1
|
Lim PN, Cervantes MM, Pham LK, Doherty SR, Tufts A, Dubey D, Mai D, Aderem A, Diercks AH, Rothchild AC. Absence of c-Maf and IL-10 enables type I IFN enhancement of innate responses to LPS in alveolar macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae029. [PMID: 40073087 PMCID: PMC11952875 DOI: 10.1093/jimmun/vkae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 03/14/2025]
Abstract
Alveolar macrophages (AMs) are lung-resident myeloid cells and airway sentinels for inhaled pathogens and environmental particles. While AMs can be highly inflammatory in response to respiratory viruses, they do not mount proinflammatory responses to all airborne pathogens. For example, we previously showed that AMs fail to mount a robust proinflammatory response to Mycobacterium tuberculosis. Here, we address this discrepancy by investigating the capacity of murine AMs for direct innate immune sensing, using LPS as a model. Use of LPS-coated fluorescent beads enabled us to distinguish between directly exposed and bystander cells to measure transcriptional responses, by RNA-sequencing after cell sorting, and cytokine responses, by flow cytometry. We find that AMs have decreased proinflammatory responses to low-dose LPS compared to other macrophage types (bone marrow-derived macrophages, peritoneal macrophages), as measured by TNF, IL-6, Ifnb, and Ifit3. The reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4. We also find that AMs do not produce IL-10 in response to a variety of stimuli due to low expression of the transcription factor c-Maf, while exogenous c-Maf expression restores IL-10 production in AMs. Lastly, we show that lack of IL-10 enables type I IFN enhancement of AM responses to LPS. Overall, we demonstrate AMs have a cell-intrinsic hyporesponsiveness to LPS, which makes them uniquely tolerant to low-dose exposure. Regulation of AM innate responses by distinct CD14, c-Maf, and IL-10 expression patterns has important implications for both respiratory infections and environmental airborne exposures.
Collapse
Affiliation(s)
- Pamelia N Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maritza M Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Linh K Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Animal Biotechnology & Biomedical Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Sydney R Doherty
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Ankita Tufts
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Divya Dubey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alan H Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alissa C Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
2
|
Babu N, Gadepalli A, Akhilesh, Sharma D, Singh AK, Chouhan D, Agrawal S, Tiwari V. TLR-4: a promising target for chemotherapy-induced peripheral neuropathy. Mol Biol Rep 2024; 51:1099. [PMID: 39466456 DOI: 10.1007/s11033-024-10038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects a significant majority of cancer patients, with up to 80% experiencing this severe and dose-limiting side effect while undergoing anti-cancer treatment. CIPN can be induced by a variety of drugs commonly employed in the management of both solid tumors and hematologic cancers. The inadequacies in comprehending the pharmacological interventions associated with CIPN and the subsequent signaling pathways have significantly contributed to the disappointing outcomes of several drugs in clinical trials. Recent investigations in pain research have demonstrated a growing inclination toward addressing neuro-inflammation as a strategy for managing chronic pain conditions. Notably, toll-like receptor-4 (TLR-4) has emerged as a key player in immune system activation and is undergoing extensive research. In this review, we emphasize the potential role of TLR-4 in neuropathic pain, highlighting its promise as a target for CIPN treatment. Furthermore, we explore and analyse the intricate interplay between TLR-4, diverse immune cells, downstream pathways, and receptors within the context of CIPN. A comprehensive exploration of these interactions provides valuable insights into the central role of TLR-4 in CIPN development, paving the way for potential ground-breaking therapeutic approaches to alleviate this debilitating condition.
Collapse
Affiliation(s)
- Nagendra Babu
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Dilip Sharma
- Amity Institute of Pharmacy, Amity University of Haryana, Gurgaon, India
| | - Anurag Kumar Singh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Somesh Agrawal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
3
|
Lim PN, Cervantes MM, Pham LK, Doherty S, Tufts A, Dubey D, Mai D, Aderem A, Diercks AH, Rothchild AC. Absence of c-Maf and IL-10 enables Type I IFN enhancement of innate responses to low-dose LPS in alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.594428. [PMID: 38826239 PMCID: PMC11142172 DOI: 10.1101/2024.05.22.594428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alveolar macrophages (AMs) are lower-airway resident myeloid cells and are among the first to respond to inhaled pathogens. Here, we interrogate AM innate sensing to Pathogen Associated Molecular Patterns (PAMPs) and determine AMs have decreased responses to low-dose LPS compared to other macrophages, as measured by TNF, IL-6, Ifnb, and Ifit3. We find the reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4. Additionally, we find that AMs do not produce IL-10 in response to a variety of PAMPs due to low expression of transcription factor c-Maf and that lack of IL-10 production contributes to an enhancement of pro-inflammatory responses by Type I IFN. Our findings demonstrate that AMs have cell-intrinsic dampened responses to LPS, which is enhanced by type I IFN exposure. These data implicate conditions where AMs may have reduced or enhanced sentinel responses to bacterial infections.
Collapse
Affiliation(s)
- Pamelia N. Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Maritza M. Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Linh K. Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Animal Biotechnology & Biomedical Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Sydney Doherty
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Ankita Tufts
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Divya Dubey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alissa C. Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
4
|
Lu X, Jiang G, Gao Y, Chen Q, Sun S, Mao W, Zhang N, Zhu Z, Wang D, Zhang G, Chen M, Zhang L, Chen S. Platelet-derived extracellular vesicles aggravate septic acute kidney injury via delivering ARF6. Int J Biol Sci 2023; 19:5055-5073. [PMID: 37928258 PMCID: PMC10620832 DOI: 10.7150/ijbs.87165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Circulating plasma extracellular vesicles (EVs) mostly originate from platelets and may promote organ dysfunction in sepsis. However, the role of platelet-derived EVs in sepsis-induced acute kidney injury (AKI) remains poorly understood. The present study extracted EVs from the supernatant of human platelets treated with phosphate buffer saline (PBS) or lipopolysaccharide (LPS). Then, we subjected PBS-EVs or LPS-EVs to cecal ligation and puncture (CLP) mice in vivo or LPS-stimulated renal tubular epithelial cells (RTECs) in vitro. Our results indicated that LPS-EVs aggravate septic AKI via promoting apoptosis, inflammation and oxidative stress. Further, ADP-ribosylation factor 6 (ARF6) was identified as a differential protein between PBS-EVs and LPS-EVs by quantitative proteomics analysis. Mechanistically, ARF6 activated ERK/Smad3/p53 signaling to exacerbate sepsis-induced AKI. LPS upregulated ARF6 in RTECs was dependent on TLR4/MyD88 pathway. Both genetically and pharmacologically inhibition of ARF6 attenuated septic AKI. Moreover, platelets were activated by TLR4 and its downstream mediator IKK controlled platelet secretion during sepsis. Inhibition of platelet secretion alleviated septic AKI. Collectively, our study demonstrated that platelet-derived EVs may be a therapeutic target in septic AKI.
Collapse
Affiliation(s)
- Xun Lu
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Guiya Jiang
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Yue Gao
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Qi Chen
- Department of Interventional Radiology and Vascular Surgery, Affiliated Zhongda hospital of Southeast University, Nanjing, China
| | - Si Sun
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Nieke Zhang
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Zepeng Zhu
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Dong Wang
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Guangyuan Zhang
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Lei Zhang
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Yu JH, Moon EY, Kim J, Koo JH. Identification of Small GTPases That Phosphorylate IRF3 through TBK1 Activation Using an Active Mutant Library Screen. Biomol Ther (Seoul) 2023; 31:48-58. [PMID: 36579460 PMCID: PMC9810446 DOI: 10.4062/biomolther.2022.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022] Open
Abstract
Interferon regulatory factor 3 (IRF3) integrates both immunological and non-immunological inputs to control cell survival and death. Small GTPases are versatile functional switches that lie on the very upstream in signal transduction pathways, of which duration of activation is very transient. The large number of homologous proteins and the requirement for site-directed mutagenesis have hindered attempts to investigate the link between small GTPases and IRF3. Here, we constructed a constitutively active mutant expression library for small GTPase expression using Gibson assembly cloning. Small-scale screening identified multiple GTPases capable of promoting IRF3 phosphorylation. Intriguingly, 27 of 152 GTPases, including ARF1, RHEB, RHEBL1, and RAN, were found to increase IRF3 phosphorylation. Unbiased screening enabled us to investigate the sequence-activity relationship between the GTPases and IRF3. We found that the regulation of IRF3 by small GTPases was dependent on TBK1. Our work reveals the significant contribution of GTPases in IRF3 signaling and the potential role of IRF3 in GTPase function, providing a novel therapeutic approach against diseases with GTPase overexpression or active mutations, such as cancer.
Collapse
Affiliation(s)
- Jae-Hyun Yu
- Department of Pharmacology and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jiyoon Kim
- Department of Pharmacology and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Corresponding Authors E-mail: (Kim J), (Koo JH), Tel: +82-2-3147-8358 (Kim J), +82-2-880-7839 (Koo JH), Fax: +82-2-536-2485 (Kim J), +82-2-888-9122 (Koo JH)
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea,Corresponding Authors E-mail: (Kim J), (Koo JH), Tel: +82-2-3147-8358 (Kim J), +82-2-880-7839 (Koo JH), Fax: +82-2-536-2485 (Kim J), +82-2-888-9122 (Koo JH)
| |
Collapse
|
6
|
Lipopolysaccharide-Induced Immunological Tolerance in Monocyte-Derived Dendritic Cells. IMMUNO 2022. [DOI: 10.3390/immuno2030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS), also referred to as endotoxins, are major outer surface membrane components present on almost all Gram-negative bacteria and are major determinants of sepsis-related clinical complications including septic shock. LPS acts as a strong stimulator of innate or natural immunity in a wide variety of eukaryotic species ranging from insects to humans including specific effects on the adaptive immune system. However, following immune stimulation, lipopolysaccharide can induce tolerance which is an essential immune-homeostatic response that prevents overactivation of the inflammatory response. The tolerance induced by LPS is a state of reduced immune responsiveness due to persistent and repeated challenges, resulting in decreased expression of pro-inflammatory modulators and up-regulation of antimicrobials and other mediators that promote a reduction of inflammation. The presence of environmental-derived LPS may play a key role in decreasing autoimmune diseases and gut tolerance to the plethora of ingested antigens. The use of LPS may be an important immune adjuvant as demonstrated by the promotion of IDO1 increase when present in the fusion protein complex of CTB-INS (a chimera of the cholera toxin B subunit linked to proinsulin) that inhibits human monocyte-derived DC (moDC) activation, which may act through an IDO1-dependent pathway. The resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) which is almost always present in partially purified CTB-INS preparations. The approach to using an adjuvant with an autoantigen in immunotherapy promises effective treatment for devastating tissue-specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D).
Collapse
|
7
|
Wang Y, Çil Ç, Harnett MM, Pineda MA. Cytohesin-2/ARNO: A Novel Bridge Between Cell Migration and Immunoregulation in Synovial Fibroblasts. Front Immunol 2022; 12:809896. [PMID: 35095899 PMCID: PMC8790574 DOI: 10.3389/fimmu.2021.809896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
The guanine nucleotide exchange factor cytohesin-2 (ARNO) is a major activator of the small GTPase ARF6 that has been shown to play an important role(s) in cell adhesion, migration and cytoskeleton reorganization in various cell types and models of disease. Interestingly, dysregulated cell migration, in tandem with hyper-inflammatory responses, is one of the hallmarks associated with activated synovial fibroblasts (SFs) during chronic inflammatory joint diseases, like rheumatoid arthritis. The role of ARNO in this process has previously been unexplored but we hypothesized that the pro-inflammatory milieu of inflamed joints locally induces activation of ARNO-mediated pathways in SFs, promoting an invasive cell phenotype that ultimately leads to bone and cartilage damage. Thus, we used small interference RNA to investigate the impact of ARNO on the pathological migration and inflammatory responses of murine SFs, revealing a fully functional ARNO-ARF6 pathway which can be rapidly activated by IL-1β. Such signalling promotes cell migration and formation of focal adhesions. Unexpectedly, ARNO was also shown to modulate SF-inflammatory responses, dictating their precise cytokine and chemokine expression profile. Our results uncover a novel role for ARNO in SF-dependent inflammation, that potentially links pathogenic migration with initiation of local joint inflammation, offering new approaches for targeting the fibroblast compartment in chronic arthritis and joint disease.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Çağlar Çil
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom
| |
Collapse
|
8
|
Zhou Y, Bu Z, Qian J, Cheng Y, Qiao L, Yang S, Cheng S, Wang X, Ren L, Yang Y. Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO. BMC Vet Res 2021; 17:289. [PMID: 34461896 PMCID: PMC8404259 DOI: 10.1186/s12917-021-02993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND UTP-glucose-1-phosphoryl transferase (UGPase) catalyzes the synthesis of UDP-glucose, which is essential for generating the glycogen needed for the synthesis of bacterial lipopolysaccharide (LPS) and capsular polysaccharide, which play important roles in bacterial virulence. However, the molecular function of UGPase in Brucella is still unknown. RESULTS In this study, the ubiquitination modification of host immune-related protein in cells infected with UGPase-deleted or wild-type Brucella was analyzed using ubiquitination proteomics technology. The ubiquitination modification level and type of NF-κB Essential Modulator (NEMO or Ikbkg), a molecule necessary for NF-κB signal activation, was evaluated using Coimmunoprecipitation, Western blot, and dual-Luciferase Assay. We found 80 ubiquitin proteins were upregulated and 203 ubiquitin proteins were downregulated in cells infected with B. melitensis 16 M compared with those of B. melitensis UGPase-deleted strain (16 M-UGPase-). Moreover, the ubiquitin-modified proteins were mostly enriched in the categories of regulation of kinase/NF-κB signaling and response to a bacterium, suggesting Brucella UGPase inhibits ubiquitin modification of related proteins in the host NF-κB signaling pathway. Further analysis showed that the ubiquitination levels of NEMO K63 (K63-Ub) and Met1 (Met1-Ub) were significantly increased in the 16 M-UGPase--infected cells compared with that of the 16 M-infected cells, further confirming that the ubiquitination levels of NF-κB signaling-related proteins were regulated by the bacterial UGPase. Besides, the expression level of IκBα was decreased, but the level of p-P65 was significantly increased in the 16 M-UGPase--infected cells compared with that of the 16 M- and mock-infected cells, demonstrating that B. melitensis UGPase can significantly inhibit the degradation of IκBα and the phosphorylation of p65, and thus suppressing the NF-κB pathway. CONCLUSIONS The results of this study showed that Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO, which will provide a new scientific basis for the study of immune mechanisms induced by Brucella.
Collapse
Affiliation(s)
- Yucheng Zhou
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Zhaoyang Bu
- Military Veterinary Institute, Academy of Military Medical Sciences, 130112, Changchun, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Yuening Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Lianjiang Qiao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Sen Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Shipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Xinglong Wang
- Military Veterinary Institute, Academy of Military Medical Sciences, 130112, Changchun, China
| | - Linzhu Ren
- College of Animal Sciences, Jilin University, 130062, Changchun, China.
| | - Yanling Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China.
| |
Collapse
|
9
|
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2020; 78:1233-1261. [PMID: 33057840 PMCID: PMC7904555 DOI: 10.1007/s00018-020-03656-y] [Citation(s) in RCA: 767] [Impact Index Per Article: 153.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Toll-like receptor (TLR) 4 belongs to the TLR family of receptors inducing pro-inflammatory responses to invading pathogens. TLR4 is activated by lipopolysaccharide (LPS, endotoxin) of Gram-negative bacteria and sequentially triggers two signaling cascades: the first one involving TIRAP and MyD88 adaptor proteins is induced in the plasma membrane, whereas the second engaging adaptor proteins TRAM and TRIF begins in early endosomes after endocytosis of the receptor. The LPS-induced internalization of TLR4 and hence also the activation of the TRIF-dependent pathway is governed by a GPI-anchored protein, CD14. The endocytosis of TLR4 terminates the MyD88-dependent signaling, while the following endosome maturation and lysosomal degradation of TLR4 determine the duration and magnitude of the TRIF-dependent one. Alternatively, TLR4 may return to the plasma membrane, which process is still poorly understood. Therefore, the course of the LPS-induced pro-inflammatory responses depends strictly on the rates of TLR4 endocytosis and trafficking through the endo-lysosomal compartment. Notably, prolonged activation of TLR4 is linked with several hereditary human diseases, neurodegeneration and also with autoimmune diseases and cancer. Recent studies have provided ample data on the role of diverse proteins regulating the functions of early, late, and recycling endosomes in the TLR4-induced inflammation caused by LPS or phagocytosis of E. coli. In this review, we focus on the mechanisms of the internalization and intracellular trafficking of TLR4 and CD14, and also of LPS, in immune cells and discuss how dysregulation of the endo-lysosomal compartment contributes to the development of diverse human diseases.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Marta Matyjek
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
10
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
11
|
Assessment of Arf6 Deletion in PLB-985 Differentiated in Neutrophil-Like Cells and in Mouse Neutrophils: Impact on Adhesion and Migration. Mediators Inflamm 2020; 2020:2713074. [PMID: 32322163 PMCID: PMC7166286 DOI: 10.1155/2020/2713074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Chemoattractant sensing, adhesiveness, and migration are critical events underlying the recruitment of neutrophils (PMNs) to sites of inflammation or infection. Defects in leukocyte adhesion or migration result in immunodeficiency disorders characterized by recurrent infections. In this study, we evaluated the role of Arf6 on PMN adhesion in vitro and on migration to inflammatory sites using PMN-Arf6 conditional knockout (cKO) mice. In PMN-like PLB-985 silenced for Arf6 fMLP-mediated adhesion to the β2 integrin ligands, ICAM-1 and fibrinogen or the β1/β2 integrin ligand fibronectin was significantly reduced. Furthermore, overexpression of wild-type Arf6 promoted basal and fMLP-induced adhesion to immobilized integrin ligands, while overexpression of the dominant-negative Arf6 has the opposite effects. Using the Elane-Cre deleting mouse strains, we report that the level of Arf6 deletion in inflammatory PMNs isolated from the dorsal air pouches was stronger when compared to naïve cells isolated from the bone marrow. In PMN-Arf6 cKO mice, the recruitment of PMNs into the dorsal air pouch injected with LPS or the chemoattractant fMLP was significantly diminished. Impaired cell migration correlated with reduced cell surface expression of CD11a and CD11b in Arf6 cKO PMNs. Our results highlight that Arf6 regulates the activity and possibly the recycling of PMN integrins, and this compromises PMN migration to inflammatory sites.
Collapse
|
12
|
Sin WX, Yeong JPS, Lim TJF, Su IH, Connolly JE, Chin KC. IRF-7 Mediates Type I IFN Responses in Endotoxin-Challenged Mice. Front Immunol 2020; 11:640. [PMID: 32373120 PMCID: PMC7176903 DOI: 10.3389/fimmu.2020.00640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/20/2020] [Indexed: 01/23/2023] Open
Abstract
IRF-7 mediates robust production of type I IFN via MyD88 of the TLR9 pathway in plasmacytoid dendritic cells (pDCs). Previous in vitro studies using bone marrow-derived dendritic cells lacking either Irf7 or Irf3 have demonstrated that only IRF-3 is required for IFN-β production in the TLR4 pathway. Here, we show that IRF-7 is essential for both type I IFN induction and IL-1β responses via TLR4 in mice. Mice lacking Irf7 were defective in production of both IFN-β and IL-1β, an IFN-β-induced pro-inflammatory cytokine, after LPS challenge. IFN-β production in response to LPS was impaired in IRF-7-deficient macrophages, but not dendritic cells. Unlike pDCs, IRF-7 is activated by the TRIF-, but not MyD88-, dependent pathway via TBK-1 in macrophages after LPS stimulation. Like pDCs, resting macrophages constitutively expressed IRF-7 protein. This basal IRF-7 protein was completely abolished in either Ifnar1 -/- or Stat1 -/- macrophages, which corresponded with the loss of LPS-stimulated IFN-β induction in these macrophages. These findings demonstrate that macrophage IRF-7 is critical for LPS-induced type I IFN responses, which in turn facilitate IL-1β production in mice.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Joe Poh-Sheng Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Thomas Jun Feng Lim
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - John E Connolly
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Keh-Chuang Chin
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Physiology, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
The Small GTPase Arf6: An Overview of Its Mechanisms of Action and of Its Role in Host⁻Pathogen Interactions and Innate Immunity. Int J Mol Sci 2019; 20:ijms20092209. [PMID: 31060328 PMCID: PMC6539230 DOI: 10.3390/ijms20092209] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
The small GTase Arf6 has several important functions in intracellular vesicular trafficking and regulates the recycling of different types of cargo internalized via clathrin-dependent or -independent endocytosis. It activates the lipid modifying enzymes PIP 5-kinase and phospholipase D, promotes actin polymerization, and affects several functionally distinct processes in the cell. Arf6 is used for the phagocytosis of pathogens and can be directly or indirectly targeted by various pathogens to block phagocytosis or induce the uptake of intracellular pathogens. Arf6 is also used in the signaling of Toll-like receptors and in the activation of NADPH oxidases. In this review, we first give an overview of the different roles and mechanisms of action of Arf6 and then focus on its role in innate immunity and host–pathogen interactions.
Collapse
|
14
|
Wang YC, Westcott NP, Griffin ME, Hang HC. Peptidoglycan Metabolite Photoaffinity Reporters Reveal Direct Binding to Intracellular Pattern Recognition Receptors and Arf GTPases. ACS Chem Biol 2019; 14:405-414. [PMID: 30735346 DOI: 10.1021/acschembio.8b01038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The peptidoglycan fragments γ-d-glutamyl- meso-diaminopimelic acid (iE-DAP) and muramyl-dipeptide (MDP) are microbial-specific metabolites that activate intracellular pattern recognition receptors and stimulate immune signaling pathways. While extensive structure-activity studies have demonstrated that these bacterial cell wall metabolites trigger NOD1- and NOD2-dependent signaling, their direct binding to these innate immune receptors or other proteins in mammalian cells has not been established. To characterize these fundamental microbial metabolite-host interactions, we synthesized a series of peptidoglycan metabolite photoaffinity reporters and evaluated their cross-linking to NOD1 and NOD2 in mammalian cells. We show that active iE-DAP and MDP photoaffinity reporters selectively cross-linked NOD1 and NOD2, respectively, and not their inactive mutants. We also discovered MDP reporter cross-linking to Arf GTPases, which interacted most prominently with GTP-bound Arf6 and coimmunoprecipitated with NOD2 upon MDP stimulation. Notably, MDP binding to NOD2 and Arf6 was abrogated with loss-of-function NOD2 mutants associated with Crohn's disease. Our studies demonstrate peptidoglycan metabolite photoaffinity reporters can capture their cognate immune receptors in cells and reveal unpredicted ligand-induced interactions with other cellular cofactors. These photoaffinity reporters should afford useful tools to discover and characterize other peptidoglycan metabolite-interacting proteins.
Collapse
Affiliation(s)
- Yen-Chih Wang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Nathan P. Westcott
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Matthew E. Griffin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
15
|
Perkins DJ, Richard K, Hansen AM, Lai W, Nallar S, Koller B, Vogel SN. Autocrine-paracrine prostaglandin E 2 signaling restricts TLR4 internalization and TRIF signaling. Nat Immunol 2018; 19:1309-1318. [PMID: 30397349 PMCID: PMC6240378 DOI: 10.1038/s41590-018-0243-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
The unique cell biology of Toll-like receptor 4 (TLR4) allows it to initiate two signal transduction cascades: a Mal (TIRAP)–MyD88-dependent signal from the cell surface that regulates proinflammatory cytokines and a TRAM–TRIF-dependent signal from endosomes that drives type I interferon production. Negative feedback circuits to limit TLR4 signals from both locations are necessary to balance the inflammatory response. We describe a negative feedback loop driven by autocrine-paracrine prostaglandin E2 (PGE2), and the PGE2 receptor, EP4, which restricted TRIF-dependent signals and IFN-β induction through regulation of TLR4 trafficking. Inhibition of PGE2 production or EP4 antagonism increased the rate of TLR4 endosomal translocation, and amplified TRIF-dependent IRF3 and caspase 8 activation. This PGE2-driven mechanism restricted TLR4-TRIF signaling in vitro upon infection of macrophages by Gram-negative pathogens Escherichia coli and Citrobacter rodentium and protected mice against Salmonella enteritidis serovar Typhimurium (ST)-induced mortality. Thus, PGE2 restricts TLR4-TRIF signaling specifically in response to lipopolysaccharide.
Collapse
Affiliation(s)
- Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA.
| | - Katharina Richard
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Shreeram Nallar
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Beverly Koller
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Li R, Shen Q, Wu N, He M, Liu N, Huang J, Lu B, Yao Q, Yang Y, Hu R. MiR-145 improves macrophage-mediated inflammation through targeting Arf6. Endocrine 2018; 60:73-82. [PMID: 29388044 DOI: 10.1007/s12020-018-1521-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To explore the relationship between miR-145 and ADP ribosylation factor 6 (Arf6) in regulating macrophage-mediated inflammation. METHODS THP-1 cells were induced by 160 nM of phorbol 12-myristate 13-acetate (PMA) for 48 h to differentiate to macrophages and then were treated with LPS (100 ng/ml) for 8 h to simulate chronic metabolic inflammation in vitro. Dual-luciferase reporter assay was performed. MiR-145 siRNA and LV-ARF6-RNAi were used to up or down regulate miR-145 and Arf6 expression in THP-1 cells, respectively. Omental adipose tissue from patients in surgical ward were collected to detect the expression of miR-145, Arf6 and production of proinflammatory cytokines. Patients were divided into three groups according to their body mass index and history of diabetes. RESULTS Dual-luciferase reporter assays showed the direct down-regulation of Arf6 by miR-145. Forty-eight-hour-transfection of miR-145 inhibitor resulted in significant increase of Arf6, IL-1beta, TNF-alpha and IL-6 as well as phosphorylation of p65 in NF-kappaB pathway in THP-1 cells, which, inversely, were reversed by overexpressing miR-145. In addition, down-regulation of Arf6 in macrophages reduced expression and secretion of cytokines. Expression of miR-145 was found to be attenuated in the omental adipose tissue of obese patients and diabetics with greater Arf6 expression, confirming the role of miR-145 in regulating macrophage-mediated inflammation targeting Arf6. CONCLUSIONS By means of reducing the expression of Arf6 and subsequent signal transduction via NF-kappaB, miR-145 plays a role in inhibiting the secretion of inflammatory factors and then improving the inflammatory status. MiR-145 might be one of the candidates for anti-inflammatory treatment for metabolic diseases.
Collapse
Affiliation(s)
- Rumei Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nan Wu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Min He
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Naijia Liu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Jinya Huang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Bin Lu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China.
| | - Renming Hu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
17
|
Murase M, Kawasaki T, Hakozaki R, Sueyoshi T, Putri DDP, Kitai Y, Sato S, Ikawa M, Kawai T. Intravesicular Acidification Regulates Lipopolysaccharide Inflammation and Tolerance through TLR4 Trafficking. THE JOURNAL OF IMMUNOLOGY 2018. [DOI: 10.4049/jimmunol.1701390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Du SH, Qiao DF, Chen CX, Chen S, Liu C, Lin Z, Wang H, Xie WB. Toll-Like Receptor 4 Mediates Methamphetamine-Induced Neuroinflammation through Caspase-11 Signaling Pathway in Astrocytes. Front Mol Neurosci 2017; 10:409. [PMID: 29311802 PMCID: PMC5733023 DOI: 10.3389/fnmol.2017.00409] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023] Open
Abstract
Methamphetamine (METH) is an amphetamine-typed stimulant drug that is increasingly being abused worldwide. Previous studies have shown that METH toxicity is systemic, especially targeting dopaminergic neurons in the central nervous system (CNS). However, the role of neuroinflammation in METH neurotoxicity remains unclear. We hypothesized that Toll-like receptor 4 (TLR4) and Caspase-11 are involved in METH-induced astrocyte-related neuroinflammation. We tested our hypothesis by examining the changes of TLR4 and Caspase-11 protein expression in primary cultured C57BL/6 mouse astrocytes and in the midbrain and striatum of mice exposed to METH with western blot and double immunofluorescence labeling. We also determined the effects of blocking Caspase-11 expression with wedelolactone (a specific inhibitor of Caspase-11) or siRNA on METH-induced neuroinflammation in astrocytes. Furthermore, we determined the effects of blocking TLR4 expression with TAK-242 (a specific inhibitor of TLR4) or siRNA on METH-induced neuroinflammation in astrocytes. METH exposure increased Caspase-11 and TLR4 expression both in vitro and in vivo, with the effects in vitro being dose-dependent. Inhibition of Caspase-11 expression with either wedelolactone or siRNAs reduced the expression of inflammasome NLRP3 and pro-inflammatory cytokines. In addition, blocking TLR4 expression inhibited METH-induced activation of NF-κB and Caspase-11 in vitro and in vivo, suggesting that TLR4-Caspase-11 pathway is involved in METH-induced neuroinflammation. These results indicate that Caspase-11 and TLR4 play an important role in METH-induced neuroinflammation and may be potential gene targets for therapeutics in METH-caused neurotoxicity.
Collapse
Affiliation(s)
- Si-Hao Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Dong-Fang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chuan-Xiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Si Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Zhoumeng Lin
- Department of Anatomy and Physiology, Institute of Computational Comparative Medicine (ICCM), College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Oosenbrug T, van de Graaff MJ, Ressing ME, van Kasteren SI. Chemical Tools for Studying TLR Signaling Dynamics. Cell Chem Biol 2017. [PMID: 28648377 DOI: 10.1016/j.chembiol.2017.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The detection of infectious pathogens is essential for the induction of antimicrobial immune responses. The innate immune system detects a wide array of microbes using a limited set of pattern-recognition receptors (PRRs). One family of PRRs with a central role in innate immunity are the Toll-like receptors (TLRs). Upon ligation, these receptors initiate signaling pathways culminating in the release of pro-inflammatory cytokines and/or type I interferons (IFN-I). In recent years, it has become evident that the specific subcellular location and timing of TLR activation affect signaling outcome. The subtlety of this signaling has led to a growing demand for chemical tools that provide the ability to conditionally control TLR activation. In this review, we survey current models for TLR signaling in time and space, discuss how chemical tools have contributed to our understanding of TLR ligands, and describe how they can aid further elucidation of the dynamic aspects of TLR signaling.
Collapse
Affiliation(s)
- Timo Oosenbrug
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Zuid-Holland, the Netherlands
| | - Michel J van de Graaff
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, the Netherlands
| | - Maaike E Ressing
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Zuid-Holland, the Netherlands.
| | - Sander I van Kasteren
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, the Netherlands.
| |
Collapse
|
20
|
Tan Y, Kagan JC. Microbe-inducible trafficking pathways that control Toll-like receptor signaling. Traffic 2017; 18:6-17. [PMID: 27731905 PMCID: PMC5182131 DOI: 10.1111/tra.12454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
The receptors of the mammalian innate immune system are designed for rapid microbial detection, and are located in organelles that are conducive to serve these needs. However, emerging evidence indicates that the sites of microbial detection are not the sites of innate immune signal transduction. Rather, microbial detection triggers the movement of receptors to regions of the cell where factors called sorting adaptors detect active receptors and promote downstream inflammatory responses. These findings highlight the critical role that membrane trafficking pathways play in the initiation of innate immunity to infection. In this review, we describe pathways that promote the microbe-inducible endocytosis of Toll-like receptors (TLRs), and the microbe-inducible movement of TLRs between intracellular compartments. We highlight a new class of proteins called Transporters Associated with the eXecution of Inflammation (TAXI), which have the unique ability to transport TLRs and their microbial ligands to signaling-competent regions of the cell, and we discuss the means by which the subcellular sites of signal transduction are defined.
Collapse
Affiliation(s)
- Yunhao Tan
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Jonathan C. Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
21
|
Tatematsu M, Yoshida R, Morioka Y, Ishii N, Funami K, Watanabe A, Saeki K, Seya T, Matsumoto M. Raftlin Controls Lipopolysaccharide-Induced TLR4 Internalization and TICAM-1 Signaling in a Cell Type-Specific Manner. THE JOURNAL OF IMMUNOLOGY 2016; 196:3865-76. [PMID: 27022195 DOI: 10.4049/jimmunol.1501734] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022]
Abstract
The clathrin-dependent endocytic pathway is crucial for endosomal TLR3- and TLR4-mediated Toll-IL-1R domain-containing adaptor molecule-1 (TICAM-1) signaling. TLR4 uses a different signaling platform, plasma membrane and endosomes, for activation of TIRAP-MyD88 and TICAM-2-TICAM-1, respectively. LPS-induced endocytosis of TLR4 is mandatory for TICAM-1-mediated signaling including IFN-β production. Several molecules/mechanisms such as CD14, clathrin, and phosphatidylinositol metabolism have been reported to act as inducers of TLR4 translocation. However, the molecular mechanism of spatiotemporal regulation of TLR4 signaling remains unresolved. We have previously shown that Raftlin is essential for clathrin-dependent endocytosis of TLR3 ligand in human epithelial cells and myeloid dendritic cells (DCs). In this article, we demonstrate that Raftlin also mediated LPS-induced TLR4 internalization and TICAM-1 signaling in human monocyte-derived DCs and macrophages (Mo-Mϕs). When Raftlin was knocked down, LPS-induced TLR4-mediated IFN-β promoter activation, but not NF-κB activation, was decreased in HEK293 cells overexpressing TLR4/MD-2 or TLR4/MD-2/CD14. LPS-induced IFN-β production by monocyte-derived DCs and Mo-Mϕs was significantly decreased by knockdown of Raftlin. Upon LPS stimulation, Raftlin moved from the cytoplasm to the plasma membrane in Mo-Mϕs, where it colocalized with TLR4. Raftlin associated with clathrin-associated adaptor protein-2 in resting cells and transiently bound to TLR4 and clathrin at the cell surface in response to LPS. Thus, Raftlin appears to modulate cargo selection as an accessary protein of clathrin-associated adaptor protein-2 in clathrin-mediated endocytosis of TLR3/4 ligands.
Collapse
Affiliation(s)
- Megumi Tatematsu
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Ryuji Yoshida
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Yuka Morioka
- Laboratory of Animal Experiment, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Noriko Ishii
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Kenji Funami
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Ayako Watanabe
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan;
| |
Collapse
|
22
|
Regulators and Effectors of Arf GTPases in Neutrophils. J Immunol Res 2015; 2015:235170. [PMID: 26609537 PMCID: PMC4644846 DOI: 10.1155/2015/235170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology.
Collapse
|
23
|
Funami K, Matsumoto M, Enokizono Y, Ishii N, Tatematsu M, Oshiumi H, Inagaki F, Seya T. Identification of a Regulatory Acidic Motif as the Determinant of Membrane Localization of TICAM-2. THE JOURNAL OF IMMUNOLOGY 2015; 195:4456-4465. [DOI: 10.4049/jimmunol.1402628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
TLR4 triggers LPS signaling through the adaptors Toll/IL-1R domain–containing adaptor molecule (TICAM)-2 (also called TRAM) and TICAM-1 (also called TRIF), together with Toll/IL-1R domain–containing adaptor protein (TIRAP) and MyD88. The MyD88 pathway mediates early phase responses to LPS on the plasma membrane, whereas the TICAM pathway mediates late-phase responses, which induce the production of type I IFN and activation of inflammasomes. TICAM-2 bridges TLR4 and TICAM-1 for LPS signaling in the endosome. Recently, we identified an acidic motif, E87/D88/D89 in TICAM-2, that provides the interaction surfaces between TICAM-2 and TICAM-1. In the present study, we found additional D91/E92 in TICAM-2, conserved across species, that is crucial for TICAM-1 activation. The D91A/E92A mutant protein was distributed largely to the cytosol, despite myristoylation, suggesting its importance for assistance of membrane localization of TICAM-2. An ectopically expressed D91A/E92A mutant per se failed to activate TICAM-1, unlike its wild-type counterpart that forms self-aggregation, but it still retained the ability to pass LPS-mediated IFN regulatory factor (IRF)3 activation. In a TICAM-2 knockout human cell line expressing TLR4/MD-2 with or without CD14, overexpression of the D91A/E92A mutant did not activate IRF3, but upon LPS stimulation, it induced sufficient TLR4-mediated IRF3 activation with high coefficient colocalization. Hence, the D91/E92 motif guides TICAM-2 membrane localization and self-activation for signaling. Our results suggest the presence of two distinct steps underlying endosomal LPS signaling on TICAM-2 for TICAM-1 activation: TICAM-2 assembling in TLR4 and/or TICAM-2 self-activation. D91A/E92A of TICAM-2 selectively associates the TLR4-dependent TICAM-2 assembling, but not cytosolic TICAM-2 self-aggregation, to activate TICAM-1.
Collapse
Affiliation(s)
- Kenji Funami
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Misako Matsumoto
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Yoshiaki Enokizono
- †Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Noriko Ishii
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Megumi Tatematsu
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Hiroyuki Oshiumi
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Fuyuhiko Inagaki
- †Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Tsukasa Seya
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| |
Collapse
|
24
|
CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance. Proc Natl Acad Sci U S A 2015; 112:8391-6. [PMID: 26106158 DOI: 10.1073/pnas.1424980112] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dimerization of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) heterodimers is critical for both MyD88- and TIR-domain-containing adapter-inducing IFN-β (TRIF)-mediated signaling pathways. Recently, Zanoni et al. [(2011) Cell 147(4):868-880] reported that cluster of differentiation 14 (CD14) is required for LPS-/Escherichia coli- induced TLR4 internalization into endosomes and activation of TRIF-mediated signaling in macrophages. We confirmed their findings with LPS but report here that CD14 is not required for receptor endocytosis and downstream signaling mediated by TLR4/MD2 agonistic antibody (UT12) and synthetic small-molecule TLR4 ligands (1Z105) in murine macrophages. CD14 deficiency completely ablated the LPS-induced TBK1/IRF3 signaling axis that mediates production of IFN-β in murine macrophages without affecting MyD88-mediated signaling, including NF-κB, MAPK activation, and TNF-α and IL-6 production. However, neither the MyD88- nor TRIF-signaling pathways and their associated cytokine profiles were altered in the absence of CD14 in UT12- or 1Z105-treated murine macrophages. Eritoran (E5564), a lipid A antagonist that binds the MD2 "pocket," completely blocked LPS- and 1Z105-driven, but not UT12-induced, TLR4 dimerization and endocytosis. Furthermore, TLR4 endocytosis is induced in macrophages tolerized by exposure to either LPS or UT12 and is independent of CD14. These data indicate that TLR4 receptor endocytosis and the TRIF-signaling pathway are dissociable and that TLR4 internalization in macrophages can be induced by UT12, 1Z105, and during endotoxin tolerance in the absence of CD14.
Collapse
|
25
|
Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 2015; 33:257-90. [PMID: 25581309 DOI: 10.1146/annurev-immunol-032414-112240] [Citation(s) in RCA: 1068] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.
Collapse
Affiliation(s)
- Sky W Brubaker
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; , , ,
| | | | | | | |
Collapse
|
26
|
Felix C, Kaplan Türköz B, Ranaldi S, Koelblen T, Terradot L, O'Callaghan D, Vergunst AC. The Brucella TIR domain containing proteins BtpA and BtpB have a structural WxxxE motif important for protection against microtubule depolymerisation. Cell Commun Signal 2014; 12:53. [PMID: 25304327 PMCID: PMC4203976 DOI: 10.1186/s12964-014-0053-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/27/2014] [Indexed: 01/12/2023] Open
Abstract
Background The TIR domain-containing proteins BtpA/Btp1/TcpB and BtpB are translocated into host cells by the facultative intracellular bacterial pathogen Brucella. Here, they interfere with Toll like receptor signalling to temper the host inflammatory response. BtpA has also been found to modulate microtubule dynamics. In both proteins we identified a WxxxE motif, previously shown to be an essential structural component in a family of bacterial type III secretion system effectors that modulate host actin dynamics by functioning as guanine nucleotide exchange factors of host GTPases. We analysed a role for the WxxxE motif in association of BtpA and BtpB with the cytoskeleton. Results Unlike BtpA, ectopically expressed BtpB did not show a tubular localisation, but was found ubiquitously in the cytoplasm and the nucleus, and often appeared in discrete punctae in HeLa cells. BtpB was able to protect microtubules from drug-induced destabilisation similar to BtpA. The WxxxE motif was important for the ability of BtpA and BtpB to protect microtubules against destabilising drugs. Surprisingly, ectopic expression of BtpA, although not BtpB, in HeLa cells induced the formation of filopodia. This process was invariably dependent of the WxxxE motif. Our recent resolution of the crystal structure of the BtpA TIR domain reveals that the motif positions a glycine residue that has previously been shown to be essential for interaction of BtpA with microtubules. Conclusions Our results suggest a structural role for the WxxxE motif in the association of BtpA and BtpB with microtubules, as with the WxxxE GEF family proteins where the motif positions an adjacent catalytic loop important for interaction with specific Rho GTPases. In addition, the ability of ectopically expressed BtpA to induce filopodia in a WxxxE-dependent manner suggests a novel property for BtpA. A conserved WxxxE motif is found in most bacterial and several eukaryotic TIR domain proteins. Despite the similarity between ectopically expressed BtpA and WxxxE GEFs to modulate host actin dynamics, our results suggest that BtpA is not part of this WxxxE GEF family. The WxxxE motif may therefore be a more common structural motif than thus far described. BtpA may provide clues to cross-talk between the TLR and GTPase signalling pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0053-y) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Davis CT, Zhu W, Gibson CC, Bowman-Kirigin JA, Sorensen L, Ling J, Sun H, Navankasattusas S, Li DY. ARF6 inhibition stabilizes the vasculature and enhances survival during endotoxic shock. THE JOURNAL OF IMMUNOLOGY 2014; 192:6045-52. [PMID: 24835390 DOI: 10.4049/jimmunol.1400309] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vascular endothelium responds to infection by destabilizing endothelial cell-cell junctions to allow fluid and cells to pass into peripheral tissues, facilitating clearance of infection and tissue repair. During sepsis, endotoxin and other proinflammatory molecules induce excessive vascular leak, which can cause organ dysfunction, shock, and death. Current therapies for sepsis are limited to antibiotics and supportive care, which are often insufficient to reduce morbidity and prevent mortality. Previous attempts at blocking inflammatory cytokine responses in humans proved ineffective at reducing the pathologies associated with sepsis, highlighting the need for a new therapeutic strategy. The small GTPase ARF6 is activated by a MyD88-ARNO interaction to induce vascular leak through disruption of endothelial adherens junctions. In this study, we show that the MyD88-ARNO-ARF6-signaling axis is responsible for LPS-induced endothelial permeability and is a destabilizing convergence point used by multiple inflammatory cues. We also show that blocking ARF6 with a peptide construct of its N terminus is sufficient to reduce vascular leak and enhance survival during endotoxic shock, without inhibiting the host cytokine response. Our data highlight the therapeutic potential of blocking ARF6 and reducing vascular leak for the treatment of inflammatory conditions, such as endotoxemia.
Collapse
Affiliation(s)
- Chadwick T Davis
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112; Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112; Department of Medicine, University of Utah, Salt Lake City, UT 84112
| | - Weiquan Zhu
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112; Department of Medicine, University of Utah, Salt Lake City, UT 84112
| | - Christopher C Gibson
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112; Department of Medicine, University of Utah, Salt Lake City, UT 84112; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| | - Jay A Bowman-Kirigin
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112; Department of Medicine, University of Utah, Salt Lake City, UT 84112
| | - Lise Sorensen
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112; Department of Medicine, University of Utah, Salt Lake City, UT 84112
| | - Jing Ling
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112; Department of Medicine, University of Utah, Salt Lake City, UT 84112
| | - Huiming Sun
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112; Department of Medicine, University of Utah, Salt Lake City, UT 84112; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Clinical School of Nanjing University, Nanjing 210002, China
| | - Sutip Navankasattusas
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112; Department of Medicine, University of Utah, Salt Lake City, UT 84112
| | - Dean Y Li
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112; Department of Medicine, University of Utah, Salt Lake City, UT 84112; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112; Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, UT 84112; The Key Laboratory for Human Disease Gene Study of Sichuan Province, Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China; and Cardiology Section, VA Salt Lake City Health Care System, Salt Lake City, UT 84112
| |
Collapse
|