1
|
Butt L, Unnersjö-Jess D, Reilly D, Hahnfeldt R, Rinschen MM, Bozek K, Schermer B, Benzing T, Höhne M. In vivo characterization of a podocyte-expressed short podocin isoform. BMC Nephrol 2023; 24:378. [PMID: 38114895 PMCID: PMC10731740 DOI: 10.1186/s12882-023-03420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
The most common genetic causes of steroid-resistant nephrotic syndrome (SRNS) are mutations in the NPHS2 gene, which encodes the cholesterol-binding, lipid-raft associated protein podocin. Mass spectrometry and cDNA sequencing revealed the existence of a second shorter isoform in the human kidney in addition to the well-studied canonical full-length protein. Distinct subcellular localization of the shorter isoform that lacks part of the conserved PHB domain suggested a physiological role. Here, we analyzed whether this protein can substitute for the canonical full-length protein. The short isoform of podocin is not found in other organisms except humans. We therefore analysed a mouse line expressing the equivalent podocin isoform (podocinΔexon5) by CRISPR/Cas-mediated genome editing. We characterized the phenotype of these mice expressing podocinΔexon5 and used targeted mass spectrometry and qPCR to compare protein and mRNA levels of podocinwildtype and podocinΔexon5. After immunolabeling slit diaphragm components, STED microscopy was applied to visualize alterations of the podocytes' foot process morphology.Mice homozygous for podocinΔexon5 were born heavily albuminuric and did not survive past the first 24 h after birth. Targeted mass spectrometry revealed massively decreased protein levels of podocinΔexon5, whereas mRNA abundance was not different from the canonical form of podocin. STED microscopy revealed the complete absence of podocin at the podocytes' slit diaphragm and severe morphological alterations of podocyte foot processes. Mice heterozygous for podocinΔexon5 were phenotypically and morphologically unaffected despite decreased podocin and nephrin protein levels.The murine equivalent to the human short isoform of podocin cannot stabilize the lipid-protein complex at the podocyte slit diaphragm. Reduction of podocin levels at the site of the slit diaphragm complex has a detrimental effect on podocyte function and morphology. It is associated with decreased protein abundance of nephrin, the central component of the filtration-slit forming slit diaphragm protein complex.
Collapse
Grants
- KFO 329, BR4917/3, INST 1856/71-1 FUGG Deutsche Forschungsgemeinschaft
- KFO 329, BR4917/3, INST 1856/71-1 FUGG Deutsche Forschungsgemeinschaft
- KFO 329, BR4917/3, INST 1856/71-1 FUGG Deutsche Forschungsgemeinschaft
- KFO 329, BR4917/3, INST 1856/71-1 FUGG Deutsche Forschungsgemeinschaft
- KFO 329, BR4917/3, INST 1856/71-1 FUGG Deutsche Forschungsgemeinschaft
- Project No: 2019_KollegSE.04 Else Kröner-Fresenius-Stiftung,Germany
- Project No: 2019_KollegSE.04 Eva Luise und Horst Köhler Stiftung
- NNF19OC0056043 Novo Nordisk Fonden
- Young Researcher Fellowship Carlsbergfondet
- 311-8.03.03.02-147635 North Rhine-Westphalia return program
- 01ZX1917B Bundesministerium für Bildung und Forschung
- BMBF 01-GM1901E Bundesministerium für Bildung und Forschung
- Universitätsklinikum Köln (8977)
Collapse
Affiliation(s)
- Linus Butt
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, University Hospital Cologne, CECAD Building, Joseph-Stelzmann-Str. 62, 50931, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, University Hospital Cologne, CECAD Building, Joseph-Stelzmann-Str. 62, 50931, Cologne, Germany
- MedTechLabs, Karolinska University Hospital, Solna, Sweden
| | - Dervla Reilly
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
| | - Robert Hahnfeldt
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
| | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, University Hospital Cologne, CECAD Building, Joseph-Stelzmann-Str. 62, 50931, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, University Hospital Cologne, CECAD Building, Joseph-Stelzmann-Str. 62, 50931, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, University Hospital Cologne, CECAD Building, Joseph-Stelzmann-Str. 62, 50931, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany.
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Gerlach GF, Imseis ZH, Cooper SL, Santos AN, O’Brien LL. Mapping of the podocin proximity-dependent proteome reveals novel components of the kidney podocyte foot process. Front Cell Dev Biol 2023; 11:1195037. [PMID: 37325559 PMCID: PMC10262054 DOI: 10.3389/fcell.2023.1195037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The unique architecture of glomerular podocytes is integral to kidney filtration. Interdigitating foot processes extend from the podocyte cell body, wrap around fenestrated capillaries, and form specialized junctional complexes termed slit diaphragms to create a molecular sieve. However, the full complement of proteins which maintain foot process integrity, and how this localized proteome changes with disease, remain to be elucidated. Methods: Proximity-dependent biotin identification (BioID) enables the identification of spatially localized proteomes. To this end, we developed a novel in vivo BioID knock-in mouse model. We utilized the slit diaphragm protein podocin (Nphs2) to create a podocin-BioID fusion. Podocin-BioID localizes to the slit diaphragm, and biotin injection leads to podocyte-specific protein biotinylation. We isolated the biotinylated proteins and performed mass spectrometry to identify proximal interactors. Results and Discussion: Gene ontology analysis of 54 proteins specifically enriched in our podocin-BioID sample revealed 'cell junctions,' 'actin binding,' and 'cytoskeleton organization' as top terms. Known foot process components were identified, and we further uncovered two novel proteins: the tricellular junctional protein Ildr2 and the CDC42 and N-WASP interactor Fnbp1l. We confirmed that Ildr2 and Fnbp1l are expressed by podocytes and partially colocalize with podocin. Finally, we investigated how this proteome changes with age and uncovered a significant increase in Ildr2. This was confirmed by immunofluorescence on human kidney samples and suggests altered junctional composition may preserve podocyte integrity. Together, these assays have led to new insights into podocyte biology and support the efficacy of utilizing BioID in vivo to interrogate spatially localized proteomes in health, aging, and disease.
Collapse
Affiliation(s)
| | | | | | | | - Lori L. O’Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Dorison A, Ghobrial I, Graham A, Peiris T, Forbes TA, See M, Das M, Saleem MA, Quinlan C, Lawlor KT, Ramialison M, Howden SE, Little MH. Kidney Organoids Generated Using an Allelic Series of NPHS2 Point Variants Reveal Distinct Intracellular Podocin Mistrafficking. J Am Soc Nephrol 2023; 34:88-109. [PMID: 36167728 PMCID: PMC10101587 DOI: 10.1681/asn.2022060707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND NPHS2 variants are the most common cause of steroid-resistant nephrotic syndrome in children >1 month old. Missense NPHS2 variants were reported to cause mistrafficking of the encoded protein, PODOCIN, but this conclusion was on the basis of overexpression in some nonpodocyte cell lines. METHODS We generated a series of human induced pluripotent stem cell (iPSC) lines bearing pathogenic missense variants of NPHS2 , encoding the protein changes p.G92C, p.P118L, p.R138Q, p.R168H, and p.R291W, and control lines. iPSC lines were also generated from a patient with steroid-resistant nephrotic syndrome (p.R168H homozygote) and a healthy heterozygous parent. All lines were differentiated into kidney organoids. Immunofluorescence assessed PODOCIN expression and subcellular localization. Podocytes were transcriptionally profiled and PODOCIN-NEPHRIN interaction interrogated. RESULTS All variant lines revealed reduced levels of PODOCIN protein in the absence of reduced transcription. Although wild-type PODOCIN localized to the membrane, distinct variant proteins displayed unique patterns of subcellular protein trafficking, some unreported. P118L and R138Q were preferentially retained in the endoplasmic reticulum (ER); R168H and R291W accumulated in the Golgi. Podocyte profiling demonstrated minimal disease-associated transcriptional change. All variants displayed podocyte-specific apoptosis, which was not linked to ER stress. NEPHRIN-PODOCIN colocalization elucidated the variant-specific effect on NEPHRIN association and hence NEPHRIN trafficking. CONCLUSIONS Specific variants of endogenous NPHS2 result in distinct subcellular PODOCIN localization within organoid podocytes. Understanding the effect of each variant on protein levels and localization and the effect on NEPHRIN provides additional insight into the pathobiology of NPHS2 variants. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_01_05_JASN2022060707.mp3.
Collapse
Affiliation(s)
- Aude Dorison
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irene Ghobrial
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Alison Graham
- Murdoch Children’s Research Institute, Melbourne, Australia
| | | | - Thomas A. Forbes
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Royal Children’s Hospital, Melbourne, Australia
| | - Michael See
- Murdoch Children’s Research Institute, Melbourne, Australia
- Monash Bioinformatics Platform, Monash University, Clayton, Australia
| | - Mithun Das
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Moin A. Saleem
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Catherine Quinlan
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Royal Children’s Hospital, Melbourne, Australia
| | - Kynan T. Lawlor
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mirana Ramialison
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
- Australian Regenerative Medicine Institute, Clayton, Australia
| | - Sara E. Howden
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Melissa H. Little
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
A slit-diaphragm-associated protein network for dynamic control of renal filtration. Nat Commun 2022; 13:6446. [PMID: 36307401 PMCID: PMC9616960 DOI: 10.1038/s41467-022-33748-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/29/2022] [Indexed: 12/25/2022] Open
Abstract
The filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins. The network constituents cover distinct classes of proteins including signaling-receptors, kinases/phosphatases, transporters and scaffolds. Knockout or knock-down of either the core components or the selected network constituents tyrosine kinase MER (MERTK), atrial natriuretic peptide-receptor C (ANPRC), integral membrane protein 2B (ITM2B), membrane-associated guanylate-kinase, WW and PDZ-domain-containing protein1 (MAGI1) and amyloid protein A4 resulted in target-specific impairment or disruption of the filtration process. Our results identify the slit-diaphragm as a multi-component system that is endowed with context-dependent dynamics via a co-assembled protein network.
Collapse
|
5
|
Butt L, Unnersjö-Jess D, Höhne M, Hahnfeldt R, Reilly D, Rinschen MM, Plagmann I, Diefenhardt P, Brähler S, Brinkkötter PT, Brismar H, Blom H, Schermer B, Benzing T. Super-Resolution Imaging of the Filtration Barrier Suggests a Role for Podocin R229Q in Genetic Predisposition to Glomerular Disease. J Am Soc Nephrol 2022; 33:138-154. [PMID: 34853150 PMCID: PMC8763184 DOI: 10.1681/asn.2020060858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Diseases of the kidney's glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results. METHODS To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (PodR231Q ). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments. RESULTS Heterozygous PodR231Q/wild-type mice did not present any overt kidney disease or proteinuria. However, homozygous PodR231Q/R231Q mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous PodR231Q/wild-type mice showed a more severe course of disease compared with Podwild-type/wild-type mice. Podocin protein levels were decreased in PodR231Q/wild-type and PodR231Q/R231Q mice as well as in human cultured podocytes expressing the podocinR231Q variant. Our in vitro experiments indicate an underlying increased proteasomal degradation. CONCLUSIONS Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients.
Collapse
Affiliation(s)
- Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Robert Hahnfeldt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Dervla Reilly
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Markus M. Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Plagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Sebastian Brähler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Paul T. Brinkkötter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Hans Blom
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
6
|
Völker LA, Maar BA, Pulido Guevara BA, Bilkei-Gorzo A, Zimmer A, Brönneke H, Dafinger C, Bertsch S, Wagener JR, Schweizer H, Schermer B, Benzing T, Hoehne M. Neph2/Kirrel3 regulates sensory input, motor coordination, and home-cage activity in rodents. GENES BRAIN AND BEHAVIOR 2018; 17:e12516. [DOI: 10.1111/gbb.12516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/22/2018] [Accepted: 08/17/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Linus A. Völker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| | - Barbara A. Maar
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| | - Barbara A. Pulido Guevara
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry; Medical Faculty of the University of Bonn; Bonn Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry; Medical Faculty of the University of Bonn; Bonn Germany
| | - Hella Brönneke
- Mouse Phenotyping Core Facility; Cologne Excellence Cluster on Cellular Stress Responses (CECAD); 50931 Cologne Germany
| | - Claudia Dafinger
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| | - Sabine Bertsch
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
| | - Jan-Robin Wagener
- Institute for Neuroanatomy, Universitätsmedizin Göttingen; Georg-August-University Göttingen; Göttingen Germany
| | - Heiko Schweizer
- Renal Division; University Hospital Freiburg; Freiburg Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
- Systems Biology of Ageing Cologne (Sybacol); University of Cologne; Cologne Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
- Systems Biology of Ageing Cologne (Sybacol); University of Cologne; Cologne Germany
| | - Martin Hoehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
- Systems Biology of Ageing Cologne (Sybacol); University of Cologne; Cologne Germany
| |
Collapse
|
7
|
Yu SMW, Nissaisorakarn P, Husain I, Jim B. Proteinuric Kidney Diseases: A Podocyte's Slit Diaphragm and Cytoskeleton Approach. Front Med (Lausanne) 2018; 5:221. [PMID: 30255020 PMCID: PMC6141722 DOI: 10.3389/fmed.2018.00221] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 01/19/2023] Open
Abstract
Proteinuric kidney diseases are a group of disorders with diverse pathological mechanisms associated with significant losses of protein in the urine. The glomerular filtration barrier (GFB), comprised of the three important layers, the fenestrated glomerular endothelium, the glomerular basement membrane (GBM), and the podocyte, dictates that disruption of any one of these structures should lead to proteinuric disease. Podocytes, in particular, have long been considered as the final gatekeeper of the GFB. This specialized visceral epithelial cell contains a complex framework of cytoskeletons forming foot processes and mediate important cell signaling to maintain podocyte health. In this review, we will focus on slit diaphragm proteins such as nephrin, podocin, TRPC6/5, as well as cytoskeletal proteins Rho/small GTPases and synaptopodin and their respective roles in participating in the pathogenesis of proteinuric kidney diseases. Furthermore, we will summarize the potential therapeutic options targeting the podocyte to treat this group of kidney diseases.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States
| | | | - Irma Husain
- Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Belinda Jim
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States.,Renal Division, Jacobi Medical Center, Bronx, NY, United States
| |
Collapse
|
8
|
Serrano-Perez MC, Tilley FC, Nevo F, Arrondel C, Sbissa S, Martin G, Tory K, Antignac C, Mollet G. Endoplasmic reticulum-retained podocin mutants are massively degraded by the proteasome. J Biol Chem 2018; 293:4122-4133. [PMID: 29382718 DOI: 10.1074/jbc.ra117.001159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Podocin is a key component of the slit diaphragm in the glomerular filtration barrier, and mutations in the podocin-encoding gene NPHS2 are a common cause of hereditary steroid-resistant nephrotic syndrome. A mutant allele encoding podocin with a p.R138Q amino acid substitution is the most frequent pathogenic variant in European and North American children, and the corresponding mutant protein is poorly expressed and retained in the endoplasmic reticulum both in vitro and in vivo To better understand the defective trafficking and degradation of this mutant, we generated human podocyte cell lines stably expressing podocinwt or podocinR138Q Although it has been proposed that podocin has a hairpin topology, we present evidence for podocinR138QN-glycosylation, suggesting that most of the protein has a transmembrane topology. We find that N-glycosylated podocinR138Q has a longer half-life than non-glycosylated podocinR138Q and that the latter is far more rapidly degraded than podocinwt Consistent with its rapid degradation, podocinR138Q is exclusively degraded by the proteasome, whereas podocinwt is degraded by both the proteasomal and the lysosomal proteolytic machineries. In addition, we demonstrate an enhanced interaction of podocinR138Q with calnexin as the mechanism of endoplasmic reticulum retention. Calnexin knockdown enriches the podocinR138Q non-glycosylated fraction, whereas preventing exit from the calnexin cycle increases the glycosylated fraction. Altogether, we propose a model in which hairpin podocinR138Q is rapidly degraded by the proteasome, whereas transmembrane podocinR138Q degradation is delayed due to entry into the calnexin cycle.
Collapse
Affiliation(s)
- Maria-Carmen Serrano-Perez
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Frances C Tilley
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Fabien Nevo
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Christelle Arrondel
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Selim Sbissa
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Gaëlle Martin
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Kalman Tory
- the MTA-SE Lendület Nephrogenetic Laboratory, Hungarian Academy of Sciences and First Department of Pediatrics, Semmelweis University, Budapest 1083, Hungary, and
| | - Corinne Antignac
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France.,the Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Géraldine Mollet
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France, .,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| |
Collapse
|
9
|
Kim EY, Roshanravan H, Dryer SE. Changes in podocyte TRPC channels evoked by plasma and sera from patients with recurrent FSGS and by putative glomerular permeability factors. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2342-2354. [PMID: 28629718 PMCID: PMC5557291 DOI: 10.1016/j.bbadis.2017.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Primary forms of focal and segmental glomerulosclerosis (FSGS) are driven by circulating factors that cause dysfunction or loss podocytes. Rare genetic forms of FSGS can be caused by mutations in TRPC6, which encodes a Ca2+-permeable cationic channel expressed in mesangial cells and podocytes; and NPHS2, which encodes podocin, a TRPC6-binding protein expressed in podocyte slit diaphragm domains. Here we observed that exposing immortalized mouse podocytes to serum or plasma from recurrent FSGS patients for 24h increased the steady-state cell-surface abundance of TRPC6, accompanied by an increase in currents through endogenous TRPC6 channels evoked by a hypoosmotic stretch stimulus. These effects were mimicked by the soluble urokinase receptor (suPAR) and by tumor necrosis factor (TNF), circulating factors implicated in nephrotic syndromes. Most but not all of the recurrent FSGS plasma samples that we examined also caused a loss of podocin over a period of several hours. The loss of podocin was also seen following exposure to suPAR but not TNF. However, TNF increased the effects of suPAR on TRPC6 and podocin, and TNF and suPAR are required for the full effects of one of the recurrent FSGS plasma samples. The actions of FSGS plasma, suPAR and TNF on surface abundance of TRPC6 were blocked by cilengitide, an inhibitor of αvβ3-integrin signaling. These data suggest that primary FSGS is a heterogeneous condition mediated by multiple circulating factors, and support TRPC6 and αvβ3-integrin as potential therapeutic targets.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Structure-function analysis of human stomatin: A mutation study. PLoS One 2017; 12:e0178646. [PMID: 28575093 PMCID: PMC5456319 DOI: 10.1371/journal.pone.0178646] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Stomatin is an ancient, widely expressed, oligomeric, monotopic membrane protein that is associated with cholesterol-rich membranes/lipid rafts. It is part of the SPFH superfamily including stomatin-like proteins, prohibitins, flotillin/reggie proteins, bacterial HflK/C proteins and erlins. Biochemical features such as palmitoylation, oligomerization, and hydrophobic “hairpin” structure show similarity to caveolins and other integral scaffolding proteins. Recent structure analyses of the conserved PHB/SPFH domain revealed amino acid residues and subdomains that appear essential for the structure and function of stomatin. To test the significance of these residues and domains, we exchanged or deleted them, expressed respective GFP-tagged mutants, and studied their subcellular localization, molecular dynamics and biochemical properties. We show that stomatin is a cholesterol binding protein and that at least two domains are important for the association with cholesterol-rich membranes. The conserved, prominent coiled-coil domain is necessary for oligomerization, while association with cholesterol-rich membranes is also involved in oligomer formation. FRAP analyses indicate that the C-terminus is the dominant entity for lateral mobility and binding site for the cortical actin cytoskeleton.
Collapse
|
11
|
Mulukala SKN, Nishad R, Kolligundla LP, Saleem MA, Prabhu NP, Pasupulati AK. In silico Structural characterization of podocin and assessment of nephrotic syndrome-associated podocin mutants. IUBMB Life 2016; 68:578-588. [PMID: 27193387 DOI: 10.1002/iub.1515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 11/08/2022]
Abstract
Nephrotic syndrome (NS) is manifested by hyperproteinuria, hypoalbuminemia, and edema. NPHS2 that encodes podocin was found to have most mutations among the genes that are involved in the pathophysiology of NS. Podocin, an integral membrane protein belonging to stomatin family, is expressed exclusively in podocytes and is localized to slit-diaphragm (SD). Mutations in podocin are known to be associated with steroid-resistant NS and rapid progression to end-stage renal disease, thus signifying its role in maintaining SD integrity and podocyte function. The structural insights of podocin are not known, and the precise mechanism by which podocin contributes to the architecture of SD is yet to be elucidated. In this study, we deduced a model for human podocin, discussed the details of transmembrane localization and intrinsically unstructured regions, and provide an understanding of how podocin interacts with other SD components. Intraprotein interactions were assessed in wild-type podocin and in some of its mutants that are associated with idiopathic NS. Mutations in podocin alter the innate intraprotein interactions affecting the native structure of podocin and its ability to form critical complex with subpodocyte proteins. © 2016 IUBMB Life, 68(7):578-588, 2016.
Collapse
Affiliation(s)
| | - Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Moin A Saleem
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Nagu Prakash Prabhu
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Wright FA, Wojcikiewicz RJH. Chapter 4 - Inositol 1,4,5-Trisphosphate Receptor Ubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:141-59. [PMID: 27378757 DOI: 10.1016/bs.pmbts.2016.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are large (∼300kDa) proteins that associate into tetrameric ion channels in the endoplasmic reticulum (ER) membrane. Activation and opening of the channel upon binding of IP3 and Ca(2+) allows the flow of Ca(2+) ions from stores within the ER lumen to the cytosol, thereby promoting a number of Ca(2+)-dependent cellular events, such as secretion, neurotransmitter release, and cell division. Intriguingly, it appears that the same conformational change that IP3Rs undergo during activation makes them a target for degradation by the ubiquitin-proteasome pathway and that this mode of processing allows the cell to tune its internal Ca(2+) response to extracellular signals. Here, we review recent studies showing that activated IP3Rs interact with an array of proteins that mediate their degradation, that IP3Rs are modified by a complex array of ubiquitin conjugates, that this ubiquitination and degradation functions to regulate IP3-mediated Ca(2+) responses in the cell, and that mutations to different proteins involved in IP3R degradation result in a set of similar diseases.
Collapse
Affiliation(s)
- F A Wright
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - R J H Wojcikiewicz
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
13
|
Abstract
The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.
Collapse
Affiliation(s)
- Rizaldy P Scott
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
14
|
Bach JN, Bramkamp M. Dissecting the molecular properties of prokaryotic flotillins. PLoS One 2015; 10:e0116750. [PMID: 25635948 PMCID: PMC4312047 DOI: 10.1371/journal.pone.0116750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/14/2014] [Indexed: 01/13/2023] Open
Abstract
Flotillins are universally conserved proteins that are present in all kingdoms of life. Recently it was demonstrated that the B. subtilis flotillin YuaG (FloT) has a direct influence on membrane domain formation by orchestrating lipid domains. Thereby it allocates a proper environment for diverse cellular machineries. YuaG creates platforms for signal transduction, processes crucial for biofilm formation, sporulation, competence, secretion, and others. Even though, flotillins are an emerging topic of research in the field of microbiology little is known about the molecular architecture of prokaryotic flotillins. All flotillins share common structural elements and are tethered to the membrane N’- terminally, followed by a so called PHB domain and a flotillin domain. We show here that prokaryotic flotillins are, similarly to eukaryotic flotillins, tethered to the membrane via a hairpin loop. Further it is demonstrated by sedimentation assays that B. subtilis flotillins do not bind to the membrane via their PHB domain contrary to eukaryotic flotillins. Size exclusion chromatography experiments, blue native PAGE and cross linking experiments revealed that B. subtilis YuaG can oligomerize into large clusters via the PHB domain. This illustrates an important difference in the setup of prokaryotic flotillins compared to the organization of eukaryotic flotillins.
Collapse
Affiliation(s)
- Juri Niño Bach
- Department of Biology I, Ludwig-Maximilians-University, Munich, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|