1
|
Han SP, Scherer L, Gethers M, Salvador AM, Salah MBH, Mancusi R, Sagar S, Hu R, DeRogatis J, Kuo YH, Marcucci G, Das S, Rossi JJ, Goddard WA. Programmable siRNA pro-drugs that activate RNAi activity in response to specific cellular RNA biomarkers. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:797-809. [PMID: 35116191 PMCID: PMC8789579 DOI: 10.1016/j.omtn.2021.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022]
Abstract
Since Paul Ehrlich's introduction of the "magic bullet" concept in 1908, drug developers have been seeking new ways to target drug activity to diseased cells while limiting effects on normal tissues. In recent years, it has been proposed that coupling riboswitches capable of detecting RNA biomarkers to small interfering RNAs (siRNAs) to create siRNA pro-drugs could selectively activate RNA interference (RNAi) activity in specific cells. However, this concept has not been achieved previously. We report here that we have accomplished this goal, validating a simple and programmable new design that functions reliably in mammalian cells. We show that these conditionally activated siRNAs (Cond-siRNAs) can switch RNAi activity against different targets between clearly distinguished OFF and ON states in response to different cellular RNA biomarkers. Notably, in a rat cardiomyocyte cell line (H9C2), one version of our construct demonstrated biologically meaningful inhibition of a heart-disease-related target gene protein phosphatase 3 catalytic subunit alpha (PPP3CA) in response to increased expression of the pathological marker atrial natriuretic peptide (NPPA) messenger RNA (mRNA). Our results demonstrate the ability of synthetic riboswitches to regulate gene expression in mammalian cells, opening a new path for development of programmable siRNA pro-drugs.
Collapse
Affiliation(s)
- Si-ping Han
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Lisa Scherer
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Matt Gethers
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ane M. Salvador
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marwa Ben Haj Salah
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Rebecca Mancusi
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Sahil Sagar
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Robin Hu
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Julia DeRogatis
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John J. Rossi
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
2
|
PARIS-DJ-1 Interaction Regulates Mitochondrial Functions in Cardiomyocytes, Which Is Critically Important in Cardiac Hypertrophy. Mol Cell Biol 2020; 41:MCB.00106-20. [PMID: 33077496 DOI: 10.1128/mcb.00106-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction is one of the major pathological attributes of cardiac hypertrophy and is associated with reduced expression of PGC1α in cardiomyocytes. However, the transcriptional regulation of PGC1α remains elusive. Here, we show that parkin interacting substrate (PARIS), a KRAB zinc finger protein, prevented PGC1α transcription despite the induction of cardiomyocytes with hypertrophic stimuli. Moreover, PARIS expression and its nuclear localization are enhanced in hypertrophy both in vitro and in vivo Knocking down PARIS resulted in mitochondrial biogenesis and improved respiration and other biochemical features that were compromised during hypertrophy. Furthermore, a PARIS-dependent proteome showed exclusive binding of a deSUMOylating protein called DJ-1 to PARIS in control cells, while this interaction is completely abrogated in hypertrophied cells. We further demonstrate that proteasomal degradation of DJ-1 under oxidative stress led to augmented PARIS SUMOylation and consequent repression of PGC1α promoter activity. SUMOylation-resistant mutants of PARIS failed to repress PGC1α, suggesting a critical role for PARIS SUMOylation in hypertrophy. The present study, therefore, proposes a novel regulatory pathway where DJ-1 acts as an oxidative stress sensor and contributes to the feedback loop governing PARIS-mediated mitochondrial function.
Collapse
|
3
|
Das AA, Choudhury KR, Jagadeeshaprasad MG, Kulkarni MJ, Mondal PC, Bandyopadhyay A. Proteomic analysis detects deregulated reverse cholesterol transport in human subjects with ST-segment elevation myocardial infarction. J Proteomics 2020; 222:103796. [PMID: 32376501 DOI: 10.1016/j.jprot.2020.103796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/05/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
Reverse cholesterol transport (RCT) plays a critical role in removing cholesterol from the arterial wall. However, very few reports directly relate chronic inflammation and RCT with atherosclerosis. The present study was undertaken to investigate clinical implications of significantly altered circulating proteins in subjects with ST-segment elevation myocardial infarction (STEMI) in the manifestation of atherosclerotic events. Using a case-control design, more than 2500 proteins in both STEMI and healthy control subjects were identified by Orbitrap mass spectrometer. Quantitative proteomics study revealed downregulation of 26 proteins while expression of 38 proteins increased significantly in STEMI subjects compared to healthy controls. Pathway enrichment analyses indicated that most of the identified proteins were related to chronic inflammation, atherosclerosis, and RCT. Altered proteins such as AZGP1, ABCA5, Calicin, PGLYRP2, HAVCR2 and C17ORF57 were further validated by Western blotting analysis of human plasma. Pathophysiological significance was studied using macrophage derived foam cell for their critical role in RCT which indicated the imbalance of RCT via the interaction of AZGP1 with CD36. In summary, this study revealed a unique relationship of some novel proteins apparently responsible for impaired RCT and chronic inflammation leading to atherothrombosis and myocardial infarction. SIGNIFICANCE: In the present study we identified ≥2500 unique circulating proteins in healthy control and clinically diagnosed STEMI subjects among which 423 proteins were found to be common in both the groups. We further show 64 proteins significantly different between healthy control and STEMI subjects. Proteomic analyses reveal a panel of proteins associated with atherosclerosis and STEMI. One of the proteins, AZGP1, an adipokine, is likely to act as the missing link between chronic inflammation and cholesterol transport. Deregulation of reverse cholesterol transport might be orchestrated by AZGP1, CD36, ABCA5, and PPARɣ in STEMI subjects. The present study employs shotgun and quantitative proteomics followed by in vitro validations demonstrating a biochemical basis for reverse cholesterol transport in the local milieu of the luminal wall of the artery which are critical for plaque build-up and atherosclerosis.
Collapse
Affiliation(s)
- Apabrita Ayan Das
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology (TRUE campus), Kolkata 700091, India
| | - Kamalika Roy Choudhury
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology (TRUE campus), Kolkata 700091, India
| | | | | | | | - Arun Bandyopadhyay
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology (TRUE campus), Kolkata 700091, India.
| |
Collapse
|
4
|
Elevated level of circulatory sTLT1 induces inflammation through SYK/MEK/ERK signalling in coronary artery disease. Clin Sci (Lond) 2020; 133:2283-2299. [PMID: 31713591 DOI: 10.1042/cs20190999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022]
Abstract
The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)-/- mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with Fcɣ receptor I (FcɣRI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE-/- mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcɣR1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.
Collapse
|
5
|
Saleem N, Goswami SK. Activation of adrenergic receptor in H9c2 cardiac myoblasts co-stimulates Nox2 and the derived ROS mediate the downstream responses. Mol Cell Biochem 2017; 436:167-178. [PMID: 28593564 DOI: 10.1007/s11010-017-3088-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/01/2017] [Indexed: 01/04/2023]
Abstract
In recent years, NADPH oxidases (Noxes) have emerged as an important player in cardiovascular pathophysiology. Despite the growing evidences on the role of specific Nox isoforms, mechanisms of their activation, targets of reactive oxygen species (ROS) generated, and their downstream effects are poorly understood as yet. In this study, we treated H9c2 cardiac myoblasts with norepinephrine (NE, 2 µM), inducing ROS generation that was inhibited by Nox2-specific peptide inhibitor gp91ds-tat. Organelle-specific hydrogen peroxide-sensitive probe HyPer showed that the site of ROS generation is primarily in the cytosol, to some extent in the endoplasmic reticulum (ER) but not the mitochondria. Modulation of mRNAs of marker genes of cardiac hypertrophy i.e. induction in ANP and β-MHC, and reduction in α-MHC by NE treatment was prevented by specific inhibition of Nox2 by gp91ds-tat. Induction of ANP and β-MHC at the protein level were also attenuated by the inhibition of Nox2. Induction of c-Jun and FosB, the two members of the transcription factor family AP-1, were also blocked by the inhibition of Nox2 by gp91ds-tat. Induction of promoter-reporter constructs harboring multiple AP-1 elements and the upstream of FosB and ANP genes by NE were also blocked by the inhibition of Nox2 by gp91ds-tat and a dominant negative mutant of p22phox, a constituent of Nox2 that prevents its activation. This study for the first time establishes the significant role of Nox2 in mediating the NE-induced pathological adrenergic signaling in cardiac myoblasts.
Collapse
Affiliation(s)
- Nikhat Saleem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
FKBP65-dependent peptidyl-prolyl isomerase activity potentiates the lysyl hydroxylase 2-driven collagen cross-link switch. Sci Rep 2017; 7:46021. [PMID: 28378777 PMCID: PMC5380960 DOI: 10.1038/srep46021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
Bruck Syndrome is a connective tissue disease associated with inactivating mutations in lysyl hydroxylase 2 (LH2/PLOD2) or FK506 binding protein 65 (FKBP65/FKBP10). However, the functional relationship between LH2 and FKBP65 remains unclear. Here, we postulated that peptidyl prolyl isomerase (PPIase) activity of FKBP65 positively modulates LH2 enzymatic activity and is critical for the formation of hydroxylysine-aldehyde derived intermolecular collagen cross-links (HLCCs). To test this hypothesis, we analyzed collagen cross-links in Fkbp10-null and –wild-type murine embryonic fibroblasts. Although LH2 protein levels did not change, FKBP65 deficiency significantly diminished HLCCs and increased the non-hydroxylated lysine-aldehyde–derived collagen cross-links (LCCs), a pattern consistent with loss of LH2 enzymatic activity. The HLCC-to-LCC ratio was rescued in FKBP65-deficient murine embryonic fibroblasts by reconstitution with wild-type but not mutant FKBP65 that lacks intact PPIase domains. Findings from co-immunoprecipitation, protein-fragment complementation, and co-immunofluorescence assays showed that LH2 and FKBP65 are part of a common protein complex. We conclude that FKBP65 regulates LH2-mediated collagen cross-linking. Because LH2 promotes fibrosis and cancer metastasis, our findings suggest that pharmacologic strategies to target FKBP65 and LH2 may have complementary therapeutic activities.
Collapse
|
7
|
Tan X, Banerjee P, Guo HF, Ireland S, Pankova D, Ahn YH, Nikolaidis IM, Liu X, Zhao Y, Xue Y, Burns AR, Roybal J, Gibbons DL, Zal T, Creighton CJ, Ungar D, Wang Y, Kurie JM. Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11. J Clin Invest 2016; 127:117-131. [PMID: 27869652 DOI: 10.1172/jci88736] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/06/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor cells gain metastatic capacity through a Golgi phosphoprotein 3-dependent (GOLPH3-dependent) Golgi membrane dispersal process that drives the budding and transport of secretory vesicles. Whether Golgi dispersal underlies the pro-metastatic vesicular trafficking that is associated with epithelial-to-mesenchymal transition (EMT) remains unclear. Here, we have shown that, rather than causing Golgi dispersal, EMT led to the formation of compact Golgi organelles with improved ribbon linking and cisternal stacking. Ectopic expression of the EMT-activating transcription factor ZEB1 stimulated Golgi compaction and relieved microRNA-mediated repression of the Golgi scaffolding protein PAQR11. Depletion of PAQR11 dispersed Golgi organelles and impaired anterograde vesicle transport to the plasma membrane as well as retrograde vesicle tethering to the Golgi. The N-terminal scaffolding domain of PAQR11 was associated with key regulators of Golgi compaction and vesicle transport in pull-down assays and was required to reconstitute Golgi compaction in PAQR11-deficient tumor cells. Finally, high PAQR11 levels were correlated with EMT and shorter survival in human cancers, and PAQR11 was found to be essential for tumor cell migration and metastasis in EMT-driven lung adenocarcinoma models. We conclude that EMT initiates a PAQR11-mediated Golgi compaction process that drives metastasis.
Collapse
|
8
|
Banerjee P, Chander V, Bandyopadhyay A. Balancing functions of annexin A6 maintain equilibrium between hypertrophy and apoptosis in cardiomyocytes. Cell Death Dis 2015; 6:e1873. [PMID: 26335715 PMCID: PMC4650436 DOI: 10.1038/cddis.2015.231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/11/2023]
Abstract
Pathological cardiac hypertrophy is a major risk factor associated with heart failure, a state concomitant with increased cell death. However, the mechanism governing progression of hypertrophy to apoptosis at the single-cell level remains elusive. Here, we demonstrate annexin A6 (Anxa6), a calcium (Ca(2+))-dependent phospholipid-binding protein critically regulates the transition of chronic hypertrophied cardiomyocytes to apoptosis. Treatment of the H9c2(2-1) cardiomyocytes with hypertrophic agonists upregulates and relocalizes Anxa6 with increased cytosolic punctate appearance. Live cell imaging revealed that chronic exposure to hypertrophic agonists such as phenylephrine (PE) compromises the mitochondrial membrane potential (ΔΨm) and morphological dynamics. Such chronic hypertrophic induction also activated the caspases 9 and 3 and induced cleavage of the poly-(ADP-ribose) polymerase 1 (Parp1), which are the typical downstream events in the mitochondrial pathways of apoptosis. An increased rate of apoptosis was evident in the hypertrophied cardiomyocytes after 48-72 h of treatment with the hypertrophic agonists. Anxa6 was progressively associated with the mitochondrial fraction under chronic hypertrophic stimulation, and Anxa6 knockdown severely abrogated mitochondrial network and dynamics. Ectopically expressed Anxa6 protected the mitochondrial morphology and dynamics under PE treatment, and also increased the cellular susceptibility to apoptosis. Biochemical analysis showed that Anxa6 interacts with Parp1 and its 89 kDa cleaved product in a Ca(2+)-dependent manner through the N-terminal residues (1-28). Furthermore, expression of Anxa6(S13E), a mutant dominant negative with respect to Parp1 binding, served as an enhancer of mitochondrial dynamics, even under chronic PE treatment. Chemical inhibition of Parp1 activity released the cellular vulnerability to apoptosis in Anxa6-expressing stable cell lines, thereby shifting the equilibrium away from cell death. Taken together, the present study depicts a dual regulatory function of Anxa6 that is crucial for balancing hypertrophy with apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- P Banerjee
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, West Bengal, India
| | - V Chander
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, West Bengal, India
| | - A Bandyopadhyay
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, West Bengal, India
| |
Collapse
|
9
|
Yang L, Yu D, Fan HH, Feng Y, Hu L, Zhang WY, Zhou K, Mo XM. Triggering the succinate receptor GPR91 enhances pressure overload-induced right ventricular hypertrophy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5415-5428. [PMID: 25337184 PMCID: PMC4203155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/26/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) leads to pressure overload in the right ventricle (RV) and induces right ventricular hypertrophy (RVH). GPR91 is an orphan G-protein-coupled receptor (GPCR) that has been characterized as a receptor for succinate, which increases in RVH; however, its role remains unknown. METHODS AND RESULTS We studied succinate-GPR91 signaling in a pulmonary arterial banding (PAB) model of RVH in the SD rats due to pressure overload. We report that GPR91 was located in cardiomyocytes. We found that the expressions of GPR91 and p-Akt in the RV significantly increased in the PAB model compared with the sham. In the PAB rats, the treatment of succinate further increased the p-Akt levels and aggravated RVH in vivo. In in vitro studies, succinate stimulated the up-regulation of the hypertrophic gene marker anp. All these effects were inhibited by the antagonist of PI3K, wortmannin, both in vivo and in vitro. Finally, we found that the GPR91-PI3K/Akt axis was also up-regulated compared with the sham in human RVH. CONCLUSIONS Our results suggest that succinate-GPR91 is involved in RVH via PI3K/Akt signaling in vivo and in vitro. GPR91 may be a novel therapeutic target for RVH induced by pressure overload.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/complications
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Succinic Acid/toxicity
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiothoracic Surgery, Nanjing Children’s Hospital Affiliated of Nanjing Medical UniversityJiangsu Province, China
| | - Di Yu
- Department of Cardiothoracic Surgery, Nanjing Children’s Hospital Affiliated of Nanjing Medical UniversityJiangsu Province, China
| | - Huan-Huan Fan
- Department of Gynaecology, Jiangsu Province Hospital of TCMJiangsu Province, China
| | - Yu Feng
- Department of Cardiothoracic Surgery, Nanjing Children’s Hospital Affiliated of Nanjing Medical UniversityJiangsu Province, China
| | - Liang Hu
- Department of Cardiothoracic Surgery, Nanjing Children’s Hospital Affiliated of Nanjing Medical UniversityJiangsu Province, China
| | - Wei-Yan Zhang
- Department of Cardiothoracic Surgery, Nanjing Children’s Hospital Affiliated of Nanjing Medical UniversityJiangsu Province, China
| | - Kai Zhou
- Department of Cardiothoracic Surgery, Nanjing Children’s Hospital Affiliated of Nanjing Medical UniversityJiangsu Province, China
| | - Xu-Ming Mo
- Department of Cardiothoracic Surgery, Nanjing Children’s Hospital Affiliated of Nanjing Medical UniversityJiangsu Province, China
| |
Collapse
|