1
|
Molecular Characteristics and Quantitative Proteomic Analysis of Klebsiella pneumoniae Strains with Carbapenem and Colistin Resistance. Antibiotics (Basel) 2022; 11:antibiotics11101341. [PMID: 36289999 PMCID: PMC9598126 DOI: 10.3390/antibiotics11101341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) are usually multidrug resistant (MDR) and cause serious therapeutic problems. Colistin is a critical last-resort therapeutic option for MDR bacterial infections. However, increasing colistin use has led to the emergence of extensively drug-resistant (XDR) strains, raising a significant challenge for healthcare. In order to gain insight into the antibiotic resistance mechanisms of CRKP and identify potential drug targets, we compared the molecular characteristics and the proteomes among drug-sensitive (DS), MDR, and XDR K. pneumoniae strains. All drug-resistant isolates belonged to ST11, harboring blaKPC and hypervirulent genes. None of the plasmid-encoded mcr genes were detected in the colistin-resistant XDR strains. Through a tandem mass tag (TMT)-labeled proteomic technique, a total of 3531 proteins were identified in the current study. Compared to the DS strains, there were 247 differentially expressed proteins (DEPs) in the MDR strains and 346 DEPs in the XDR strains, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that a majority of the DEPs were involved in various metabolic pathways, which were beneficial to the evolution of drug resistance in K. pneumoniae. In addition, a total of 67 DEPs were identified between the MDR and XDR strains. KEGG enrichment and protein-protein interaction network analysis showed their participation in cationic antimicrobial peptide resistance and two-component systems. In conclusion, our results highlight the emergence of colistin-resistant and hypervirulent CRKP, which is a noticeable superbug. The DEPs identified in our study are of great significance for the exploration of effective control strategies against infections of CRKP.
Collapse
|
2
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Kunwar CB, Birstonas S, McPhee JB, Barnett Foster D. Molecular basis of bile-salt- and iron-induced enterohaemorrhagic E. coli resistance to cationic antimicrobial peptides. MICROBIOLOGY-SGM 2020; 166:1149-1159. [PMID: 33205745 DOI: 10.1099/mic.0.000988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Colonization of the gastrointestinal tract by enterohaemorrhagic Escherichia coli (EHEC) is critically dependent on its ability to sense and respond to various microenvironments within the host. EHEC exposure to physiologically relevant levels of bile salts upregulates the two-component system, pmrAB, and the arnBCADTEF operon, resulting in lipopolysaccharide modification and increased resistance to the cationic antimicrobial peptide, polymyxin B (PMB). A similar pmrAB- and arn-dependent PMB resistance has been observed in Salmonella enterica in the presence of ferric iron. Limiting magnesium levels and mild acid can also induce Salmonella resistance to PMB through another two-component system, PhoPQ and the connector protein, PmrD. This study aims to evaluate the relative contributions of a bile-salt mix (BSM), iron, limiting magnesium as well as the roles of pmrAB, phoPQ and pmrD to EHEC's resistance to PMB. Killing assays show that EHEC treatment with the BSM or iron under excess magnesium and neutral pH conditions induces a pmrAB-dependent, phoP-independent PMB resistance. By contrast, exposure to limiting magnesium triggers a pmrB-, phoP- and pmrD-dependent PMB resistance. The iron-induced PMB resistance is independent of phoP and pmrD under limiting magnesium conditions while the bile-salt-induced PMB resistance is independent of pmrD only under non-PhoP-inducing conditions. GFP-pmrD transcriptional reporter studies reveal that the limiting magnesium enhances pmrD expression, which is repressed upon additional exposure to either BSM or iron. Our results also show that exposure to mild acid enhances PMB resistance in a pmrD-independent manner and GFP reporter results confirm minimal expression of pmrD at this pH regardless of the magnesium level. This study provides novel insights into how EHEC differentially employs PmrAB, PhoPQ and PmrD to monitor and respond to bile salts, iron, acidic pH and magnesium typically encountered within the gastrointestinal tract in order to modulate its survival against cationic antimicrobial peptides.
Collapse
Affiliation(s)
- Chhatra B Kunwar
- Department of Chemistry & Biology, Ryerson University, Toronto, ON, Canada
| | - Sarah Birstonas
- Department of Chemistry & Biology, Ryerson University, Toronto, ON, Canada
| | - Joseph B McPhee
- Department of Chemistry & Biology, Ryerson University, Toronto, ON, Canada
| | - Debora Barnett Foster
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Chemistry & Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
4
|
Huang J, Li C, Song J, Velkov T, Wang L, Zhu Y, Li J. Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Future Microbiol 2020; 15:445-459. [PMID: 32250173 DOI: 10.2217/fmb-2019-0322] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymyxins (polymyxin B and colistin) are last-line antibiotics against multidrug-resistant Gram-negative pathogens. Polymyxin resistance is increasing worldwide, with resistance most commonly regulated by two-component systems such as PmrAB and PhoPQ. This review discusses the regulatory mechanisms of PhoPQ and PmrAB in mediating polymyxin resistance, from receiving an external stimulus through to activation of genes responsible for lipid A modifications. By analyzing the reported nonsynonymous substitutions in each two-component system, we identified the domains that are critical for polymyxin resistance. Notably, for PmrB 71% of resistance-conferring nonsynonymous mutations occurred in the HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase) linker and DHp (dimerization and histidine phosphotransfer) domains. These results enhance our understanding of the regulatory mechanisms underpinning polymyxin resistance and may assist with the development of new strategies to minimize resistance emergence.
Collapse
Affiliation(s)
- Jiayuan Huang
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Jiangning Song
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne 3010, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Zhu
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| |
Collapse
|
5
|
Zhu Y, Galani I, Karaiskos I, Lu J, Aye SM, Huang J, Yu HH, Velkov T, Giamarellou H, Li J. Multifaceted mechanisms of colistin resistance revealed by genomic analysis of multidrug-resistant Klebsiella pneumoniae isolates from individual patients before and after colistin treatment. J Infect 2019; 79:312-321. [PMID: 31374222 DOI: 10.1016/j.jinf.2019.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/11/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Polymyxins (i.e., polymyxin B and colistin) are used as a last-line therapy to combat multidrug-resistant (MDR) Klebsiella pneumoniae. Worryingly, polymyxin resistance in K. pneumoniae is increasingly reported worldwide. This study identified the genetic variations responsible for high-level colistin resistance in MDR K. pneumoniae clinical isolates. METHODS Sixteen MDR K. pneumoniae isolates were obtained from stool samples of 8 patients before and after colistin treatment. Their genomes were sequenced on Illumina MiSeq to determine genetic variations. RESULTS Fifteen of 16 isolates harboured ISKpn26-like element insertion at nucleotide position 75 of mgrB, abolishing its negative regulation on phoPQ; while colistin-susceptible ATH7 contained intact mgrB and phoQ. Interestingly, each of the 7 mgrB-disrupted, colistin-susceptible isolates contained a nonsynonymous substitution in PhoQ (G39S, L239P, N253T or V446G), potentially impairing its function and intergenically suppressing the effect caused by mgrB inactivation. Additionally, three of the 7 corresponding mgrB-disrupted, colistin-resistant isolates harboured a secondary nonsynonymous substitution in PhoQ (N253P, D438H or T439P). CONCLUSIONS This is the first report of phoQ mutations in mgrB-disrupted, colistin-susceptible K. pneumoniae clinical isolates. We also discovered multiple phoQ mutations in mgrB-disrupted, colistin-resistant strains. Our findings highlight the multifaceted molecular mechanisms of colistin resistance in K. pneumoniae.
Collapse
Affiliation(s)
- Yan Zhu
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne 3800, Australia.
| | - Irene Galani
- Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ilias Karaiskos
- First Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece.
| | - Jing Lu
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne 3800, Australia.
| | - Su Mon Aye
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne 3800, Australia.
| | - Jiayuan Huang
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne 3800, Australia.
| | - Heidi H Yu
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne 3800, Australia.
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne 3010, Australia.
| | - Helen Giamarellou
- First Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece.
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne 3800, Australia.
| |
Collapse
|
6
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
7
|
Kang KN, Klein DR, Kazi MI, Guérin F, Cattoir V, Brodbelt JS, Boll JM. Colistin heteroresistance in Enterobacter cloacae is regulated by PhoPQ-dependent 4-amino-4-deoxy-l-arabinose addition to lipid A. Mol Microbiol 2019; 111:1604-1616. [PMID: 30873646 DOI: 10.1111/mmi.14240] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2019] [Indexed: 01/01/2023]
Abstract
The Enterobacter cloacae complex (ECC) consists of closely related bacteria commonly associated with the human microbiota. ECC are increasingly isolated from healthcare-associated infections, demonstrating that these Enterobacteriaceae are emerging nosocomial pathogens. ECC can rapidly acquire multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the highly conserved lipid A component of the Gram-negative outer membrane. Many Enterobacteriaceae fortify their outer membrane with cationic amine-containing moieties to prevent CAMP binding, which can lead to cell lysis. The PmrAB two-component system (TCS) directly activates 4-amino-4-deoxy-l-arabinose (l-Ara4N) biosynthesis to result in cationic amine moiety addition to lipid A in many Enterobacteriaceae such as E. coli and Salmonella. In contrast, PmrAB is dispensable for CAMP resistance in E. cloacae. Interestingly, some ECC clusters exhibit colistin heteroresistance, where a subpopulation of cells exhibit clinically significant resistance levels compared to the majority population. We demonstrate that E. cloacae lipid A is modified with l-Ara4N to induce CAMP heteroresistance and the regulatory mechanism is independent of the PmrABEcl TCS. Instead, PhoPEcl binds to the arnBEcl promoter to induce l-Ara4N biosynthesis and PmrAB-independent addition to the lipid A disaccharolipid. Therefore, PhoPQEcl contributes to regulation of CAMP heteroresistance in some ECC clusters.
Collapse
Affiliation(s)
- Katie N Kang
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Dustin R Klein
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Misha I Kazi
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - François Guérin
- Department of Clinical Microbiology, Caen University Hospital, EA4655, University of Caen Normandie, Caen, France
| | - Vincent Cattoir
- Department of Clinical Microbiology and National Reference Center for Antimicrobial Resistance (Lab Enterococci), Rennes University Hospital Inserm Unit U1230, University of Rennes 1, Rennes, France
| | | | - Joseph M Boll
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
8
|
|
9
|
Balaraman S, Ramalingam R. The structural and functional reliability of Circulins of
Chassalia parvifolia
for peptide therapeutic scaffolding. J Cell Biochem 2018; 119:3999-4008. [DOI: 10.1002/jcb.26557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Senthilkumar Balaraman
- Bioinformatics Division, School of Bio Sciences and TechnologyVellore Institute of Technology UniversityVelloreTamil NaduIndia
| | - Rajasekaran Ramalingam
- Bioinformatics Division, School of Bio Sciences and TechnologyVellore Institute of Technology UniversityVelloreTamil NaduIndia
| |
Collapse
|
10
|
Meshach Paul D, Chadah T, Senthilkumar B, Sethumadhavan R, Rajasekaran R. Structural distortions due to missense mutations in human formylglycine-generating enzyme leading to multiple sulfatase deficiency. J Biomol Struct Dyn 2017; 36:3575-3585. [PMID: 29048999 DOI: 10.1080/07391102.2017.1394220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major candidate for multiple sulfatase deficiency is a defective formylglycine-generating enzyme (FGE). Though adequately produced, mutations in FGE stall the activation of sulfatases and prevent their activity. Missense mutations, viz. E130D, S155P, A177P, W179S, C218Y, R224W, N259I, P266L, A279V, C336R, R345C, A348P, R349Q and R349W associated with multiple sulfatase deficiency are yet to be computationally studied. Aforementioned mutants were initially screened through ws-SNPs&GO3D program. Mutant R345C acquired the highest score, and hence was studied in detail. Discrete molecular dynamics explored structural distortions due to amino acid substitution. Therein, comparative analyses of wild type and mutant were carried out. Changes in structural contours were observed between wild type and mutant. Mutant had low conformational fluctuation, high atomic mobility and more compactness than wild type. Moreover, free energy landscape showed mutant to vary in terms of its conformational space as compared to wild type. Subsequently, wild type and mutant were subjected to single-model analyses. Mutant had lesser intra molecular interactions than wild type suggesting variations pertaining to its secondary structure. Furthermore, simulated thermal denaturation showed dissimilar pattern of hydrogen bond dilution. Effects of these variations were observed as changes in elements of secondary structure. Docking studies of mutant revealed less favourable binding energy towards its substrate as compared to wild type. Therefore, theoretical explanations for structural distortions of mutant R345C leading to multiple sulfatase deficiency were revealed. The protocol of the study could be useful to examine the effectiveness of pharmacological chaperones prior to experimental studies.
Collapse
Key Words
- , sulfatase-modifying factor
- ARSB, aryl sulfatase B
- AUC, area under the curve
- DMD, discrete molecular dynamics
- FEL, free energy landscape
- FGE, formylglycine-generating enzyme
- FGly, formylglycine
- LSD, lysosomal storage disorder
- MCC, Mathew’s correlation coeffecient
- MD, molecular dynamics
- MSD, multiple sulfatase defeciency
- PCA, principal component analysis
- PDB, Protein Data Bank
- PIC, protein interaction calculator
- RCSB, Research Collaboratory for Structural Bioinformatics
- RMSD, root mean square deviation
- RMSF, root mean square fluctuation
- RoG, radius of gyration
- SVM-3D, support vector machine-3D
- discrete molecular dynamics
- free energy landscape
- genetic disorder
- lysosomal storage disorder
- misfolding
- multiple sulfatase
Collapse
Affiliation(s)
- D Meshach Paul
- a Department of Biotechnology, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| | - Tania Chadah
- a Department of Biotechnology, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| | - B Senthilkumar
- a Department of Biotechnology, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| | - Rao Sethumadhavan
- a Department of Biotechnology, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| | - R Rajasekaran
- a Department of Biotechnology, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| |
Collapse
|
11
|
Filippova EV, Wawrzak Z, Ruan J, Pshenychnyi S, Schultz RM, Wolfe AJ, Anderson WF. Crystal structure of nonphosphorylated receiver domain of the stress response regulator RcsB from Escherichia coli. Protein Sci 2016; 25:2216-2224. [PMID: 27670836 DOI: 10.1002/pro.3050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 11/12/2022]
Abstract
RcsB, the transcription-associated response regulator of the Rcs phosphorelay two-component signal transduction system, activates cell stress responses associated with desiccation, cell wall biosynthesis, cell division, virulence, biofilm formation, and antibiotic resistance in enteric bacterial pathogens. RcsB belongs to the FixJ/NarL family of transcriptional regulators, which are characterized by a highly conserved C-terminal DNA-binding domain. The N-terminal domain of RcsB belongs to the family of two-component receiver domains. This receiver domain contains the phosphoacceptor site and participates in RcsB dimer formation; it also contributes to dimer formation with other transcription factor partners. Here, we describe the crystal structure of the Escherichia coli RcsB receiver domain in its nonphosphorylated state. The structure reveals important molecular details of phosphorylation-independent dimerization of RcsB and has implication for the formation of heterodimers.
Collapse
Affiliation(s)
- Ekaterina V Filippova
- Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611
| | - Zdzislaw Wawrzak
- Life Science Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, Illinois, 60439
| | - Jiapeng Ruan
- Yale University School of Medicine, Department of Digestive Diseases, New Haven, CT 06510
| | - Sergii Pshenychnyi
- Recombinant Protein Production Core, Northwestern University, Chemistry of Life Processes Institute, Evanston, Illinois 60208
| | - Richard M Schultz
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, 60153
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, 60153
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611
| |
Collapse
|
12
|
Amino Acid Substitutions of CrrB Responsible for Resistance to Colistin through CrrC in Klebsiella pneumoniae. Antimicrob Agents Chemother 2016; 60:3709-16. [PMID: 27067316 DOI: 10.1128/aac.00009-16] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Colistin is a last-resort antibiotic for treatment of carbapenem-resistant Klebsiella pneumoniae A recent study indicated that missense mutations in the CrrB protein contribute to colistin resistance. In our previous study, mechanisms of colistin resistance were defined in 17 of 26 colistin-resistant K. pneumoniae clinical isolates. Of the remaining nine strains, eight were highly resistant to colistin. In the present study, crrAB sequences were determined for these eight strains. Six separate amino acid substitutions in CrrB (Q10L, Y31H, W140R, N141I, P151S, and S195N) were detected. Site-directed mutagenesis was used to generate crrB loci harboring individual missense mutations; introduction of the mutated genes into a susceptible strain, A4528, resulted in 64- to 1,024-fold increases in colistin MICs. These crrB mutants showed increased accumulation of H239_3062, H239_3059, pmrA, pmrC, and pmrH transcripts by quantitative reverse transcription (qRT)-PCR. Deletion of H239_3062 (but not that of H239_3059) in the A4528 crrB(N141I) strain attenuated resistance to colistin, and H239_3062 was accordingly named crrC Similarly, accumulation of pmrA, pmrC, and pmrH transcripts induced by crrB(N141I) was significantly attenuated upon deletion of crrC Complementation of crrC restored resistance to colistin and accumulation of pmrA, pmrC, and pmrH transcripts in a crrB(N141I) ΔcrrC strain. In conclusion, novel individual CrrB amino acid substitutions (Y31H, W140R, N141I, P151S, and S195N) were shown to be responsible for colistin resistance. We hypothesize that CrrB mutations induce CrrC expression, thereby inducing elevated expression of the pmrHFIJKLM operon and pmrC (an effect mediated via the PmrAB two-component system) and yielding increased colistin resistance.
Collapse
|
13
|
Selection of effective and highly thermostable Bacillus subtilis lipase A template as an industrial biocatalyst-A modern computational approach. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11515-015-1379-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA. Nat Commun 2015; 6:8838. [PMID: 26564787 PMCID: PMC4660055 DOI: 10.1038/ncomms9838] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/08/2015] [Indexed: 01/21/2023] Open
Abstract
PmrA, an OmpR/PhoB family response regulator, manages genes for antibiotic resistance. Phosphorylation of OmpR/PhoB response regulator induces the formation of a symmetric dimer in the N-terminal receiver domain (REC), promoting two C-terminal DNA-binding domains (DBDs) to recognize promoter DNA to elicit adaptive responses. Recently, determination of the KdpE-DNA complex structure revealed an REC-DBD interface in the upstream protomer that may be necessary for transcription activation. Here, we report the 3.2-Å-resolution crystal structure of the PmrA-DNA complex, which reveals a similar yet different REC-DBD interface. However, NMR studies show that in the DNA-bound state, two domains tumble separately and an REC-DBD interaction is transiently populated in solution. Reporter gene analyses of PmrA variants with altered interface residues suggest that the interface is not crucial for supporting gene expression. We propose that REC-DBD interdomain dynamics and the DBD-DBD interface help PmrA interact with RNA polymerase holoenzyme to activate downstream gene transcription.
Collapse
|
15
|
PmrD is required for modifications to escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob Agents Chemother 2015; 59:2051-61. [PMID: 25605366 DOI: 10.1128/aac.05052-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Salmonella enterica, PmrD is a connector protein that links the two-component systems PhoP-PhoQ and PmrA-PmrB. While Escherichia coli encodes a PmrD homolog, it is thought to be incapable of connecting PhoPQ and PmrAB in this organism due to functional divergence from the S. enterica protein. However, our laboratory previously observed that low concentrations of Mg(2+), a PhoPQ-activating signal, leads to the induction of PmrAB-dependent lipid A modifications in wild-type E. coli (C. M. Herrera, J. V. Hankins, and M. S. Trent, Mol Microbiol 76:1444-1460, 2010, http://dx.doi.org/10.1111/j.1365-2958.2010.07150.x). These modifications include phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), which promote bacterial resistance to cationic antimicrobial peptides (CAMPs) when affixed to lipid A. Here, we demonstrate that pmrD is required for modification of the lipid A domain of E. coli lipopolysaccharide (LPS) under low-Mg(2+) growth conditions. Further, RNA sequencing shows that E. coli pmrD influences the expression of pmrA and its downstream targets, including genes coding for the modification enzymes that transfer pEtN and l-Ara4N to the lipid A molecule. In line with these findings, a pmrD mutant is dramatically impaired in survival compared with the wild-type strain when exposed to the CAMP polymyxin B. Notably, we also reveal the presence of an unknown factor or system capable of activating pmrD to promote lipid A modification in the absence of the PhoPQ system. These results illuminate a more complex network of protein interactions surrounding activation of PhoPQ and PmrAB in E. coli than previously understood.
Collapse
|
16
|
Wright MS, Suzuki Y, Jones MB, Marshall SH, Rudin SD, van Duin D, Kaye K, Jacobs MR, Bonomo RA, Adams MD. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrob Agents Chemother 2015; 59:536-43. [PMID: 25385117 PMCID: PMC4291396 DOI: 10.1128/aac.04037-14] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/02/2014] [Indexed: 12/28/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) Klebsiella pneumoniae has resulted in a more frequent reliance on treatment using colistin. However, resistance to colistin (Col(r)) is increasingly reported from clinical settings. The genetic mechanisms that lead to Col(r) in K. pneumoniae are not fully characterized. Using a combination of genome sequencing and transcriptional profiling by RNA sequencing (RNA-Seq) analysis, distinct genetic mechanisms were found among nine Col(r) clinical isolates. Col(r) was related to mutations in three different genes in K. pneumoniae strains, with distinct impacts on gene expression. Upregulation of the pmrH operon encoding 4-amino-4-deoxy-L-arabinose (Ara4N) modification of lipid A was found in all Col(r) strains. Alteration of the mgrB gene was observed in six strains. One strain had a mutation in phoQ. Common among these seven strains was elevated expression of phoPQ and unaltered expression of pmrCAB, which is involved in phosphoethanolamine addition to lipopolysaccharide (LPS). In two strains, separate mutations were found in a previously uncharacterized histidine kinase gene that is part of a two-component regulatory system (TCRS) now designated crrAB. In these strains, expression of pmrCAB, crrAB, and an adjacent glycosyltransferase gene, but not that of phoPQ, was elevated. Complementation with the wild-type allele restored colistin susceptibility in both strains. The crrAB genes are present in most K. pneumoniae genomes, but not in Escherichia coli. Additional upregulated genes in all strains include those involved in cation transport and maintenance of membrane integrity. Because the crrAB genes are present in only some strains, Col(r) mechanisms may be dependent on the genetic background.
Collapse
Affiliation(s)
| | - Yo Suzuki
- J. Craig Venter Institute, La Jolla, California, USA
| | | | - Steven H Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Susan D Rudin
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina
| | - Keith Kaye
- Detroit Medical Center, Detroit, Michigan, USA
| | - Michael R Jacobs
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark D Adams
- J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
17
|
Lou YC, Wang I, Rajasekaran M, Kao YF, Ho MR, Hsu STD, Chou SH, Wu SH, Chen C. Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Res 2013; 42:4080-93. [PMID: 24371275 PMCID: PMC3973317 DOI: 10.1093/nar/gkt1345] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Klebsiella pneumoniae PmrA is a polymyxin-resistance-associated response regulator. The C-terminal effector/DNA-binding domain of PmrA (PmrAC) recognizes tandem imperfect repeat sequences on the promoters of genes to induce antimicrobial peptide resistance after phosphorylation and dimerization of its N-terminal receiver domain (PmrAN). However, structural information concerning how phosphorylation of the response regulator enhances DNA recognition remains elusive. To gain insights, we determined the nuclear magnetic resonance solution structure of PmrAC and characterized the interactions between PmrAC or BeF3(-)-activated full-length PmrA (PmrAF) and two DNA sequences from the pbgP promoter of K. pneumoniae. We showed that PmrAC binds to the PmrA box, which was verified to contain two half-sites, 5'-CTTAAT-3' and 5'-CCTAAG-3', in a head-to-tail fashion with much stronger affinity to the first than the second site without cooperativity. The structural basis for the PmrAC-DNA complex was investigated using HADDOCK docking and confirmed by paramagnetic relaxation enhancement. Unlike PmrAC, PmrAF recognizes the two sites simultaneously and specifically. In the PmrAF-DNA complex, PmrAN may maintain an activated homodimeric conformation analogous to that in the free form and the interactions between two PmrAC molecules aid in bending and binding of the DNA duplex for transcription activation.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Institute of Biomedical Sciences, Institute of Biological Chemistry, Academia Sinica, Taipei 115, Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|