activator protein-1 (AP-1) complex. Moreover, this class of compounds selectively induces apoptosis in melanoma cells containing mutated BRaf and constitutively active ERK1/2 signalling, including melanoma cells that are inherently resistant to clinically relevant kinase inhibitors. These findings represent the identification and initial characterization of a novel class of compounds that inhibit ERK1/2 signalling functions and their potential utility for elucidating ERK1/2 and other signalling events that control the growth and survival of cancer cells containing elevated ERK1/2 activity.
Collapse
|
16
|
Fabbro D, Cowan-Jacob SW, Moebitz H. Ten things you should know about protein kinases: IUPHAR Review 14. Br J Pharmacol 2015; 172:2675-700. [PMID: 25630872 DOI: 10.1111/bph.13096] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/31/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022] Open
Abstract
Many human malignancies are associated with aberrant regulation of protein or lipid kinases due to mutations, chromosomal rearrangements and/or gene amplification. Protein and lipid kinases represent an important target class for treating human disorders. This review focus on 'the 10 things you should know about protein kinases and their inhibitors', including a short introduction on the history of protein kinases and their inhibitors and ending with a perspective on kinase drug discovery. Although the '10 things' have been, to a certain extent, chosen arbitrarily, they cover in a comprehensive way the past and present efforts in kinase drug discovery and summarize the status quo of the current kinase inhibitors as well as knowledge about kinase structure and binding modes. Besides describing the potentials of protein kinase inhibitors as drugs, this review also focus on their limitations, particularly on how to circumvent emerging resistance against kinase inhibitors in oncological indications.
Collapse
Affiliation(s)
| | | | - Henrik Moebitz
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| |
Collapse
|
17
|
Vihinen M. Types and effects of protein variations. Hum Genet 2015; 134:405-21. [DOI: 10.1007/s00439-015-1529-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
|
18
|
Zamora-Olivares D, Kaoud TS, Jose J, Ellington A, Dalby KN, Anslyn EV. Differential Sensing of MAP Kinases Using SOX-Peptides. Angew Chem Int Ed Engl 2014; 53:14064-8. [DOI: 10.1002/anie.201408256] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Indexed: 01/22/2023]
|
19
|
Zamora-Olivares D, Kaoud TS, Jose J, Ellington A, Dalby KN, Anslyn EV. Differential Sensing of MAP Kinases Using SOX-Peptides. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|