1
|
Diao AJ, Su BG, Vos SM. Pause Patrol: Negative Elongation Factor's Role in Promoter-Proximal Pausing and Beyond. J Mol Biol 2025; 437:168779. [PMID: 39241983 DOI: 10.1016/j.jmb.2024.168779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.
Collapse
Affiliation(s)
- Annette J Diao
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
2
|
Spector B, Santana J, Pufall M, Price D. DFF-ChIP: a method to detect and quantify complex interactions between RNA polymerase II, transcription factors, and chromatin. Nucleic Acids Res 2024; 52:e88. [PMID: 39248105 PMCID: PMC11472042 DOI: 10.1093/nar/gkae760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Recently, we introduced a chromatin immunoprecipitation (ChIP) technique utilizing the human DNA Fragmentation Factor (DFF) to digest the DNA prior to immunoprecipitation (DFF-ChIP) that provides the precise location of transcription complexes and their interactions with neighboring nucleosomes. Here we expand the technique to new targets and provide useful information concerning purification of DFF, digestion conditions, and the impact of crosslinking. DFF-ChIP analysis was performed individually for subunits of Mediator, DSIF, and NELF that that do not interact with DNA directly, but rather interact with RNA polymerase II (Pol II). We found that Mediator was associated almost exclusively with preinitiation complexes (PICs). DSIF and NELF were associated with engaged Pol II and, in addition, potential intermediates between PICs and early initiation complexes. DFF-ChIP was then used to analyze the occupancy of a tight binding transcription factor, CTCF, and a much weaker binding factor, glucocorticoid receptor (GR), with and without crosslinking. These results were compared to those from standard ChIP-Seq that employs sonication and to CUT&RUN which utilizes MNase to fragment the genomic DNA. Our findings indicate that DFF-ChIP reveals details of occupancy that are not available using other methods including information revealing pertinent protein:protein interactions.
Collapse
Affiliation(s)
- Benjamin M Spector
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Nie Z, Guo C, Das SK, Chow CC, Batchelor E, Simons SS, Levens D. Dissecting transcriptional amplification by MYC. eLife 2020; 9:52483. [PMID: 32715994 PMCID: PMC7384857 DOI: 10.7554/elife.52483] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Supraphysiological MYC levels are oncogenic. Originally considered a typical transcription factor recruited to E-boxes (CACGTG), another theory posits MYC a global amplifier increasing output at all active promoters. Both models rest on large-scale genome-wide "-omics'. Because the assumptions, statistical parameter and model choice dictates the '-omic' results, whether MYC is a general or specific transcription factor remains controversial. Therefore, an orthogonal series of experiments interrogated MYC's effect on the expression of synthetic reporters. Dose-dependently, MYC increased output at minimal promoters with or without an E-box. Driving minimal promoters with exogenous (glucocorticoid receptor) or synthetic transcription factors made expression more MYC-responsive, effectively increasing MYC-amplifier gain. Mutations of conserved MYC-Box regions I and II impaired amplification, whereas MYC-box III mutations delivered higher reporter output indicating that MBIII limits over-amplification. Kinetic theory and experiments indicate that MYC activates at least two steps in the transcription-cycle to explain the non-linear amplification of transcription that is essential for global, supraphysiological transcription in cancer.
Collapse
Affiliation(s)
- Zuqin Nie
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States
| | - Chunhua Guo
- Steroid Hormones Section, NIDDK/LERB, NIH, Bethesda, United States
| | - Subhendu K Das
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States
| | - Carson C Chow
- Mathematical Biology Section, NIDDK/LBM, NIH, Bethesda, United States
| | - Eric Batchelor
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States.,Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, United States.,Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States
| | - S Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, NIH, Bethesda, United States
| | - David Levens
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States
| |
Collapse
|
4
|
Mills A, Bearce E, Cella R, Kim SW, Selig M, Lee S, Lowery LA. Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis. Front Physiol 2019; 10:431. [PMID: 31031646 PMCID: PMC6474402 DOI: 10.3389/fphys.2019.00431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 01/08/2023] Open
Abstract
Wolf-Hirschhorn Syndrome (WHS) is a human developmental disorder arising from a hemizygous perturbation, typically a microdeletion, on the short arm of chromosome four. In addition to pronounced intellectual disability, seizures, and delayed growth, WHS presents with a characteristic facial dysmorphism and varying prevalence of microcephaly, micrognathia, cartilage malformation in the ear and nose, and facial asymmetries. These affected craniofacial tissues all derive from a shared embryonic precursor, the cranial neural crest (CNC), inviting the hypothesis that one or more WHS-affected genes may be critical regulators of neural crest development or migration. To explore this, we characterized expression of multiple genes within or immediately proximal to defined WHS critical regions, across the span of craniofacial development in the vertebrate model system Xenopus laevis. This subset of genes, whsc1, whsc2, letm1, and tacc3, are diverse in their currently-elucidated cellular functions; yet we find that their expression demonstrates shared tissue-specific enrichment within the anterior neural tube, migratory neural crest, and later craniofacial structures. We examine the ramifications of this by characterizing craniofacial development and neural crest migration following individual gene depletion. We observe that several WHS-associated genes significantly impact facial patterning, cartilage formation, neural crest motility in vivo and in vitro, and can separately contribute to forebrain scaling. Thus, we have determined that numerous genes within and surrounding the defined WHS critical regions potently impact craniofacial patterning, suggesting their role in WHS presentation may stem from essential functions during neural crest-derived tissue formation.
Collapse
Affiliation(s)
- Alexandra Mills
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Elizabeth Bearce
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Rachael Cella
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Seung Woo Kim
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Megan Selig
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Sangmook Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Laura Anne Lowery
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
5
|
Chow CC, Simons SS. An Approach to Greater Specificity for Glucocorticoids. Front Endocrinol (Lausanne) 2018; 9:76. [PMID: 29593646 PMCID: PMC5859375 DOI: 10.3389/fendo.2018.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid steroids are among the most prescribed drugs each year. Nonetheless, the many undesirable side effects, and lack of selectivity, restrict their greater usage. Research to increase glucocorticoid specificity has spanned many years. These efforts have been hampered by the ability of glucocorticoids to both induce and repress gene transcription and also by the lack of success in defining any predictable properties that control glucocorticoid specificity. Correlations of transcriptional specificity have been observed with changes in steroid structure, receptor and chromatin conformation, DNA sequence for receptor binding, and associated cofactors. However, none of these studies have progressed to the point of being able to offer guidance for increased specificity. We summarize here a mathematical theory that allows a novel and quantifiable approach to increase selectivity. The theory applies to all three major actions of glucocorticoid receptors: induction by agonists, induction by antagonists, and repression by agonists. Simple graphical analysis of competition assays involving any two factors (steroid, chemical, peptide, protein, DNA, etc.) yields information (1) about the kinetically described mechanism of action for each factor at that step where the factor acts in the overall reaction sequence and (2) about the relative position of that step where each factor acts. These two pieces of information uniquely provide direction for increasing the specificity of glucocorticoid action. Consideration of all three modes of action indicate that the most promising approach for increased specificity is to vary the concentrations of those cofactors/pharmaceuticals that act closest to the observed end point. The potential for selectivity is even greater when varying cofactors/pharmaceuticals in conjunction with a select class of antagonists.
Collapse
Affiliation(s)
- Carson C. Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| | - S. Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| |
Collapse
|
6
|
Pradhan MA, Blackford JA, Devaiah BN, Thompson PS, Chow CC, Singer DS, Simons SS. Kinetically Defined Mechanisms and Positions of Action of Two New Modulators of Glucocorticoid Receptor-regulated Gene Induction. J Biol Chem 2015; 291:342-54. [PMID: 26504077 DOI: 10.1074/jbc.m115.683722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 11/06/2022] Open
Abstract
Most of the steps in, and many of the factors contributing to, glucocorticoid receptor (GR)-regulated gene induction are currently unknown. A competition assay, based on a validated chemical kinetic model of steroid hormone action, is now used to identify two new factors (BRD4 and negative elongation factor (NELF)-E) and to define their sites and mechanisms of action. BRD4 is a kinase involved in numerous initial steps of gene induction. Consistent with its complicated biochemistry, BRD4 is shown to alter both the maximal activity (Amax) and the steroid concentration required for half-maximal induction (EC50) of GR-mediated gene expression by acting at a minimum of three different kinetically defined steps. The action at two of these steps is dependent on BRD4 concentration, whereas the third step requires the association of BRD4 with P-TEFb. BRD4 is also found to bind to NELF-E, a component of the NELF complex. Unexpectedly, NELF-E modifies GR induction in a manner that is independent of the NELF complex. Several of the kinetically defined steps of BRD4 in this study are proposed to be related to its known biochemical actions. However, novel actions of BRD4 and of NELF-E in GR-controlled gene induction have been uncovered. The model-based competition assay is also unique in being able to order, for the first time, the sites of action of the various reaction components: GR < Cdk9 < BRD4 ≤ induced gene < NELF-E. This ability to order factor actions will assist efforts to reduce the side effects of steroid treatments.
Collapse
Affiliation(s)
- Madhumita A Pradhan
- From the Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology
| | - John A Blackford
- From the Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology
| | | | | | - Carson C Chow
- the Mathematical Biology Section, NIDDK/Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland 20892
| | | | - S Stoney Simons
- From the Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology,
| |
Collapse
|
7
|
Chow CC, Finn KK, Storchan GB, Lu X, Sheng X, Simons SS. Kinetically-defined component actions in gene repression. PLoS Comput Biol 2015; 11:e1004122. [PMID: 25816223 PMCID: PMC4376387 DOI: 10.1371/journal.pcbi.1004122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
Gene repression by transcription factors, and glucocorticoid receptors (GR) in particular, is a critical, but poorly understood, physiological response. Among the many unresolved questions is the difference between GR regulated induction and repression, and whether transcription cofactor action is the same in both. Because activity classifications based on changes in gene product level are mechanistically uninformative, we present a theory for gene repression in which the mechanisms of factor action are defined kinetically and are consistent for both gene repression and induction. The theory is generally applicable and amenable to predictions if the dose-response curve for gene repression is non-cooperative with a unit Hill coefficient, which is observed for GR-regulated repression of AP1LUC reporter induction by phorbol myristate acetate. The theory predicts the mechanism of GR and cofactors, and where they act with respect to each other, based on how each cofactor alters the plots of various kinetic parameters vs. cofactor. We show that the kinetically-defined mechanism of action of each of four factors (reporter gene, p160 coactivator TIF2, and two pharmaceuticals [NU6027 and phenanthroline]) is the same in GR-regulated repression and induction. What differs is the position of GR action. This insight should simplify clinical efforts to differentially modulate factor actions in gene induction vs. gene repression.
Collapse
Affiliation(s)
- Carson C. Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CCC); (SSS)
| | - Kelsey K. Finn
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geoffery B. Storchan
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xinping Lu
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaoyan Sheng
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - S. Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CCC); (SSS)
| |
Collapse
|
8
|
Abstract
The different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system, we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression. We now extend this framework to the actions of antisteroids in gene induction. The theory shows why changes in PAA cannot be explained simply by differences in ligand affinity for receptor and requires action at a second step or site in the overall sequence of reactions. The theory also provides a method for locating the position of this second site, relative to a concentration limited step (CLS), which is a previously identified step in glucocorticoid-regulated transactivation that always occurs at the same position in the overall sequence of events of gene induction. Finally, the theory predicts that classes of antagonist ligands may be grouped on the basis of their maximal PAA with excess added cofactor and that the members of each class differ by how they act at the same step in the overall gene induction process. Thus, this theory now makes it possible to predict how different cofactors modulate antisteroid PAA, which should be invaluable in developing more selective antagonists.
Collapse
Affiliation(s)
- Carson C Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD 20892-5621, USA
| | - Karen M Ong
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD 20892-5621, USA ; Computational Biology Program, New York University School of Medicine, New York, NY 10016, USA
| | - Benjamin Kagan
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD 20892-1772, USA ; Science Department, Tuscarora High School, Loudoun County Public Schools, Leesburg, VA 20176, USA
| | - S Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD 20892-1772, USA
| |
Collapse
|
9
|
C. Chow C, M. Ong K, Kagan B, Stoney Simons Jr. S. Theory of partial agonist activity of steroid hormones. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.2.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Blackford JA, Brimacombe KR, Dougherty EJ, Pradhan M, Shen M, Li Z, Auld DS, Chow CC, Austin CP, Simons SS. Research resource: modulators of glucocorticoid receptor activity identified by a new high-throughput screening assay. Mol Endocrinol 2014; 28:1194-206. [PMID: 24850414 DOI: 10.1210/me.2014-1069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoid steroids affect almost every type of tissue and thus are widely used to treat a variety of human pathological conditions. However, the severity of numerous side effects limits the frequency and duration of glucocorticoid treatments. Of the numerous approaches to control off-target responses to glucocorticoids, small molecules and pharmaceuticals offer several advantages. Here we describe a new, extended high-throughput screen in intact cells to identify small molecule modulators of dexamethasone-induced glucocorticoid receptor (GR) transcriptional activity. The novelty of this assay is that it monitors changes in both GR maximal activity (A(max)) and EC(50) (the position of the dexamethasone dose-response curve). Upon screening 1280 chemicals, 10 with the greatest changes in the absolute value of A(max) or EC(50) were selected for further examination. Qualitatively identical behaviors for 60% to 90% of the chemicals were observed in a completely different system, suggesting that other systems will be similarly affected by these chemicals. Additional analysis of the 10 chemicals in a recently described competition assay determined their kinetically defined mechanism and site of action. Some chemicals had similar mechanisms of action despite divergent effects on the level of the GR-induced product. These combined assays offer a straightforward method of identifying numerous new pharmaceuticals that can alter GR transactivation in ways that could be clinically useful.
Collapse
Affiliation(s)
- John A Blackford
- Steroid Hormones Section (J.A.B., E.J.D., M.P., S.S.S.), Laboratory of Endocrinology and Receptor Biology, and Laboratory of Biological Modeling (C.C.C.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and National Center for Advancing Translational Sciences (K.R.B., M.S., Z.L., D.S.A., C.P.A.), National Institutes of Health, Rockville, Maryland 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhu R, Lu X, Pradhan M, Armstrong S, Storchan GB, Chow C, Simons SS. A kinase-independent activity of Cdk9 modulates glucocorticoid receptor-mediated gene induction. Biochemistry 2014; 53:1753-67. [PMID: 24559102 PMCID: PMC3985961 DOI: 10.1021/bi5000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/20/2014] [Indexed: 12/18/2022]
Abstract
A gene induction competition assay has recently uncovered new inhibitory activities of two transcriptional cofactors, NELF-A and NELF-B, in glucocorticoid-regulated transactivation. NELF-A and -B are also components of the NELF complex, which participates in RNA polymerase II pausing shortly after the initiation of gene transcription. We therefore asked if cofactors (Cdk9 and ELL) best known to affect paused polymerase could reverse the effects of NELF-A and -B. Unexpectedly, Cdk9 and ELL augmented, rather than prevented, the effects of NELF-A and -B. Furthermore, Cdk9 actions are not blocked either by Ckd9 inhibitors (DRB or flavopiridol) or by two Cdk9 mutants defective in kinase activity. The mode and site of action of NELF-A and -B mutants with an altered NELF domain are similarly affected by wild-type and kinase-dead Cdk9. We conclude that Cdk9 is a new modulator of GR action, that Ckd9 and ELL have novel activities in GR-regulated gene expression, that NELF-A and -B can act separately from the NELF complex, and that Cdk9 possesses activities that are independent of Cdk9 kinase activity. Finally, the competition assay has succeeded in ordering the site of action of several cofactors of GR transactivation. Extension of this methodology should be helpful in determining the site and mode of action of numerous additional cofactors and in reducing unwanted side effects.
Collapse
Affiliation(s)
- Rong Zhu
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Xinping Lu
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Madhumita Pradhan
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Stephen
P. Armstrong
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Geoffrey B. Storchan
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Carson
C. Chow
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - S. Stoney Simons
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| |
Collapse
|
12
|
Fang YY, Li D, Cao C, Li CY, Li TT. Glucocorticoid receptor repression mediated by BRCA1 inactivation in ovarian cancer. BMC Cancer 2014; 14:188. [PMID: 24629067 PMCID: PMC4004164 DOI: 10.1186/1471-2407-14-188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/10/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND BRCA mutations are the main known hereditary factor for ovarian cancer. Notably, emerging evidence indicates that the glucocorticoid receptor (GR) has drawn considerable interest in ovarian cancer development. However, dynamic cross-talk between BRCA1 and GR signaling pathways are poorly understood. METHODS The regulatory effects of BRCA on GR were assessed in 146 serous ovarian cancer patients (28 pairs of BRCA1-mutated or not, 23 pairs of BRCA2-mutated or not, and 22 pairs with hypermethylated BRCA1 promoter or not). BRCA1 promoter methylation was analyzed by bisulfite sequencing using primers flanking the core promoter region. Expression levels of BRCA1 and GR were assessed by immunohistochemistry and real-time PCR. Regression analysis was used to examine the possible relationship between BRCA1 and GR expression levels. The knockdown and overexpression of BRCA1 were achieved using a lentiviral vector in 293 T cells, SKOV3 ovarian cancer cells, and primary non-mutated and BRCA1-mutated ovarian cancer cells. RESULTS GR expression levels were unchanged in non-BRCA1-mutated, non-BRCA2-mutated and BRCA2-mutated ovarian cancer compared to their normal tissues; BRCA1 repression (BRCA1 mutation or BRCA1 promoter hypermethylation) ovarian cancer showed decreased GR levels compared to normal tissue; there was a positive correlation between BRCA1 and GR expression in human ovarian cancer specimens; BRCA1 knockdown was effective at inhibiting GR expression, and overexpression of BRCA1 induces an increase in GR levels in ovarian cancer cells. CONCLUSIONS These results suggest that GR may be a potential target for BRCA1 in ovarian cancer progression.
Collapse
Affiliation(s)
- Yuan-Yuan Fang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Da Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Chen Cao
- Department of Pathology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chun-Yan Li
- Department of Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Ting-Ting Li
- Department of Medical Oncology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| |
Collapse
|