1
|
Centonze E, Kellenberger S. Voltage-clamp fluorometry for advancing mechanistic understanding of ion channel mechanisms with a focus on acid-sensing ion channels. Biochem Soc Trans 2024; 52:2167-2177. [PMID: 39400205 PMCID: PMC11555705 DOI: 10.1042/bst20240165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Voltage-clamp fluorometry (VCF) has revolutionized the study of ion channels by combining electrophysiology with fluorescence spectroscopy. VCF allows ion channel researchers to link dynamic structural changes, measured in real time, to function. Acid-sensing ion channels (ASICs) are Na+-permeable non-voltage-gated ion channels of the central and peripheral nervous system. They function as pH sensors, triggering neuronal excitation when pH decreases. Animal studies have shown the importance of ASICs for pain and fear sensation, learning, and neurodegeneration following ischaemic stroke. This review explores the technical bases and various developments of VCF, including fluorescence resonance energy transfer and the use of unnatural fluorescent amino acids. We provide an overview of VCF applications with a focus on ASICs, detailing how VCF has unveiled proton-induced conformational changes in key regions such as the acid pocket, wrist, and pore, crucial for understanding transitions between closed, open, and desensitized states.
Collapse
Affiliation(s)
- Eleonora Centonze
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
2
|
Purohit R, Couch T, Rook ML, MacLean DM. Proline substitutions in the ASIC1 β11-12 linker slow desensitization. Biophys J 2024; 123:3507-3518. [PMID: 39182166 PMCID: PMC11494525 DOI: 10.1016/j.bpj.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Desensitization is a prominent feature of nearly all ligand-gated ion channels. Acid-sensing ion channels (ASICs) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th β sheets in the extracellular domain. In the resting and active states this β11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. It is unclear if a single linker adopting the downward state is sufficient to desensitize the entire channel, or if all three are needed or some more complex scheme. To accommodate this downward state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tool. Proline substitutions in the chicken ASIC1 β11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100- to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady-state desensitization curves to more acidic pH values while activation curves and ion selectivity were largely unaffected (except for a left-shifted activation pH50 of L414P). To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two, or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P substitutions only slightly attenuated desensitization, suggesting that conformational changes in the single remaining faster wild-type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where ASIC desensitization requires only a single subunit.
Collapse
Affiliation(s)
- Rutambhara Purohit
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Tyler Couch
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Matthew L Rook
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
3
|
Ortega-Ramírez AM, Albani S, Bachmann M, Schmidt A, Pinoé-Schmidt M, Assmann M, Augustinowski K, Rossetti G, Gründer S. A conserved peptide-binding pocket in HyNaC/ASIC ion channels. Proc Natl Acad Sci U S A 2024; 121:e2409097121. [PMID: 39365813 PMCID: PMC11474038 DOI: 10.1073/pnas.2409097121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
The only known peptide-gated ion channels-FaNaCs/WaNaCs and HyNaCs-belong to different clades of the DEG/ENaC family. FaNaCs are activated by the short neuropeptide FMRFamide, and HyNaCs by Hydra RFamides, which are not evolutionarily related to FMRFamide. The FMRFamide-binding site in FaNaCs was recently identified in a cleft atop the large extracellular domain. However, this cleft is not conserved in HyNaCs. Here, we combined molecular modeling and site-directed mutagenesis and identified a putative binding pocket for Hydra-RFamides in the extracellular domain of the heterotrimeric HyNaC2/3/5. This pocket localizes to only one of the three subunit interfaces, indicating that this trimeric ion channel binds a single peptide ligand. We engineered an unnatural amino acid at the putative binding pocket entrance, which allowed covalent tethering of Hydra RFamide to the channel, thereby trapping the channel in an open conformation. The identified pocket localizes to the same region as the acidic pocket of acid-sensing ion channels (ASICs), which binds peptide ligands. The pocket in HyNaCs is less acidic, and both electrostatic and hydrophobic interactions contribute to peptide binding. Collectively, our results reveal a conserved ligand-binding pocket in HyNaCs and ASICs and indicate independent evolution of peptide-binding cavities in the two subgroups of peptide-gated ion channels.
Collapse
Affiliation(s)
- Audrey Magdalena Ortega-Ramírez
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Simone Albani
- Computational Biomedicine—Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425Jülich, Germany
- Jülich Supercomputing Center, Forschungszentrum Jülich, 52425Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Michèle Bachmann
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Axel Schmidt
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Manuela Pinoé-Schmidt
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Marc Assmann
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Katrin Augustinowski
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine—Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425Jülich, Germany
- Jülich Supercomputing Center, Forschungszentrum Jülich, 52425Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Stefan Gründer
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| |
Collapse
|
4
|
Zhang Y, Dong D, Zhang J, Cheng K, Zhen F, Li M, Chen B. Pathology and physiology of acid-sensitive ion channels in the bladder. Heliyon 2024; 10:e38031. [PMID: 39347393 PMCID: PMC11437851 DOI: 10.1016/j.heliyon.2024.e38031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Acid-sensitive ion channels (ASICs) are sodium-permeable channels activated by extracellular acidification. They can be activated and trigger the inward flow of Na+ when the extracellular environment is acidic, leading to membrane depolarization and thus inducing action potentials in neurons. There are four ASIC genes in mammals (ASIC1-4). ASIC is widely expressed in humans. It is closely associated with pain, neurological disorders, multiple sclerosis, epilepsy, migraines, and many other disorders. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a specific syndrome characterized by bladder pain. Recent studies have shown that ASICs are closely associated with the development of BPS/IC. A study revealed that ASIC levels are significantly elevated in a BPS/IC model. Additionally, researchers have reported differential changes in ASICs in the bladders of patients with neurogenic lower urinary tract dysfunction (NLUTD) caused by spinal cord injury (SCI). In this review, we summarize the structure and physiological functions of ASICs and focus on the mechanisms by which ASICs mediate bladder disease.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Di Dong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jialong Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kang Cheng
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fang Zhen
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Translational Medicine, Jiangsu University, China
| |
Collapse
|
5
|
Molton O, Bignucolo O, Kellenberger S. Identification of the modulatory Ca 2+-binding sites of acid-sensing ion channel 1a. Open Biol 2024; 14:240028. [PMID: 38896086 PMCID: PMC11335074 DOI: 10.1098/rsob.240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 06/21/2024] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal Na+-permeable ion channels activated by extracellular acidification. ASICs are involved in learning, fear sensing, pain sensation and neurodegeneration. Increasing the extracellular Ca2+ concentration decreases the H+ sensitivity of ASIC1a, suggesting a competition for binding sites between H+ and Ca2+ ions. Here, we predicted candidate residues for Ca2+ binding on ASIC1a, based on available structural information and our molecular dynamics simulations. With functional measurements, we identified several residues in cavities previously associated with pH-dependent gating, whose mutation reduced the modulation by extracellular Ca2+ of the ASIC1a pH dependence of activation and desensitization. This occurred likely owing to a disruption of Ca2+ binding. Our results link one of the two predicted Ca2+-binding sites in each ASIC1a acidic pocket to the modulation of channel activation. Mg2+ regulates ASICs in a similar way as does Ca2+. We show that Mg2+ shares some of the binding sites with Ca2+. Finally, we provide evidence that some of the ASIC1a Ca2+-binding sites are functionally conserved in the splice variant ASIC1b. Our identification of divalent cation-binding sites in ASIC1a shows how Ca2+ affects ASIC1a gating, elucidating a regulatory mechanism present in many ion channels.
Collapse
Affiliation(s)
- Ophélie Molton
- Department of Biomedical Sciences, University of
Lausanne, 1011 Lausanne,
Switzerland
| | | | - Stephan Kellenberger
- Department of Biomedical Sciences, University of
Lausanne, 1011 Lausanne,
Switzerland
| |
Collapse
|
6
|
Purohit R, Couch T, MacLean DM. Proline substitutions in the ASIC1 β11-12 linker slow desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593312. [PMID: 38798386 PMCID: PMC11118455 DOI: 10.1101/2024.05.09.593312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Desensitization is a prominent feature of nearly all ligand gated ion channels. Acid-sensing ion channels (ASIC) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th beta sheets in the extracellular domain. In the resting and active states this β11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. To accommodate this "downward" state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tools. Proline substitutions in the chicken ASIC1 β11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100 to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady state desensitization curves to more acidic pHs while activation curves and ion selectivity of these slow-desensitizing currents were largely unaffected. To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P mutations only slightly attenuated desensitization, suggesting that conformational changes in the remaining faster wild type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where a single subunit is sufficient to desensitize the entire channel.
Collapse
Affiliation(s)
- Rutambhara Purohit
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - Tyler Couch
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| |
Collapse
|
7
|
Rook ML, McCullock TW, Couch T, Lueck JD, MacLean DM. Photomodulation of the ASIC1a acidic pocket destabilizes the open state. Protein Sci 2023; 32:e4800. [PMID: 37805833 PMCID: PMC10599103 DOI: 10.1002/pro.4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Acid-sensing ion channels (ASICs) are important players in detecting extracellular acidification throughout the brain and body. ASICs have large extracellular domains containing two regions replete with acidic residues: the acidic pocket, and the palm domain. In the resting state, the acidic pocket is in an expanded conformation but collapses in low pH conditions as the acidic side chains are neutralized. Thus, extracellular acidification has been hypothesized to collapse the acidic pocket that, in turn, ultimately drives channel activation. However, several observations run counter to this idea. To explore how collapse or mobility of the acidic pocket is linked to channel gating, we employed two distinct tools. First, we incorporated the photocrosslinkable noncanonical amino acids (ncAAs) 4-azido-L-phenylalanine (AzF) or 4-benzoyl-L-phenylalanine (BzF) into several positions in the acidic pocket. At both E315 and Y318, AzF incorporation followed by UV irradiation led to right shifts in pH response curves and accelerations of desensitization and deactivation, consistent with restrictions of acidic pocket mobility destabilizing the open state. Second, we reasoned that because Cl- ions are found in the open and desensitized structures but absent in the resting state structures, Cl- substitution would provide insight into how stability of the pocket is linked to gating. Anion substitution resulted in faster deactivation and desensitization, consistent with the acidic pocket regulating the stability of the open state. Taken together, our data support a model where acidic pocket collapse is not essential for channel activation. Rather, collapse of the acidic pocket influences the stability of the open state of the pore.
Collapse
Affiliation(s)
- Matthew L. Rook
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| | - Tyler W. McCullock
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| | - Tyler Couch
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
- Deparment of Neurology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
- Center for RNA BiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - David M. MacLean
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| |
Collapse
|
8
|
Elkhatib W, Yanez-Guerra LA, Mayorova TD, Currie MA, Singh A, Perera M, Gauberg J, Senatore A. Function and phylogeny support the independent evolution of an ASIC-like Deg/ENaC channel in the Placozoa. Commun Biol 2023; 6:951. [PMID: 37723223 PMCID: PMC10507113 DOI: 10.1038/s42003-023-05312-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023] Open
Abstract
ASIC channels are bilaterian proton-gated sodium channels belonging to the large and functionally-diverse Deg/ENaC family that also includes peptide- and mechanically-gated channels. Here, we report that the non-bilaterian invertebrate Trichoplax adhaerens possesses a proton-activated Deg/ENaC channel, TadNaC2, with a unique combination of biophysical features including tachyphylaxis like ASIC1a, reduced proton sensitivity like ASIC2a, biphasic macroscopic currents like ASIC3, as well as low sensitivity to the Deg/ENaC channel blocker amiloride and Ca2+ ions. Structural modeling and mutation analyses reveal that TadNaC2 proton gating is different from ASIC channels, lacking key molecular determinants, and involving unique residues within the palm and finger regions. Phylogenetic analysis reveals that a monophyletic clade of T. adhaerens Deg/ENaC channels, which includes TadNaC2, is phylogenetically distinct from ASIC channels, instead forming a clade with BASIC channels. Altogether, this work suggests that ASIC-like channels evolved independently in T. adhaerens and its phylum Placozoa. Our phylogenetic analysis also identifies several clades of uncharacterized metazoan Deg/ENaC channels, and provides phylogenetic evidence for the existence of Deg/ENaC channels outside of Metazoa, present in the gene data of select unicellular heterokont and filasterea-related species.
Collapse
Affiliation(s)
- Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Luis A Yanez-Guerra
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, England
| | | | - Mark A Currie
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Anhadvir Singh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Maria Perera
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Julia Gauberg
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
9
|
Korkosh VS, Tikhonov DB. Analysis of residue-residue interactions in the structures of ASIC1a suggests possible gating mechanisms. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:111-119. [PMID: 36690863 DOI: 10.1007/s00249-023-01628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
The gating mechanism of acid-sensitive ion channels (ASICs) remains unclear, despite the availability of atomic-scale structures in various functional states. The collapse of the acidic pocket and structural changes in the low-palm region are assumed to trigger activation. For the acidic pocket, protonation of some residues can minimize repulsion in the collapsed conformation. The relationship between low-palm rearrangements and gating is unknown. In this work, we performed a Monte Carlo energy optimization of known ASIC1a structures and determined the residue-residue interactions in different functional states. For rearrangements in the acidic pocket, our results are consistent with previously proposed mechanisms, although significant complexity was revealed for the residue-residue interactions. The data support the proposal of a gating mechanism in the low-palm region, in which residues E80 and E417 share a proton to activate the channel.
Collapse
Affiliation(s)
- Vyacheslav S Korkosh
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia.
| |
Collapse
|
10
|
Zhigulin AS, Tikhonov DB, Barygin OI. Mechanisms of acid-sensing ion channels inhibition by nafamostat, sepimostat and diminazene. Eur J Pharmacol 2022; 938:175394. [PMID: 36403685 DOI: 10.1016/j.ejphar.2022.175394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Acid-sensing ion channels (ASICs) are blocked by many cationic compounds. Mechanisms of action, which may include pore block, modulation of activation and desensitization, need systematic analysis to allow predictable design of new potent and selective drugs. In this work, we studied the action of the serine protease inhibitors nafamostat, sepimostat, gabexate and camostat, on native ASICs in rat giant striatal interneurons and recombinant ASIC1a and ASIC2a channels, and compared it to that of well-known small molecule ASIC blocker diminazene. All these compounds have positively charged amidine and/or guanidine groups in their structure. Nafamostat, sepimostat and diminazene inhibited pH 6.5-induced currents in rat striatal interneurons at -80 mV holding voltage with IC50 values of 0.78 ± 0.12 μM, 2.4 ± 0.3 μM and 0.40 ± 0.09 μM, respectively, whereas camostat and gabexate were practically ineffective. The inhibition by nafamostat, sepimostat and diminazene was voltage-dependent evidencing binding in the channel pore. They were not trapped in the closed channels, suggesting "foot-in-the-door" mechanism of action. The inhibitory activity of nafamostat, sepimostat and diminazene was similar in experiments on native ASICs and recombinant ASIC1a channels, while all of them were drastically less active against ASIC2a channels. According to our molecular modeling, three active compounds bind in the channel pore between Glu 433 and Ala 444 in a similar way. In view of the relative safety of nafamostat for clinical use in humans, it can be considered as a potential candidate for the treatment of pathophysiological conditions linked to ASICs disfunction, including inflammatory pain and ischemic stroke.
Collapse
Affiliation(s)
- Arseniy S Zhigulin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Oleg I Barygin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia.
| |
Collapse
|
11
|
Vaithia A, Kellenberger S. Probing conformational changes during activation of ASIC1a by an optical tweezer and by methanethiosulfonate-based cross-linkers. PLoS One 2022; 17:e0270762. [PMID: 35802631 PMCID: PMC9269482 DOI: 10.1371/journal.pone.0270762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal, proton-gated, Na+-selective ion channels. They are involved in various physiological and pathological processes such as neurodegeneration after stroke, pain sensation, fear behavior and learning. To obtain information on the activation mechanism of ASIC1a, we attempted in this study to impose distance constraints between paired residues in different channel domains by using cross-linkers reacting with engineered Cys residues, and we measured how this affected channel function. First, the optical tweezer 4′-Bis(maleimido)azobenzene (BMA) was used, whose conformation changes depending on the wavelength of applied light. After exposure of channel mutants to BMA, an activation of the channel by light was only observed with a mutant containing a Cys mutation in the extracellular pore entry, I428C. Western blot analysis indicated that BMA did not cross-link Cys428 residues. Extracellular application of methanethiosulfonate (MTS) cross-linkers of different lengths changed the properties of several Cys mutants, in many cases likely without cross-linking two Cys residues. Our observations suggest that intersubunit cross-linking occurred in the wrist mutant A425C and intrasubunit cross-linking in the acidic pocket mutant D237C/I312C. In these mutants, exposure to cross-linkers favored a non-conducting channel conformation and induced an acidic shift of the pH dependence and a decrease of the maximal current amplitude. Overall, the cross-linking approaches appeared to be inefficient, possibly due to the geometrical requirements for successful reactions of the two ends of the cross-linking compound.
Collapse
Affiliation(s)
- Anand Vaithia
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Zhang L, Wang X, Chen J, Kleyman TR, Sheng S. Accessibility of ENaC extracellular domain central core residues. J Biol Chem 2022; 298:101860. [PMID: 35339489 PMCID: PMC9052164 DOI: 10.1016/j.jbc.2022.101860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
Abstract
The epithelial Na+ channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain β10 strand residues in mouse ENaC. Of the 13 ENaC α subunit mutants with Cys substitutions examined, only mutants at sites in the proximal region of β10 exhibited changes in channel activity in response to methanethiosulfonate reagents. Additionally, Cys substitutions at three proximal sites of β and γ subunit β10 strands also rendered mutant channels methanethiosulfonate-responsive. Moreover, multiple Cys mutants were activated by low concentrations of thiophilic Cd2+. Using the Na+ self-inhibition response to assess ENaC gating behavior, we identified four α, two β, and two γ subunit β10 strand mutations that changed the Na+ self-inhibition response. Our results suggest that the proximal regions of β10 strands in all three subunits are accessible to small aqueous compounds and Cd2+ and have a role in modulating ENaC gating. These results are consistent with a structural model of mouse ENaC that predicts the presence of aqueous tunnels adjacent to the proximal part of β10 and with previously resolved structures of a related family member where palm domain structural transitions were observed with channels in an open or closed state.
Collapse
Affiliation(s)
- Lei Zhang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xueqi Wang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingxin Chen
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas R Kleyman
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Shaohu Sheng
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Rook ML, Ananchenko A, Musgaard M, MacLean DM. Molecular Investigation of Chicken Acid-Sensing Ion Channel 1 β11-12 Linker Isomerization and Channel Kinetics. Front Cell Neurosci 2021; 15:761813. [PMID: 34924957 PMCID: PMC8675884 DOI: 10.3389/fncel.2021.761813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Structures of the trimeric acid-sensing ion channel have been solved in the resting, toxin-bound open and desensitized states. Within the extracellular domain, there is little difference between the toxin-bound open state and the desensitized state. The main exception is that a loop connecting the 11th and 12th β-strand, just two amino acid residues long, undergoes a significant and functionally critical re-orientation or flipping between the open and desensitized conformations. Here we investigate how specific interactions within the surrounding area influence linker stability in the "flipped" desensitized state using all-atom molecular dynamics simulations. An inherent challenge is bringing the relatively slow channel desensitization and recovery processes (in the milliseconds to seconds) within the time window of all-atom simulations (hundreds of nanoseconds). To accelerate channel behavior, we first identified the channel mutations at either the Leu414 or Asn415 position with the fastest recovery kinetics followed by molecular dynamics simulations of these mutants in a deprotonated state, accelerating recovery. By mutating one residue in the loop and examining the evolution of interactions in the neighbor, we identified a novel electrostatic interaction and validated prior important interactions. Subsequent functional analysis corroborates these findings, shedding light on the molecular factors controlling proton-mediated transitions between functional states of the channel. Together, these data suggest that the flipped loop in the desensitized state is stabilized by interactions from surrounding regions keeping both L414 and N415 in place. Interestingly, very few mutations in the loop allow for equivalent channel kinetics and desensitized state stability. The high degree of sequence conservation in this region therefore indicates that the stability of the ASIC desensitized state is under strong selective pressure and underlines the physiological importance of desensitization.
Collapse
Affiliation(s)
- Matthew L. Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Anna Ananchenko
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - David M. MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
14
|
Leisle L, Margreiter M, Ortega-Ramírez A, Cleuvers E, Bachmann M, Rossetti G, Gründer S. Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket. J Med Chem 2021; 64:13299-13311. [PMID: 34461722 DOI: 10.1021/acs.jmedchem.1c00447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. One such modulator is the opioid neuropeptide big dynorphin (Big Dyn) which binds to ASIC1a and enhances its activity during prolonged acidosis. The molecular determinants and dynamics of this interaction remain unclear, however. Here, we present a molecular interaction model showing a dynorphin peptide inserting deep into the acidic pocket of ASIC1a. We confirmed experimentally that the interaction is predominantly driven by electrostatic forces, and using noncanonical amino acids as photo-cross-linkers, we identified 16 residues in ASIC1a contributing to Big Dyn binding. Covalently tethering Big Dyn to its ASIC1a binding site dramatically decreased the proton sensitivity of channel activation, suggesting that Big Dyn stabilizes a resting conformation of ASIC1a and dissociates from its binding site during channel opening.
Collapse
Affiliation(s)
- Lilia Leisle
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Margreiter
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Elinor Cleuvers
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michèle Bachmann
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
15
|
Rook ML, Miaro M, Couch T, Kneisley DL, Musgaard M, MacLean DM. Mutation of a conserved glutamine residue does not abolish desensitization of acid-sensing ion channel 1. THE JOURNAL OF GENERAL PHYSIOLOGY 2021; 153:212203. [PMID: 34061161 PMCID: PMC8167889 DOI: 10.1085/jgp.202012855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Desensitization is a common feature of ligand-gated ion channels, although the molecular cause varies widely between channel types. Mutations that greatly reduce or nearly abolish desensitization have been described for many ligand-gated ion channels, including glutamate, GABA, glycine, and nicotinic receptors, but not for acid-sensing ion channels (ASICs) until recently. Mutating Gln276 to a glycine (Q276G) in human ASIC1a was reported to mostly abolish desensitization at both the macroscopic and the single channel levels, potentially providing a valuable tool for subsequent studies. However, we find that in both human and chicken ASIC1, the effect of Q276G is modest. In chicken ASIC1, the equivalent Q277G slightly reduces desensitization when using pH 6.5 as a stimulus but desensitizes, essentially like wild-type, when using more acidic pH values. In addition, steady-state desensitization is intact, albeit right-shifted, and recovery from desensitization is accelerated. Molecular dynamics simulations indicate that the Gln277 side chain participates in a hydrogen bond network that might stabilize the desensitized conformation. Consistent with this, destabilizing this network with the Q277N or Q277L mutations largely mimics the Q277G phenotype. In human ASIC1a, the Q276G mutation also reduces desensitization, but not to the extent reported previously. Interestingly, the kinetic consequences of Q276G depend on the human variant used. In the common G212 variant, Q276G slows desensitization, while in the rare D212 variant desensitization accelerates. Our data reveal that while the Q/G mutation does not abolish or substantially impair desensitization as previously reported, it does point to unexpected differences between chicken and human ASICs and the need for careful scrutiny before using this mutation in future studies.
Collapse
Affiliation(s)
- Matthew L Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Megan Miaro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Tyler Couch
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Dana L Kneisley
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
16
|
Vullo S, Ambrosio N, Kucera JP, Bignucolo O, Kellenberger S. Kinetic analysis of ASIC1a delineates conformational signaling from proton-sensing domains to the channel gate. eLife 2021; 10:66488. [PMID: 33729158 PMCID: PMC8009679 DOI: 10.7554/elife.66488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by a drop in pH. Their established physiological and pathological roles, involving fear behaviors, learning, pain sensation, and neurodegeneration after stroke, make them promising targets for future drugs. Currently, the ASIC activation mechanism is not understood. Here, we used voltage-clamp fluorometry (VCF) combined with fluorophore-quencher pairing to determine the kinetics and direction of movements. We show that conformational changes with the speed of channel activation occur close to the gate and in more distant extracellular sites, where they may be driven by local protonation events. Further, we provide evidence for fast conformational changes in a pathway linking protonation sites to the channel pore, in which an extracellular interdomain loop interacts via aromatic residue interactions with the upper end of a transmembrane helix and would thereby open the gate.
Collapse
Affiliation(s)
- Sabrina Vullo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Ambrosio
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Olivier Bignucolo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
DEG/ENaC Ion Channels in the Function of the Nervous System: From Worm to Man. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:165-192. [DOI: 10.1007/978-981-16-4254-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Sun D, Liu S, Li S, Zhang M, Yang F, Wen M, Shi P, Wang T, Pan M, Chang S, Zhang X, Zhang L, Tian C, Liu L. Structural insights into human acid-sensing ion channel 1a inhibition by snake toxin mambalgin1. eLife 2020; 9:57096. [PMID: 32915133 PMCID: PMC7553779 DOI: 10.7554/elife.57096] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that are involved in diverse neuronal processes including pain sensing. The peptide toxin Mambalgin1 (Mamba1) from black mamba snake venom can reversibly inhibit the conductance of ASICs, causing an analgesic effect. However, the detailed mechanism by which Mamba1 inhibits ASIC1s, especially how Mamba1 binding to the extracellular domain affects the conformational changes of the transmembrane domain of ASICs remains elusive. Here, we present single-particle cryo-EM structures of human ASIC1a (hASIC1a) and the hASIC1a-Mamba1 complex at resolutions of 3.56 and 3.90 Å, respectively. The structures revealed the inhibited conformation of hASIC1a upon Mamba1 binding. The combination of the structural and physiological data indicates that Mamba1 preferentially binds hASIC1a in a closed state and reduces the proton sensitivity of the channel, representing a closed-state trapping mechanism.
Collapse
Affiliation(s)
- Demeng Sun
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China.,Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Sanling Liu
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Siyu Li
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Mengge Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fan Yang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ming Wen
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Pan Shi
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tao Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Man Pan
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shenghai Chang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Zhang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Longhua Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Changlin Tian
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China.,High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Lei Liu
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Rook ML, Musgaard M, MacLean DM. Coupling structure with function in acid-sensing ion channels: challenges in pursuit of proton sensors. J Physiol 2020; 599:417-430. [PMID: 32306405 DOI: 10.1113/jp278707] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are a class of trimeric cation-selective ion channels activated by changes in pH within the physiological range. They are widely expressed in the central and peripheral nervous systems where they participate in a range of physiological and pathophysiological situations such as learning and memory, pain sensation, fear and anxiety, substance abuse and cell death. ASICs are localized to cell bodies and dendrites, including the postsynaptic density, and within the last 5 years several examples of proton-evoked ASIC excitatory postsynaptic currents have emerged. Thus, ASICs have become bona fide neurotransmitter-gated ion channels, activated by the smallest neurotransmitter possible: protons. Here we review how protons are thought to drive the conformational changes associated with ASIC activation and desensitization. In particular, we weigh the evidence for and against the so-called 'acidic pocket' being a vital proton sensor and discuss the emerging role of the β11-12 linker as a desensitization switch or 'molecular clutch'. We also examine how proton-induced conformational changes pose unique challenges to classical molecular dynamics simulations, as well as some possible solutions. Given the emergence of new methodologies and structures, the coming years will probably see many advances in the study of acid-sensing ion channels.
Collapse
Affiliation(s)
- Matthew L Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 75 Laurier Ave E, Ottawa, ON, K1N 6N5, Canada
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
20
|
Bignucolo O, Vullo S, Ambrosio N, Gautschi I, Kellenberger S. Structural and Functional Analysis of Gly212 Mutants Reveals the Importance of Intersubunit Interactions in ASIC1a Channel Function. Front Mol Biosci 2020; 7:58. [PMID: 32411719 PMCID: PMC7198790 DOI: 10.3389/fmolb.2020.00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
Acid-sensing ion channels (ASICs) act as pH sensors in neurons. ASICs contribute to pain sensation, learning, fear behavior and to neuronal death after ischemic stroke. Extracellular acidification induces a transient activation and subsequent desensitization of these Na+-selective channels. ASICs are trimeric channels made of identical or homologous subunits. We have previously shown that mutation of the highly conserved Gly212 residue of human ASIC1a to Asp affects the channel function. Gly212 is located in the proximity of a predicted Cl– binding site at a subunit interface. Here, we have measured the function of a series of Gly212 mutants. We show that substitution of Gly212 affects the ASIC1a pH dependence and current decay kinetics. Intriguingly, the mutations to the acidic residues Asp and Glu have opposing effects on the pH dependence and the current decay kinetics. Analysis of molecular dynamics simulation trajectories started with the coordinates of the closed conformation indicates that the immediate environment of residue 212 in G212E, which shifts the pH dependence to more alkaline values, adopts a conformation closer to the open state. The G212D and G212E mutants have a different pattern of intersubunit salt bridges, that, in the case of G212E, leads to an approaching of neighboring subunits. Based on the comparison of crystal structures, the conformational changes in this zone appear to be smaller during the open-desensitized transition. Nevertheless, MD simulations highlight differences between mutants, suggesting that the changed function upon substitution of residue 212 is due to differences in intra- and intersubunit interactions in its proximity.
Collapse
Affiliation(s)
- Olivier Bignucolo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sabrina Vullo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Ambrosio
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Ivan Gautschi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
A molecular view of the function and pharmacology of acid-sensing ion channels. Pharmacol Res 2020; 154:104166. [DOI: 10.1016/j.phrs.2019.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/06/2023]
|
22
|
Elkhatib W, Smith CL, Senatore A. A Na + leak channel cloned from Trichoplax adhaerens extends extracellular pH and Ca 2+ sensing for the DEG/ENaC family close to the base of Metazoa. J Biol Chem 2019; 294:16320-16336. [PMID: 31527080 PMCID: PMC6827283 DOI: 10.1074/jbc.ra119.010542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Acid-sensitive ion channels belonging to the degenerin/epithelial sodium channel (DEG/ENaC) family activate in response to extracellular protons and are considered unique to deuterostomes. However, sensitivity to pH/protons is more widespread, where, for example, human ENaC Na+ leak channels are potentiated and mouse BASIC and Caenorhabditis elegans ACD-1 Na+ leak channels are blocked by extracellular protons. For many DEG/ENaC channels, extracellular Ca2+ ions modulate gating, and in some cases, the binding of protons and Ca2+ is interdependent. Here, we functionally characterize a DEG/ENaC channel from the early-diverging animal Trichoplax adhaerens, TadNaC6, that conducts Na+-selective leak currents in vitro sensitive to blockade by both extracellular protons and Ca2+. We determine that proton block is enhanced in low external Ca2+ concentration, whereas calcium block is enhanced in low external proton concentration, indicative of competitive binding of these two ligands to extracellular sites of the channel protein. TadNaC6 lacks most determinant residues for proton and Ca2+ sensitivity in other DEG/ENaC channels, and a mutation of one conserved residue (S353A) associated with Ca2+ block in rodent BASIC channels instead affected proton sensitivity, all indicative of independent evolution of H+ and Ca2+ sensitivity. Strikingly, TadNaC6 was potently activated by the general DEG/ENaC channel blocker amiloride, a rare feature only reported for the acid-activated channel ASIC3. The sequence and structural divergence of TadNaC6, coupled with its noncanonical functional features, provide unique opportunities for probing the proton, Ca2+, and amiloride regulation of DEG/ENaC channels and insight into the possible core-gating features of ancestral ion channels.
Collapse
Affiliation(s)
- Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Carolyn L Smith
- NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
23
|
Uchitel OD, González Inchauspe C, Weissmann C. Synaptic signals mediated by protons and acid-sensing ion channels. Synapse 2019; 73:e22120. [PMID: 31180161 DOI: 10.1002/syn.22120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
Extracellular pH changes may constitute significant signals for neuronal communication. During synaptic transmission, changes in pH in the synaptic cleft take place. Its role in the regulation of presynaptic Ca2+ currents through multivesicular release in ribbon-type synapses is a proven phenomenon. In recent years, protons have been recognized as neurotransmitters that participate in neuronal communication in synapses of several regions of the CNS such as amygdala, nucleus accumbens, and brainstem. Protons are released by nerve stimulation and activate postsynaptic acid-sensing ion channels (ASICs). Several types of ASIC channels are expressed in the peripheral and central nervous system. The influx of Ca2+ through some subtypes of ASICs, as a result of synaptic transmission, agrees with the participation of ASICs in synaptic plasticity. Pharmacological and genetical inhibition of ASIC1a results in alterations in learning, memory, and phenomena like fear and cocaine-seeking behavior. The recognition of endogenous molecules, such as arachidonic acid, cytokines, histamine, spermine, lactate, and neuropeptides, capable of inhibiting or potentiating ASICs suggests the existence of mechanisms of synaptic modulation that have not yet been fully identified and that could be tuned by new emerging pharmacological compounds with potential therapeutic benefits.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González Inchauspe
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carina Weissmann
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
24
|
Membrane potential changes occurring upon acidification influence the binding of small-molecule inhibitors to ASIC1a. Neuropharmacology 2019; 148:366-376. [DOI: 10.1016/j.neuropharm.2019.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
|
25
|
Bargeton B, Iwaszkiewicz J, Bonifacio G, Roy S, Zoete V, Kellenberger S. Mutations in the palm domain disrupt modulation of acid-sensing ion channel 1a currents by neuropeptides. Sci Rep 2019; 9:2599. [PMID: 30796301 PMCID: PMC6385203 DOI: 10.1038/s41598-018-37426-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 12/05/2022] Open
Abstract
Modulation by neuropeptides enhances several functions of acid-sensing ion channels (ASICs), such as pain sensation and acid-induced neuronal injury. The acid-induced opening of ASICs is transient, because of a rapid desensitization. Neuropeptides containing an Arg-Phe-amide motif affect ASIC desensitization and allow continuous activity of ASICs. In spite of the importance of the sustained ASIC activity during prolonged acidification, the molecular mechanisms of ASIC modulation by neuropeptides is only poorly understood. To identify the FRRFa (Phe-Arg-Arg-Phe-amide) binding site on ASIC1a, we carried out an in silico docking analysis and verified functionally the docking predictions. The docking experiments indicated three possible binding pockets, located (1) in the acidic pocket between the thumb, finger, β-ball and palm domains, (2) in a pocket at the bottom of the thumb domain, and (3) in the central vestibule along with the connected side cavities. Functional measurements of mutant ASIC1a confirmed the importance of residues of the lower palm, which encloses the central vestibule and its side cavities, for the FRRFa effects. The combined docking and functional experiments strongly suggest that FRRFa binds to the central vestibule and its side cavities to change ASIC desensitization.
Collapse
Affiliation(s)
- Benoîte Bargeton
- Department of Pharmacology and Toxicology, University of Lausanne, 1011, Lausanne, Switzerland
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Gaetano Bonifacio
- Department of Pharmacology and Toxicology, University of Lausanne, 1011, Lausanne, Switzerland
| | - Sophie Roy
- Department of Pharmacology and Toxicology, University of Lausanne, 1011, Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Department of Fundamental Oncology, Lausanne University, Ludwig Institute for Cancer Research, Route de la Corniche 9A, 1066, Epalinges, Switzerland
| | - Stephan Kellenberger
- Department of Pharmacology and Toxicology, University of Lausanne, 1011, Lausanne, Switzerland.
| |
Collapse
|
26
|
Reiners M, Margreiter MA, Oslender-Bujotzek A, Rossetti G, Gründer S, Schmidt A. The Conorfamide RPRFa Stabilizes the Open Conformation of Acid-Sensing Ion Channel 3 via the Nonproton Ligand-Sensing Domain. Mol Pharmacol 2018; 94:1114-1124. [PMID: 30012583 DOI: 10.1124/mol.118.112375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/06/2018] [Indexed: 01/26/2023] Open
Abstract
Acid-sensing ion channel 3 (ASIC3) is a proton-gated Na+ channel with important roles in pain. ASIC3 quickly desensitizes in less than a second, limiting its capacity to sense sustained acidosis during pain. RFamide neuropeptides are modulators of ASIC3 that slow its desensitization and induce a variable sustained current. The molecular mechanism of slowed desensitization and the RFamide binding site on ASIC3 are unknown. RPRFamide, a RFamide from the venom of a cone snail, has a comparatively high affinity for ASIC3 and strongly slows its desensitization. Here we show that covalent binding of a UV-sensitive RPRFamide variant to ASIC3 prevents desensitization, suggesting that RPRFamide has to unbind from ASIC3 before it can desensitize. Moreover, we show by in silico docking to a homology model of ASIC3 that a cavity in the lower palm domain, which is also known as the nonproton ligand-sensing domain, is a potential binding site of RPRFamide. Finally, using extensive mutagenesis of residues lining the nonproton ligand-sensing domain, we confirm that this domain is essential for RPRFamide modulation of ASIC3. As comparative analysis of ASIC crystal structures in the open and in the desensitized conformation suggests that the lower palm domain contracts during desensitization, our results collectively suggest that RPRFamide, and probably also other RFamide neuropeptides, bind to the nonproton ligand-sensing domain to stabilize the open conformation of ASIC3.
Collapse
Affiliation(s)
- Melissa Reiners
- Institute of Physiology (M.R., A.O.-B., S.G., A.S.) and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine - Institute for Advanced Simulation (IAS)/Institute of Neuroscience and Medicine (INM) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany (M.A.M., G.R.)
| | - Michael A Margreiter
- Institute of Physiology (M.R., A.O.-B., S.G., A.S.) and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine - Institute for Advanced Simulation (IAS)/Institute of Neuroscience and Medicine (INM) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany (M.A.M., G.R.)
| | - Adrienne Oslender-Bujotzek
- Institute of Physiology (M.R., A.O.-B., S.G., A.S.) and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine - Institute for Advanced Simulation (IAS)/Institute of Neuroscience and Medicine (INM) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany (M.A.M., G.R.)
| | - Giulia Rossetti
- Institute of Physiology (M.R., A.O.-B., S.G., A.S.) and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine - Institute for Advanced Simulation (IAS)/Institute of Neuroscience and Medicine (INM) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany (M.A.M., G.R.)
| | - Stefan Gründer
- Institute of Physiology (M.R., A.O.-B., S.G., A.S.) and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine - Institute for Advanced Simulation (IAS)/Institute of Neuroscience and Medicine (INM) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany (M.A.M., G.R.)
| | - Axel Schmidt
- Institute of Physiology (M.R., A.O.-B., S.G., A.S.) and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine - Institute for Advanced Simulation (IAS)/Institute of Neuroscience and Medicine (INM) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany (M.A.M., G.R.)
| |
Collapse
|
27
|
Balchak DM, Thompson RN, Kashlan OB. The epithelial Na + channel γ subunit autoinhibitory tract suppresses channel activity by binding the γ subunit's finger-thumb domain interface. J Biol Chem 2018; 293:16217-16225. [PMID: 30131333 DOI: 10.1074/jbc.ra118.004362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/21/2018] [Indexed: 01/11/2023] Open
Abstract
Epithelial Na+ channel (ENaC) maturation and activation require proteolysis of both the α and γ subunits. Cleavage at multiple sites in the finger domain of each subunit liberates their autoinhibitory tracts. Synthetic peptides derived from the proteolytically released fragments inhibit the channel, likely by reconstituting key interactions removed by the proteolysis. We previously showed that a peptide derived from the α subunit's autoinhibitory sequence (α-8) binds at the α subunit's finger-thumb domain interface. Despite low sequence similarity between the α and γ subunit finger domains, we hypothesized that a peptide derived from the γ subunit's autoinhibitory sequence (γ-11) inhibits the channel through an analogous mechanism. Using Xenopus oocytes, we found here that channels lacking a γ subunit thumb domain were no longer sensitive to γ-11, but remained sensitive to α-8. We identified finger domain sites in the γ subunit that dramatically reduced γ-11 inhibition. Using cysteines and sulfhydryl reactive cross-linkers introduced into both the peptide and the subunit, we also could cross-link γ-11 to both the finger domain and the thumb domain of the γ subunit. Our results suggest that α-8 and γ-11 occupy similar binding pockets within their respective subunits, and that proteolysis of the α and γ subunits activate the channel through analogous mechanisms.
Collapse
Affiliation(s)
| | | | - Ossama B Kashlan
- From the Department of Medicine, Renal-Electrolyte Division and .,the Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
28
|
Krauson AJ, Rooney JG, Carattino MD. Molecular basis of inhibition of acid sensing ion channel 1A by diminazene. PLoS One 2018; 13:e0196894. [PMID: 29782492 PMCID: PMC5962070 DOI: 10.1371/journal.pone.0196894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated cation permeable ion channels expressed primarily in neurons. Here we employed site-directed mutagenesis and electrophysiology to investigate the mechanism of inhibition of ASIC1a by diminazene. This compound inhibits mouse ASIC1a with a half-maximal inhibitory concentration (IC50) of 2.4 μM. At first, we examined whether neutralizing mutations of Glu79 and Glu416 alter diminazene block. These residues form a hexagonal array in the lower palm domain that was previously shown to contribute to pore opening in response to extracellular acidification. Significantly, single Gln substitutions at positions 79 and 416 in ASIC1a reduced diminazene apparent affinity by 6-7 fold. This result suggests that diminazene inhibits ASIC1a in part by limiting conformational rearrangement in the lower palm domain. Because diminazene is charged at physiological pHs, we assessed whether it inhibits ASIC1a by blocking the ion channel pore. Consistent with the notion that diminazene binds to a site within the membrane electric field, diminazene block showed a strong dependence with the membrane potential. Moreover, a Gly to Ala mutation at position 438, in the ion conduction pathway of ASIC1a, increased diminazene IC50 by one order of magnitude and eliminated the voltage dependence of block. Taken together, our results indicate that the inhibition of ASIC1a by diminazene involves both allosteric modulation and blocking of ion flow through the conduction pathway. Our findings provide a foundation for the development of more selective and potent ASIC pore blockers.
Collapse
Affiliation(s)
- Aram J Krauson
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James G Rooney
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
29
|
Montalbetti N, Rooney JG, Marciszyn AL, Carattino MD. ASIC3 fine-tunes bladder sensory signaling. Am J Physiol Renal Physiol 2018; 315:F870-F879. [PMID: 29561183 DOI: 10.1152/ajprenal.00630.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-activated, cation-selective neuronal channels that are considered to play important roles in mechanosensation and nociception. Here we investigated the role of ASIC3, a subunit primarily expressed in sensory neurons, in bladder sensory signaling and function. We found that extracellular acidification evokes a transient increase in current, consistent with the kinetics of activation and desensitization of ASICs, in ~25% of the bladder sensory neurons harvested from both wild-type (WT) and ASIC3 knockout (KO) mice. The absence of ASIC3 increased the magnitude of the peak evoked by extracellular acidification and reduced the rate of decay of the ASIC-like currents. These findings suggest that ASICs are assembled as heteromers and that the absence of ASIC3 alters the composition of these channels in bladder sensory neurons. Consistent with the notion that ASIC3 serves as a proton sensor, 59% of the bladder sensory neurons harvested from WT, but none from ASIC3 KO mice, fired action potentials in response to extracellular acidification. Studies of bladder function revealed that ASIC3 deletion reduces voiding volume and the pressure required to trigger micturition. In summary, our findings indicate that ASIC3 plays a role in the control of bladder function by modulating the response of afferents to filling.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - James G Rooney
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Allison L Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Besson T, Lingueglia E, Salinas M. Pharmacological modulation of Acid-Sensing Ion Channels 1a and 3 by amiloride and 2-guanidine-4-methylquinazoline (GMQ). Neuropharmacology 2017; 125:429-440. [DOI: 10.1016/j.neuropharm.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/27/2017] [Accepted: 08/07/2017] [Indexed: 11/28/2022]
|
31
|
Abstract
The Acid-Sensing Ion Channels (ASIC) exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization.
Collapse
|
32
|
Conformational dynamics and role of the acidic pocket in ASIC pH-dependent gating. Proc Natl Acad Sci U S A 2017; 114:3768-3773. [PMID: 28320963 DOI: 10.1073/pnas.1620560114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-activated Na+ channels expressed in the nervous system, where they are involved in learning, fear behaviors, neurodegeneration, and pain sensation. In this work, we study the role in pH sensing of two regions of the ectodomain enriched in acidic residues: the acidic pocket, which faces the outside of the protein and is the binding site of several animal toxins, and the palm, a central channel domain. Using voltage clamp fluorometry, we find that the acidic pocket undergoes conformational changes during both activation and desensitization. Concurrently, we find that, although proton sensing in the acidic pocket is not required for channel function, it does contribute to both activation and desensitization. Furthermore, protonation-mimicking mutations of acidic residues in the palm induce a dramatic acceleration of desensitization followed by the appearance of a sustained current. In summary, this work describes the roles of potential pH sensors in two extracellular domains, and it proposes a model of acidification-induced conformational changes occurring in the acidic pocket of ASIC1a.
Collapse
|
33
|
Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive. Proc Natl Acad Sci U S A 2017; 114:E2504-E2513. [PMID: 28265090 DOI: 10.1073/pnas.1620508114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H+] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (<1 ms) at pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.
Collapse
|
34
|
Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 2016; 579:95-132. [PMID: 26772908 PMCID: PMC4756657 DOI: 10.1016/j.gene.2015.12.061] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023]
Abstract
The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na(+) ions across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Na(+) in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolarity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes. Yet, most animals in the Sarcopterygii (lobe-finned fish) branch including Tetrapoda, amphibians and amniotes (lizards, crocodiles, birds, and mammals), have four ENaC paralogs. We compared the sequences of ENaC orthologs from 20 species and established criteria for the identification of ENaC orthologs and paralogs, and their distinction from other members of the ENaC/Degenerin superfamily, especially ASIC family. Differences between ENaCs and ASICs are summarized in view of their physiological functions and tissue distributions. Structural motifs that are conserved throughout vertebrate ENaCs are highlighted. We also present a comparative overview of the genotype-phenotype relationships in inherited diseases associated with ENaC mutations, including multisystem pseudohypoaldosteronism (PHA1B), Liddle syndrome, cystic fibrosis-like disease and essential hypertension.
Collapse
Affiliation(s)
- Israel Hanukoglu
- Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| | - Aaron Hanukoglu
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Krauson AJ, Carattino MD. The Thumb Domain Mediates Acid-sensing Ion Channel Desensitization. J Biol Chem 2016; 291:11407-19. [PMID: 27015804 DOI: 10.1074/jbc.m115.702316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 11/06/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are cation-selective proton-gated channels expressed in neurons that participate in diverse physiological processes, including nociception, synaptic plasticity, learning, and memory. ASIC subunits contain intracellular N and C termini, two transmembrane domains that constitute the pore, and a large extracellular loop with defined domains termed the finger, β-ball, thumb, palm, and knuckle. Here we examined the contribution of the finger, β-ball, and thumb domains to activation and desensitization through the analysis of chimeras and the assessment of the effect of covalent modification of introduced Cys at the domain-domain interfaces. Our studies with ASIC1a-ASIC2a chimeras showed that swapping the thumb domain between subunits results in faster channel desensitization. Likewise, the covalent modification of Cys residues at selected positions in the β-ball-thumb interface accelerates the desensitization of the mutant channels. Studies of accessibility with thiol-reactive reagents revealed that the β-ball and thumb domains reside apart in the resting state but that they become closer to each other in response to extracellular acidification. We propose that the thumb domain moves upon continuous exposure to an acidic extracellular milieu, assisting with the closing of the pore during channel desensitization.
Collapse
Affiliation(s)
- Aram J Krauson
- From the Renal-Electrolyte Division, Department of Medicine, and
| | - Marcelo D Carattino
- From the Renal-Electrolyte Division, Department of Medicine, and Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
36
|
Niu YY, Yang Y, Liu Y, Huang LD, Yang XN, Fan YZ, Cheng XY, Cao P, Hu YM, Li L, Lu XY, Tian Y, Yu Y. Exploration of the Peptide Recognition of an Amiloride-sensitive FMRFamide Peptide-gated Sodium Channel. J Biol Chem 2016; 291:7571-82. [PMID: 26867576 DOI: 10.1074/jbc.m115.710251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 12/22/2022] Open
Abstract
FMRFamide (Phe-Met-Arg-Phe-NH2)-activated sodium channel (FaNaC) is an amiloride-sensitive sodium channel activated by endogenous tetrapeptide in invertebrates, and belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. The ENaC/DEG superfamily differs markedly in its means of activation, such as spontaneously opening or gating by mechanical stimuli or tissue acidosis. Recently, it has been observed that a number of ENaC/DEG channels can be activated by small molecules or peptides, indicating that the ligand-gating may be an important feature of this superfamily. The peptide ligand control of the channel gating might be an ancient ligand-gating feature in this superfamily. Therefore, studying the peptide recognition of FaNaC channels would advance our understanding of the ligand-gating properties of this superfamily of ion channels. Here we demonstrate that Tyr-131, Asn-134, Asp-154, and Ile-160, located in the putative upper finger domain ofHelix aspersaFaNaC (HaFaNaC) channels, are key residues for peptide recognition of this ion channel. Two HaFaNaC specific-insertion motifs among the ENaC/DEG superfamily, residing at the putative α4-α5 linker of the upper thumb domain and the α6-α7 linker of the upper knuckle domain, are also essential for the peptide recognition of HaFaNaC channels. Chemical modifications and double mutant cycle analysis further indicated that those two specific inserts and key residues in the upper finger domain together participate in peptide recognition of HaFaNaC channels. This ligand recognition site is distinct from that of acid-sensing ion channels (ASICs) by a longer distance between the recognition site and the channel gate, carrying useful information about the ligand gating and the evolution of the trimeric ENaC/DEG superfamily of ion channels.
Collapse
Affiliation(s)
- You-Ya Niu
- From the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China, Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Liu
- Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Dong Huang
- Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Na Yang
- From the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China, Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying-Zhe Fan
- Putuo District Center Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, 200062, China
| | - Xiao-Yang Cheng
- Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China, and Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - You-Min Hu
- Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingyong Li
- Department of Anesthesiology and Perioperative Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xiang-Yang Lu
- From the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yun Tian
- From the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China,
| | - Ye Yu
- From the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China, Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China,
| |
Collapse
|
37
|
Wang Y, O’Bryant Z, Wang H, Huang Y. Regulating Factors in Acid-Sensing Ion Channel 1a Function. Neurochem Res 2015; 41:631-45. [DOI: 10.1007/s11064-015-1768-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
|
38
|
Gwiazda K, Bonifacio G, Vullo S, Kellenberger S. Extracellular Subunit Interactions Control Transitions between Functional States of Acid-sensing Ion Channel 1a. J Biol Chem 2015; 290:17956-17966. [PMID: 26070563 DOI: 10.1074/jbc.m115.641688] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal, voltage-independent Na(+) channels that are transiently activated by extracellular acidification. They are involved in pain sensation, the expression of fear, and in neurodegeneration after ischemic stroke. Our study investigates the role of extracellular subunit interactions in ASIC1a function. We identified two regions involved in critical intersubunit interactions. First, formation of an engineered disulfide bond between the palm and thumb domains leads to partial channel closure. Second, linking Glu-235 of a finger loop to either one of two different residues of the knuckle of a neighboring subunit opens the channel at physiological pH or disrupts its activity. This suggests that one finger-knuckle disulfide bond (E235C/K393C) sets the channel in an open state, whereas the other (E235C/Y389C) switches the channel to a non-conducting state. Voltage-clamp fluorometry experiments indicate that both the finger loop and the knuckle move away from the β-ball residue Trp-233 during acidification and subsequent desensitization. Together, these observations reveal that ASIC1a opening is accompanied by a distance increase between adjacent thumb and palm domains as well as a movement of Glu-235 relative to the knuckle helix. Our study identifies subunit interactions in the extracellular loop and shows that dynamic changes of these interactions are critical for normal ASIC function.
Collapse
Affiliation(s)
- Karolina Gwiazda
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Gaetano Bonifacio
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Sabrina Vullo
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland.
| |
Collapse
|
39
|
Gründer S, Pusch M. Biophysical properties of acid-sensing ion channels (ASICs). Neuropharmacology 2015; 94:9-18. [PMID: 25585135 DOI: 10.1016/j.neuropharm.2014.12.016] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 01/23/2023]
Abstract
Acid-sensing ion channels (ASICs) are ligand-gated ion channels that are exquisitely sensitive to extracellular protons and can sense transient as well as sustained acidification. In this review, we will discuss activation and desensitization of ASICs by protons. We show that a linear reaction scheme can reproduce the basic electrophysiological properties of ASICs, including steady-state desensitization. Moreover, we will discuss how a desensitizing receptor can sense sustained acidosis and what we know about the putative proton sensor. We will briefly discuss modulation of proton gating by neuropeptides and small positively charged ligands. Finally, we will review the pore properties of ASICs and their relation to the recently reported crystal structure of the open ASIC pore. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Michael Pusch
- Institute of Biophysics, National Research Council, Via De Marini 6, Genoa, Italy
| |
Collapse
|
40
|
Kellenberger S, Schild L. International Union of Basic and Clinical Pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol Rev 2015; 67:1-35. [PMID: 25287517 DOI: 10.1124/pr.114.009225] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The epithelial Na(+) channel (ENaC) and the acid-sensing ion channels (ASICs) form subfamilies within the ENaC/degenerin family of Na(+) channels. ENaC mediates transepithelial Na(+) transport, thereby contributing to Na(+) homeostasis and the maintenance of blood pressure and the airway surface liquid level. ASICs are H(+)-activated channels found in central and peripheral neurons, where their activation induces neuronal depolarization. ASICs are involved in pain sensation, the expression of fear, and neurodegeneration after ischemia, making them potentially interesting drug targets. This review summarizes the biophysical properties, cellular functions, and physiologic and pathologic roles of the ASIC and ENaC subfamilies. The analysis of the homologies between ENaC and ASICs and the relation between functional and structural information shows many parallels between these channels, suggesting that some mechanisms that control channel activity are shared between ASICs and ENaC. The available crystal structures and the discovery of animal toxins acting on ASICs provide a unique opportunity to address the molecular mechanisms of ENaC and ASIC function to identify novel strategies for the modulation of these channels by pharmacologic ligands.
Collapse
Affiliation(s)
- Stephan Kellenberger
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Lausanne, Switzerland
| | - Laurent Schild
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Kashlan OB, Blobner BM, Zuzek Z, Tolino M, Kleyman TR. Na+ inhibits the epithelial Na+ channel by binding to a site in an extracellular acidic cleft. J Biol Chem 2014; 290:568-76. [PMID: 25389295 DOI: 10.1074/jbc.m114.606152] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The epithelial Na(+) channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na(+), Cl(-), protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na(+) concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na(+) binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na(+). Mutations at selected sites altered the cation inhibitory preference to favor Li(+) or K(+) rather than Na(+). Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na(+). Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family.
Collapse
Affiliation(s)
| | | | | | | | - Thomas R Kleyman
- From the Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
42
|
Kellenberger S, Grutter T. Architectural and functional similarities between trimeric ATP-gated P2X receptors and acid-sensing ion channels. J Mol Biol 2014; 427:54-66. [PMID: 24937752 DOI: 10.1016/j.jmb.2014.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/17/2022]
Abstract
ATP-gated P2X receptors and acid-sensing ion channels are two distinct ligand-gated ion channels that assemble into trimers. They are involved in many important physiological functions such as pain sensation and are recognized as important therapeutic targets. They have unrelated primary structures and respond to different ligands (ATP and protons) and are thus considered as two different ion channels. As a consequence, comparisons of the biophysical properties and underlying mechanisms have only been rarely made between these two channels. However, the recent determination of their molecular structures by X-ray crystallography has revealed unexpected parallels in the architecture of the two pores, providing a basis for possible functional analogies. In this review, we analyze the structural and functional similarities that are shared by these trimeric ion channels, and we outline key unanswered questions that, if addressed experimentally, may help us to elucidate how two unrelated ion channels have adopted a similar fold of the pore.
Collapse
Affiliation(s)
- Stephan Kellenberger
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland.
| | - Thomas Grutter
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400 Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400 Illkirch, France.
| |
Collapse
|