1
|
Wang Y, Gu Z, Zhang S, Li P. Complete Genome Sequencing Revealed the Potential Application of a Novel Weizmannia coagulans PL-W Production with Promising Bacteriocins in Food Preservative. Foods 2023; 12:216. [PMID: 36613432 PMCID: PMC9818457 DOI: 10.3390/foods12010216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Weizmannia coagulans is an important potential probiotic with dual characteristics of Bacillus and Lactobacillus. This study describes a novel Weizmannia coagulans PL-W with excellent antibacterial activity isolated from Mongolian traditional cheese, in which safety and probiotic potential were evaluated by complete genome sequencing. The crude bacteriocins of W. coagulans PL-W showed antibacterial activity against various foodborne pathogens, including Listeria monocytogenes CMCC 54,004, Bacillus cereus ATCC 14,579, and Staphylococcus aureus ATCC 25,923. Moreover, the crude bacteriocins have outstanding stability against pH, temperature, surfactants, and are sensitive to protease. The complete genome sequencing revealed W. coagulans PL-W consists of 3,666,052-base pair (bp) circular chromosomes with a GC content of 46.24% and 3485 protein-coding genes. It contains 84 tRNA, 10 23S rRNA, 10 16S rRNA, and 10 5S rRNA. In addition, no risk-related genes such as acquired antibiotic resistance genes, virulence, and pathogenic factors were identified, demonstrating that W. coagulans PL-W is safe to use. Furthermore, the presence of gene clusters involved in bacteriocin synthesis, adhesion-related genes, and genes contributing to acid and bile tolerance indicate that W. coagulans PL-W is a potential candidate probiotic. Thus, antimicrobial activity and genome characterization of W. coagulans PL-W demonstrate that it has extensive potential applications as a food protective culture.
Collapse
Affiliation(s)
| | | | | | - Pinglan Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Teng K, Huang F, Liu Y, Wang Y, Xia T, Yun F, Zhong J. Food and gut originated bacteriocins involved in gut microbe-host interactions. Crit Rev Microbiol 2022:1-13. [PMID: 35713699 DOI: 10.1080/1040841x.2022.2082860] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gut microbes interact with each other as well as host, influencing human health and some diseases. Many gut commensals and food originated bacteria produce bacteriocins which can inhibit pathogens and modulate gut microbiota. Bacteriocins have comparable narrow antimicrobial spectrum and are attractive potentials for precision therapy of gut disorders. In this review, the bacteriocins from food and gut microbiomes and their involvement in the interaction between producers and gut ecosystem, along with their characteristics, types, biosynthesis, and functions are described and discussed. Bacteriocins are produced by many intestinal commensals and food microbes among which lactic acid bacteria (many are probiotics) has been paid more attention. Bacteriocin production has been generally regarded as a probiotic trait. They give a competitive advantage to bacteria, enabling their colonization in human gut, and mediating the interaction between the producers and host ecosystem. They fight against unwanted bacteria and pathogens without significant impact on the composition of commensal microbiota. Bacteriocins assist the producers to survive and colonize in the gut microbial populations. There is a great need to evaluate and utilize the potential of bacteriocins for improved therapeutic implications for intestinal health.
Collapse
Affiliation(s)
- Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yudong Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tianqi Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fangfei Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Le T, Jeanne Dit Fouque K, Santos-Fernandez M, Navo CD, Jiménez-Osés G, Sarksian R, Fernandez-Lima FA, van der Donk WA. Substrate Sequence Controls Regioselectivity of Lanthionine Formation by ProcM. J Am Chem Soc 2021; 143:18733-18743. [PMID: 34724611 DOI: 10.1021/jacs.1c09370] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). The (methyl)lanthionine cross-links characteristic to lanthipeptides are essential for their stability and bioactivities. In most bacteria, lanthipeptides are maturated from single precursor peptides encoded in the corresponding biosynthetic gene clusters. However, cyanobacteria engage in combinatorial biosynthesis and encode as many as 80 substrate peptides with highly diverse sequences that are modified by a single lanthionine synthetase into lanthipeptides of different lengths and ring patterns. It is puzzling how a single enzyme could exert control over the cyclization processes of such a wide range of substrates. Here, we used a library of ProcA3.3 precursor peptide variants and show that it is not the enzyme ProcM but rather its substrate sequences that determine the regioselectivity of lanthionine formation. We also demonstrate the utility of trapped ion mobility spectrometry-tandem mass spectrometry (TIMS-MS/MS) as a fast and convenient method to efficiently separate lanthipeptide constitutional isomers, particularly in cases where the isomers cannot be resolved by conventional liquid chromatography. Our data allowed identification of factors that are important for the cyclization outcome, but also showed that there are no easily identifiable predictive rules for all sequences. Our findings provide a platform for future deep learning approaches to allow such prediction of ring patterns of products of combinatorial biosynthesis.
Collapse
Affiliation(s)
- Tung Le
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Miguel Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Francisco Alberto Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
CerR, a Single-Domain Regulatory Protein of the LuxR Family, Promotes Cerecidin Production and Immunity in Bacillus cereus. Appl Environ Microbiol 2018; 84:AEM.02245-17. [PMID: 29247062 DOI: 10.1128/aem.02245-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Cerecidins are small lantibiotics from Bacillus cereus that were obtained using a semi-in vitro biosynthesis strategy and showed prominent antimicrobial activities against certain Gram-positive bacteria. However, the parental strain B. cereus As 1.1846 is incapable of producing cerecidins, most probably due to the transcriptional repression of the cerecidin gene cluster. Located in the cerecidin gene cluster, cerR encodes a putative response regulator protein that belongs to the LuxR family transcriptional regulators. CerR (84 amino acids) contains only a conserved DNA binding domain and lacks a conventional phosphorylation domain, which is rarely found in lantibiotic gene clusters. To investigate its function in cerecidin biosynthesis, cerR was constitutively expressed in B. cereus As 1.1846. Surprisingly, Constitutive expression of cerR enabled the production of cerecidins and enhanced self-immunity of B. cereus toward cerecidins. Reverse transcription-PCR analysis and electrophoresis mobility shift assays indicated, respectively, that the cer cluster was transcribed in two transcripts (cerAM and cerRTPFE) and that CerR regulated the cerecidin gene cluster directly by binding to the two predicted promoter regions of cerA and cerR DNase I footprinting experiments further confirmed that CerR specifically bound to the two promoter regions at a conserved inverted repeat sequence that was designated a CerR binding motif (cerR box). The present study demonstrated that CerR, as the first single-domain LuxR family transcriptional regulator, serves as a transcriptional activator in cerecidin biosynthesis and activates the cerecidin gene cluster, which was otherwise cryptic in B. cereusIMPORTANCE Lantibiotics with intriguing and prominent bioactivities are potential peptide antibiotics that could be applied in many areas, including food and pharmaceutical industries. The biosynthesis of lantibiotics is generally controlled by two-component regulatory systems consisting of histidine kinases and response regulators, while some unique and interesting regulatory systems are also revealed with the ever-increasing discovery of lantibiotic gene clusters among diverse microorganisms. Dissection of diverse lantibiotic regulation machineries would permit deep understanding of the biological functions of lantibiotics in different niches and even enable genetic activation of lantibiotic gene clusters that are otherwise cryptic. The significance of our study is to illuminate the regulatory mechanism of a special single-domain protein, CerR, in regulating cerecidin biosynthesis in Bacillus cereus, providing a possible novel approach to activate cryptic lantibiotic clusters.
Collapse
|
6
|
Ge X, Teng K, Wang J, Zhao F, Zhang J, Zhong J. Identification of Key Residues in the NisK Sensor Region for Nisin Biosynthesis Regulation. Front Microbiol 2017; 8:106. [PMID: 28184221 PMCID: PMC5266694 DOI: 10.3389/fmicb.2017.00106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Abstract
Histidine kinase (HK) NisK is well known to sense lantibiotic nisin for regulating the biosynthesis of nisin. NisK possesses two trans-membrane segments and a large extracellular region and nisin contains 34 amino acids with five lanthionine rings. Unlike most peptide sensing HK with multi trans-membrane segments, NisK is a representative of a group of rarely reported HK that sense peptide as ligand. To reveal how NisK senses nisin molecule to regulate nisin biosynthesis, we constructed a reporter Lactococcus lactis strain with nisRK constitutively expressed and a reporter gene lacZ expressed under the control of promoter P nisA . We showed that the extracellular region of NisK was involved in recognizing nisin. Conserved residues in this group of HK were found in the extracellular region of NisK and mutagenesis of these residues in the reporter strain revealed that several hydrophobic residues including two aromatic residues are crucial for NisK sensing nisin and regulating nisin biosynthesis. Substitutions of hydrophobic regions in NisK extracellular domain showed that the first strand that was rich of hydrophobic amino acids was involved in regulating nisin biosynthesis. A negatively charged residue in the first βstrand also contributed to nisin biosynthesis. Protein binding analyses demonstrated that nisin could not interact with key NisK mutants, indicating these site in the extracellular region of NisK was involved in recognizing nisin.
Collapse
Affiliation(s)
- Xiaoxuan Ge
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Fangyuan Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
7
|
Davey L, Halperin SA, Lee SF. Thiol-Disulfide Exchange in Gram-Positive Firmicutes. Trends Microbiol 2016; 24:902-915. [PMID: 27426970 DOI: 10.1016/j.tim.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022]
Abstract
Extracytoplasmic thiol-disulfide oxidoreductases (TDORs) catalyze the oxidation, reduction, and isomerization of protein disulfide bonds. Although these processes have been characterized in Gram-negative bacteria, the majority of Gram-positive TDORs have only recently been discovered. Results from recent studies have revealed distinct trends in the types of TDOR used by different groups of Gram-positive bacteria, and in their biological functions. Actinobacteria TDORs can be essential for viability, while Firmicute TDORs influence various physiological processes, including protein stability, oxidative stress resistance, bacteriocin production, and virulence. In this review we discuss the diverse extracytoplasmic TDORs used by Gram-positive bacteria, with a focus on Gram-positive Firmicutes.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, B3H 4R2 Canada.
| |
Collapse
|
8
|
Zhang J, Zhong J. The journey of nisin development in China, a natural-green food preservative. Protein Cell 2016; 6:709-11. [PMID: 26423255 PMCID: PMC4598318 DOI: 10.1007/s13238-015-0214-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jie Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Type IV pilins regulate their own expression via direct intramembrane interactions with the sensor kinase PilS. Proc Natl Acad Sci U S A 2016; 113:6017-22. [PMID: 27162347 DOI: 10.1073/pnas.1512947113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type IV pili are important virulence factors for many pathogens, including Pseudomonas aeruginosa Transcription of the major pilin gene-pilA-is controlled by the PilS-PilR two-component system in response to unknown signals. The absence of a periplasmic sensing domain suggested that PilS may sense an intramembrane signal, possibly PilA. We suggest that direct interactions between PilA and PilS in the inner membrane reduce pilA transcription when PilA levels are high. Overexpression in trans of PilA proteins with diverse and/or truncated C termini decreased native pilA transcription, suggesting that the highly conserved N terminus of PilA was the regulatory signal. Point mutations in PilA or PilS that disrupted their interaction prevented autoregulation of pilA transcription. A subset of PilA point mutants retained the ability to interact with PilS but could no longer decrease pilA transcription, suggesting that interaction between the pilin and sensor kinase is necessary but not sufficient for pilA autoregulation. Furthermore, PilS's phosphatase motif was required for the autoregulation of pilA transcription, suggesting that under conditions where PilA is abundant, the PilA-PilS interaction promotes PilR dephosphorylation and thus down-regulation of further pilA transcription. These data reveal a clever bacterial inventory control strategy in which the major subunit of an important P. aeruginosa virulence factor controls its own expression.
Collapse
|
10
|
Ge X, Teng K, Wang J, Zhao F, Wang F, Zhang J, Zhong J. Ligand determinants of nisin for its induction activity. J Dairy Sci 2016; 99:5022-5031. [PMID: 27132090 DOI: 10.3168/jds.2015-10809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022]
Abstract
Nisin has been widely used in the food industry as a safe and natural preservative and has the potential to be used as a biomedicine. Improving nisin production is important for its enormous applications. Nisin A is produced in Lactococcus lactis and its biosynthesis is induced through the regulation of the 2-component system NisKR. In this study, alanine-scanning mutagenesis was applied to study the key structure or AA in nisin for inducing the 2-component system NisKR to regulate downstream gene expression. Assay of β-galactosidase activity revealed that either ring A or ring B was necessary for nisin to induce lacZ reporter gene expression. A substituted first ring formed by Thr2 and Cys7 in S3A instead of ring A (formed by Ser3 and Cys7) fully retained nisin induction activity. Mutation of cationic AA and addition of cationic ions hardly affected nisin induction activity. These results demonstrated that the N-terminal ring structures in nisin were involved in activating NisKR to act as an inducing molecule, whereas the electrostatic force might not contribute to this process. In addition, 2 specific residues were revealed to have potential for improving both nisin induction and antimicrobial activity, which might be used for increasing nisin production.
Collapse
Affiliation(s)
- Xiaoxuan Ge
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Engineering, University of Georgia, Athens 30602
| | - Fangyuan Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Fangfang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
11
|
Wang J, Ma H, Ge X, Zhang J, Teng K, Sun Z, Zhong J. Bovicin HJ50-like lantibiotics, a novel subgroup of lantibiotics featured by an indispensable disulfide bridge. PLoS One 2014; 9:e97121. [PMID: 24821187 PMCID: PMC4018250 DOI: 10.1371/journal.pone.0097121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Lantibiotics are ribosomally-synthesized and posttranslationally modified peptides with potent antimicrobial activities. Discovery of novel lantibiotics has been greatly accelerated with the soaring release of genomic information of microorganisms. As a unique class II lantibiotic, bovicin HJ50 is produced by Streptococcus bovis HJ50 and contains one rare disulfide bridge. By using its precursor BovA as a drive sequence, 16 BovA-like peptides were revealed in a wide variety of species. From them, three representative novel lan loci from Clostridium perfringens D str. JGS1721, Bacillus cereus As 1.348 and B. thuringiensis As 1.013 were identified by PCR screening. The corresponding mature lantibiotics designated perecin, cerecin and thuricin were obtained and structurally elucidated to be bovicin HJ50-like lantibiotics especially by containing a conserved disulfide bridge. The disulfide bridge was substantiated to be essential for the function of bovicin HJ50-like lantibiotics as its disruption eliminated their antimicrobial activities. Further analysis indicated that the disulfide bridge played a crucial role in maintaining the hydrophobicity of bovicin HJ50, which might facilitate it to exert antimicrobial function. This study unveiled a novel subgroup of disulfide-containing lantibiotics from bacteria of different niches and further demonstrated the indispensable role of disulfide bridge in these novel bovicin HJ50-like lantibiotics.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Hongchu Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiaoxuan Ge
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Zhizeng Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- * E-mail:
| |
Collapse
|