1
|
Iveland TS, Hagen L, de Sousa MML, Liabakk NB, Aas PA, Sharma A, Kavli B, Slupphaug G. Cytotoxic mechanisms of pemetrexed and HDAC inhibition in non-small cell lung cancer cells involving ribonucleotides in DNA. Sci Rep 2025; 15:2082. [PMID: 39814799 PMCID: PMC11736037 DOI: 10.1038/s41598-025-86007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers. Proteomic alterations were analyzed using label-free shotgun and targeted LC-MS/MS. MS275 enhanced the sensitivity of A549 cells to pemetrexed, but only when administered following prior treatment with pemetrexed. Both HeLa (p53 negative) and A549 (p53 positive) showed robust activation of γH2AX upon treatment with this combination. Importantly, CRISPR/Cas9 knockout of the uracil-DNA glycosylase UNG did not affect γH2AX activation or sensitivity to pemetrexed. Proteomic analysis revealed that MS275 altered the expression of known pemetrexed targets, as well as several proteins involved in pyrimidine metabolism and DNA repair, which could potentiate pemetrexed cytotoxicity. Contrary to the conventional model of antifolate toxicity, which implicates futile cycles of uracil incorporation and excision in DNA, we propose that ribonucleotide incorporation in nuclear and mitochondrial DNA significantly contributes to the cytotoxicity of antifolates like pemetrexed, and likely also of fluorinated pyrimidine analogs. HDAC inhibition apparently exacerbates cytotoxicity of these agents by inhibiting error-free repair of misincorporated ribonucleotides in DNA. The potential of HDACis to modulate pyrimidine metabolism and DNA damage responses offers novel strategies for improving NSCLC outcomes.
Collapse
Affiliation(s)
- Tobias Solli Iveland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Cancer Clinic, St. Olavs Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo, 0373, Oslo, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway.
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway.
| |
Collapse
|
2
|
Kim DV, Diatlova EA, Zharkov TD, Melentyev VS, Yudkina AV, Endutkin AV, Zharkov DO. Back-Up Base Excision DNA Repair in Human Cells Deficient in the Major AP Endonuclease, APE1. Int J Mol Sci 2023; 25:64. [PMID: 38203235 PMCID: PMC10778768 DOI: 10.3390/ijms25010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or β-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to β-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes β-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.
Collapse
Affiliation(s)
- Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Evgeniia A. Diatlova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Vasily S. Melentyev
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Sarmini L, Meabed M, Emmanouil E, Atsaves G, Robeska E, Karwowski BT, Campalans A, Gimisis T, Khobta A. Requirement of transcription-coupled nucleotide excision repair for the removal of a specific type of oxidatively induced DNA damage. Nucleic Acids Res 2023; 51:4982-4994. [PMID: 37026475 PMCID: PMC10250225 DOI: 10.1093/nar/gkad256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Accumulation of DNA damage resulting from reactive oxygen species was proposed to cause neurological and degenerative disease in patients, deficient in nucleotide excision repair (NER) or its transcription-coupled subpathway (TC-NER). Here, we assessed the requirement of TC-NER for the repair of specific types of oxidatively generated DNA modifications. We incorporated synthetic 5',8-cyclo-2'-deoxypurine nucleotides (cyclo-dA, cyclo-dG) and thymine glycol (Tg) into an EGFP reporter gene to measure transcription-blocking potentials of these modifications in human cells. Using null mutants, we further identified the relevant DNA repair components by a host cell reactivation approach. The results indicated that NTHL1-initiated base excision repair is by far the most efficient pathway for Tg. Moreover, Tg was efficiently bypassed during transcription, which effectively rules out TC-NER as an alternative repair mechanism. In a sharp contrast, both cyclopurine lesions robustly blocked transcription and were repaired by NER, wherein the specific TC-NER components CSB/ERCC6 and CSA/ERCC8 were as essential as XPA. Instead, repair of classical NER substrates, cyclobutane pyrimidine dimer and N-(deoxyguanosin-8-yl)-2-acetylaminofluorene, occurred even when TC-NER was disrupted. The strict requirement of TC-NER highlights cyclo-dA and cyclo-dG as candidate damage types, accountable for cytotoxic and degenerative responses in individuals affected by genetic defects in this pathway.
Collapse
Affiliation(s)
- Leen Sarmini
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Mohammed Meabed
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Eirini Emmanouil
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - George Atsaves
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Elena Robeska
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
- Université de Paris Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
| | - Bolesław T Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, Lodz 90-151, Poland
| | - Anna Campalans
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
- Université de Paris Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
| | - Thanasis Gimisis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Andriy Khobta
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
4
|
Xu M, Liu Y, Wan HL, Wong AM, Ding X, You W, Lo WS, Ng KKC, Wong N. Overexpression of nucleotide metabolic enzyme DUT in hepatocellular carcinoma potentiates a therapeutic opportunity through targeting its dUTPase activity. Cancer Lett 2022; 548:215898. [PMID: 36075487 DOI: 10.1016/j.canlet.2022.215898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/24/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Uracil misincorporation during DNA replication is a major cell toxic event, of which cancer cells overcome by activating the dUTPase enzyme. The DUT gene is the only known dUTPase in human. Despite reports on common upregulations in cancers, the role of DUT in human hepatocellular carcinoma (HCC) remains largely undetermined. In this study, we investigated the mechanism underlying DUT biology in HCC and tumor susceptibility to drug targeting dUTPase. Overexpression of DUT was found in 42% of HCC tumors and correlated with advanced stage HCC. Knockout of DUT in HCC cell lines showed suppressed proliferation through cell cycle arrest and a spontaneous induction of DNA damage. A protective effect from oxidative stress was also demonstrated in both knockout and overexpression DUT assays. Transcriptome analysis highlighted the NF-κB survival signaling as the downstream effector pathway of DUT in overriding oxidative stress-induced cell death. Interestingly, stably expressed DUT in liver progenitor organoids conferred drug resistance to TKI Sorafenib. Targeting dUTPase activity by TAS-114, could potentiate suppression of HCC growth that synergized with Sorafenib for better treatment sensitivity. In conclusion, upregulated DUT represents a nucleotide metabolic weakness and therapeutic opportunity in HCC.
Collapse
Affiliation(s)
- Mingjing Xu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yue Liu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ho Lee Wan
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alissa M Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiaofan Ding
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenxing You
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wing Sze Lo
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kelvin K-C Ng
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
5
|
Direct and Base Excision Repair-Mediated Regulation of a GC-Rich cis-Element in Response to 5-Formylcytosine and 5-Carboxycytosine. Int J Mol Sci 2021; 22:ijms222011025. [PMID: 34681690 PMCID: PMC8539351 DOI: 10.3390/ijms222011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Stepwise oxidation of the epigenetic mark 5-methylcytosine and base excision repair (BER) of the resulting 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC) may provide a mechanism for reactivation of epigenetically silenced genes; however, the functions of 5-fC and 5-caC at defined gene elements are scarcely explored. We analyzed the expression of reporter constructs containing either 2′-deoxy-(5-fC/5-caC) or their BER-resistant 2′-fluorinated analogs, asymmetrically incorporated into CG-dinucleotide of the GC box cis-element (5′-TGGGCGGAGC) upstream from the RNA polymerase II core promoter. In the absence of BER, 5-caC caused a strong inhibition of the promoter activity, whereas 5-fC had almost no effect, similar to 5-methylcytosine or 5-hydroxymethylcytosine. BER of 5-caC caused a transient but significant promoter reactivation, succeeded by silencing during the following hours. Both responses strictly required thymine DNA glycosylase (TDG); however, the silencing phase additionally demanded a 5′-endonuclease (likely APE1) activity and was also induced by 5-fC or an apurinic/apyrimidinic site. We propose that 5-caC may act as a repressory mark to prevent premature activation of promoters undergoing the final stages of DNA demethylation, when the symmetric CpG methylation has already been lost. Remarkably, the downstream promoter activation or repression responses are regulated by two separate BER steps, where TDG and APE1 act as potential switches.
Collapse
|
6
|
Bordin DL, Lirussi L, Nilsen H. Cellular response to endogenous DNA damage: DNA base modifications in gene expression regulation. DNA Repair (Amst) 2021; 99:103051. [PMID: 33540225 DOI: 10.1016/j.dnarep.2021.103051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
Abstract
The integrity of the genetic information is continuously challenged by numerous genotoxic insults, most frequently in the form of oxidation, alkylation or deamination of the bases that result in DNA damage. These damages compromise the fidelity of the replication, and interfere with the progression and function of the transcription machineries. The DNA damage response (DDR) comprises a series of strategies to deal with DNA damage, including transient transcriptional inhibition, activation of DNA repair pathways and chromatin remodeling. Coordinated control of transcription and DNA repair is required to safeguardi cellular functions and identities. Here, we address the cellular responses to endogenous DNA damage, with a particular focus on the role of DNA glycosylases and the Base Excision Repair (BER) pathway, in conjunction with the DDR factors, in responding to DNA damage during the transcription process. We will also discuss functions of newly identified epigenetic and regulatory marks, such as 5-hydroxymethylcytosine and its oxidative products and 8-oxoguanine, that were previously considered only as DNA damages. In light of these resultsthe classical perception of DNA damage as detrimental for cellular processes are changing. and a picture emerges whereDNA glycosylases act as dynamic regulators of transcription, placing them at the intersection of DNA repair and gene expression modulation.
Collapse
Affiliation(s)
- Diana L Bordin
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478, Lørenskog, Norway
| | - Lisa Lirussi
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478, Lørenskog, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478, Lørenskog, Norway.
| |
Collapse
|
7
|
Rodriguez-Alvarez M, Kim D, Khobta A. EGFP Reporters for Direct and Sensitive Detection of Mutagenic Bypass of DNA Lesions. Biomolecules 2020; 10:biom10060902. [PMID: 32545792 PMCID: PMC7357151 DOI: 10.3390/biom10060902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The sustainment of replication and transcription of damaged DNA is essential for cell survival under genotoxic stress; however, the damage tolerance of these key cellular functions comes at the expense of fidelity. Thus, translesion DNA synthesis (TLS) over damaged nucleotides is a major source of point mutations found in cancers; whereas erroneous bypass of damage by RNA polymerases may contribute to cancer and other diseases by driving accumulation of proteins with aberrant structure and function in a process termed “transcriptional mutagenesis” (TM). Here, we aimed at the generation of reporters suited for direct detection of miscoding capacities of defined types of DNA modifications during translesion DNA or RNA synthesis in human cells. We performed a systematic phenotypic screen of 25 non-synonymous base substitutions in a DNA sequence encoding a functionally important region of the enhanced green fluorescent protein (EGFP). This led to the identification of four loss-of-fluorescence mutants, in which any ulterior base substitution at the nucleotide affected by the primary mutation leads to the reversal to a functional EGFP. Finally, we incorporated highly mutagenic abasic DNA lesions at the positions of primary mutations and demonstrated a high sensitivity of detection of the mutagenic DNA TLS and TM in this system.
Collapse
Affiliation(s)
- Marta Rodriguez-Alvarez
- Unit “Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany;
| | - Daria Kim
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andriy Khobta
- Unit “Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany;
- Correspondence:
| |
Collapse
|
8
|
Alkyladenine DNA glycosylase associates with transcription elongation to coordinate DNA repair with gene expression. Nat Commun 2019; 10:5460. [PMID: 31784530 PMCID: PMC6884549 DOI: 10.1038/s41467-019-13394-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Base excision repair (BER) initiated by alkyladenine DNA glycosylase (AAG) is essential for removal of aberrantly methylated DNA bases. Genome instability and accumulation of aberrant bases accompany multiple diseases, including cancer and neurological disorders. While BER is well studied on naked DNA, it remains unclear how BER efficiently operates on chromatin. Here, we show that AAG binds to chromatin and forms complex with RNA polymerase (pol) II. This occurs through direct interaction with Elongator and results in transcriptional co-regulation. Importantly, at co-regulated genes, aberrantly methylated bases accumulate towards the 3′end in regions enriched for BER enzymes AAG and APE1, Elongator and active RNA pol II. Active transcription and functional Elongator are further crucial to ensure efficient BER, by promoting AAG and APE1 chromatin recruitment. Our findings provide insights into genome stability maintenance in actively transcribing chromatin and reveal roles of aberrantly methylated bases in regulation of gene expression. How genome stability is maintained at regions of active transcription is currently not entirely clear. Here, the authors reveal an association between base excision repair factors and transcription elongation to modulate DNA repair.
Collapse
|
9
|
Chon J, Field MS, Stover PJ. Deoxyuracil in DNA and disease: Genomic signal or managed situation? DNA Repair (Amst) 2019; 77:36-44. [PMID: 30875637 DOI: 10.1016/j.dnarep.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
Genomic instability is implicated in the etiology of several deleterious health outcomes including megaloblastic anemia, neural tube defects, and neurodegeneration. Uracil misincorporation and its repair are known to cause genomic instability by inducing DNA strand breaks leading to apoptosis, but there is emerging evidence that uracil incorporation may also result in broader modifications of gene expression, including: changes in transcriptional stalling, strand break-mediated transcriptional upregulation, and direct promoter inhibition. The factors that influence uracil levels in DNA are cytosine deamination, de novo thymidylate (dTMP) biosynthesis, salvage dTMP biosynthesis, dUTPase, and DNA repair. There is evidence that the nuclear localization of the enzymes in these pathways in mammalian cells may modify and/or control the levels of uracil accumulation into nuclear DNA. Uracil sequencing technologies demonstrate that uracil in DNA is not distributed stochastically across the genome, but instead shows patterns of enrichment. Nuclear localization of the enzymes that modify uracil in DNA may serve to change these patterns of enrichment in a tissue-specific manner, and thereby signal the genome in response to metabolic and/or nutritional state of the cell.
Collapse
Affiliation(s)
- James Chon
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, 127 Savage Hall, Ithaca, NY, 14853, USA
| | - Patrick J Stover
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY, 14853, USA; Division of Nutritional Sciences, Cornell University, 127 Savage Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Abstract
Base excision repair (BER) is one of the most active DNA repair pathways in cells correcting DNA damage from oxidation, deamination, alkylation, and damages induced by free radicals and ionizing radiation. Deregulation or deficiencies in BER mechanisms increase the level of mutations leading to carcinogenesis, and single-strand DNA break formation, which may be converted to double-strand breaks and induce apoptosis. BER deficiency is associated with development of diseases causing neurodegenerative disorders, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). In addition, BER mechanisms can be affected by viral infections, such as HPV, HTLV-1, and HIV-1. Deficiencies in DNA repair in cells can be analyzed using a very convenient and effective approach, where mammalian cells are transfected with plasmids carrying a reporter gene of fluorescent protein that contain inactivating damages. The repair of DNA damages depends on the cellular machinery and is reflected by expression of the reporter gene measured by flow cytometry. In this chapter, we describe this plasmid-based reporter gene system to investigate in cell the repairs of DNA damages involving BER mechanisms.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
11
|
Kitsera N, Allgayer J, Parsa E, Geier N, Rossa M, Carell T, Khobta A. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter. Nucleic Acids Res 2017; 45:11033-11042. [PMID: 28977475 PMCID: PMC5737506 DOI: 10.1093/nar/gkx718] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
Enzymatic oxidation of 5-methylcytosine (5-mC) in the CpG dinucleotides to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC) has central role in the process of active DNA demethylation and epigenetic reprogramming in mammals. However, it is not known whether the 5-mC oxidation products have autonomous epigenetic or regulatory functions in the genome. We used an artificial upstream promoter constituted of one cAMP response element (CRE) to measure the impact of 5-mC in a hemi-methylated CpG on the promoter activity and further explored the consequences of 5-hmC, 5-fC, and 5-caC in the same system. All modifications induced mild impairment of the CREB transcription factor binding to the consensus 5'-TGACGTCA-3' CRE sequence. The decrease of the gene expression by 5-mC or 5-hmC was proportional to the impairment of CREB binding and had a steady character over at least 48 h. In contrast, promoters containing single 5-fC or 5-caC underwent further progressive loss of activity, up to an almost complete repression. This decline was dependent on the thymine-DNA glycosylase (TDG). The results thus indicate that 5-fC and 5-caC can provide a signal for perpetuation and enhancement of the repressed transcriptional state by a mechanism that requires base excision repair.
Collapse
Affiliation(s)
- Nataliya Kitsera
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Julia Allgayer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| | - Edris Parsa
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Nadine Geier
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Martin Rossa
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Andriy Khobta
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany.,Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| |
Collapse
|
12
|
Wang W, Zhang G, Yang J, Gu H, Ding L, Yu H, Yu M, Cui Q, Ji X, Li M. Digital gene expression profiling analysis of DNA repair pathways in colon cancer stem population of HT29 cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:90-100. [PMID: 27932392 DOI: 10.1093/abbs/gmw119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) contribute to the relapse and development of new neoplasm lesions. While most available clinical approaches, such as chemical and radiation therapies, will kill the majority of cancer cells, they do not kill them all. Some resisting cells, like CSCs, are able to survive due to their excellent self-maintaining capabilities, even in challenging environments. In the present study, we investigated the mRNA level of DNA repair genes of colon CSCs from the HT29 cell line in response to single-strand damage and double-strand breaks, as well as the evident upregulation of key genes in base excision repair, mismatch repair, non-homologous end-joining, and homologous recombination pathways in these cells. Digital gene expression analysis identified upregulated genes in CD44+ HT29 cells that may play important roles in DNA repair. Our results reveal that colon CSCs bear efficient DNA repair abilities, which might explain the survival of colon CSCs after repeated chemical and radiation therapy.
Collapse
Affiliation(s)
- Wenxue Wang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Guoxiu Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jing Yang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Huan Gu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lei Ding
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Haijing Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Min Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qinghua Cui
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xinglai Ji
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Meizhang Li
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
13
|
Hansen EC, Ransom M, Hesselberth JR, Hosmane NN, Capoferri AA, Bruner KM, Pollack RA, Zhang H, Drummond MB, Siliciano JM, Siliciano R, Stivers JT. Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells. eLife 2016; 5. [PMID: 27644592 PMCID: PMC5030084 DOI: 10.7554/elife.18447] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022] Open
Abstract
We report that a major subpopulation of monocyte-derived macrophages (MDMs) contains high levels of dUTP, which is incorporated into HIV-1 DNA during reverse transcription (U/A pairs), resulting in pre-integration restriction and post-integration mutagenesis. After entering the nucleus, uracilated viral DNA products are degraded by the uracil base excision repair (UBER) machinery with less than 1% of the uracilated DNA successfully integrating. Although uracilated proviral DNA showed few mutations, the viral genomic RNA was highly mutated, suggesting that errors occur during transcription. Viral DNA isolated from blood monocytes and alveolar macrophages (but not T cells) of drug-suppressed HIV-infected individuals also contained abundant uracils. The presence of viral uracils in short-lived monocytes suggests their recent infection through contact with virus producing cells in a tissue reservoir. These findings reveal new elements of a viral defense mechanism involving host UBER that may be relevant to the establishment and persistence of HIV-1 infection. DOI:http://dx.doi.org/10.7554/eLife.18447.001 Human immunodeficiency virus type 1 (HIV-1) infects and kills immune cells known as CD4+ T cells, leading to the disease AIDS. Current drug treatments enable HIV-1 infected patients to live relatively long and healthy lives. However, no cure for HIV-1 exists because the virus lives indefinitely in a resting state within the genetic material – or genome – of the infected cell, where it is not susceptible to drug treatments. Most HIV-1 research focuses on T cells, but another type of immune cell – the macrophage – may also harbor resting HIV-1 in its genome. Compared to other cells, macrophages are unusual because they produce large amounts of a molecule called deoxyuridine triphosphate (dUTP). Most cells, including T cells, keep dUTP levels very low because it closely resembles molecules that are used to make DNA and so it can be accidentally incorporated into the cell’s DNA. When this happens, the cell removes the dUTP from the DNA using enzymes in a process called uracil base excision repair (UBER). To hide inside the cell’s genome, HIV-1 needs to produce a DNA copy of its own genome, but it was not known what happens when HIV-1 tries to do this within a macrophage that contains high levels of dUTP and UBER enzymes. Here, Hansen et al. reveal that about 90% of macrophages have exceptionally high levels of dUTP and are poorly infected by HIV-1. The high levels of dUTP result in the virus incorporating dUTP into its DNA, which is then attacked and fragmented by UBER enzymes. However, about one in a hundred viral DNA molecules do manage to successfully integrate into the genome of the macrophage. This viral DNA later gives rise to new virus particles through an error-prone process that, by introducing new mutations into the virus genome, may help HIV-1 to evolve and persist. Further experiments examined cells that give rise to macrophages from infected patients who had been on anti-HIV drug therapy for several years. Hansen et al. found that there was lots of dUTP in the DNA sequences of HIV-1 viruses found in these “precursor” cells. These precursor cells only live for several days before being eliminated, so the presence of viruses containing dUTP suggests these cells were infected recently. A future challenge will be to identify new anti-HIV drugs that specifically target macrophages and to understand the role of error-prone production of new viral genomes. DOI:http://dx.doi.org/10.7554/eLife.18447.002
Collapse
Affiliation(s)
- Erik C Hansen
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Monica Ransom
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
| | - Nina N Hosmane
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Adam A Capoferri
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, The Johns Hopkins School of Medicine, Baltimore, United States
| | - Katherine M Bruner
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ross A Pollack
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hao Zhang
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Michael Bradley Drummond
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Janet M Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Robert Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, The Johns Hopkins School of Medicine, Baltimore, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
14
|
Zhang Z, Shen J, Yang Y, Li J, Cao W, Xie W. Structural Basis of Substrate Specificity in Geobacter metallireducens SMUG1. ACS Chem Biol 2016; 11:1729-36. [PMID: 27071000 DOI: 10.1021/acschembio.6b00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Base deamination is a common type of DNA damage that occurs in all organisms. DNA repair mechanisms are critical to maintain genome integrity, in which the base excision repair pathway plays an essential role. In the BER pathway, the uracil DNA glycosylase superfamily is responsible for removing the deaminated bases from DNA and generates apurinic/apyrimidinic (AP) sites. Geobacter metallireducens SMUG1 (GmeSMUG1) is an interesting family 3 enzyme in the UDG superfamily, with dual substrate specificities for DNA with uracil or xanthine. In contrast, the mutant G63P of GmeSMUG1 has exclusive activity for uracil, while N58D is inactive for both substrates, as we have reported previously. However, the structural bases for these substrate specificities are not well understood. In this study, we solved a series of crystal structures of WT and mutants of GmeSMUG1 at relatively high resolutions. These structures provide insight on the molecular mechanism of xanthine recognition for GmeSMUG1 and indicate that H210 plays a key role in xanthine recognition, which is in good agreement with the results of our EMSA and activity assays. More importantly, our mutant structures allow us to build models to rationalize our previous experimental observations of altered substrate activities of these mutants.
Collapse
Affiliation(s)
- Zhemin Zhang
- State
Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People’s Republic of China
- Center for Cellular & Structural Biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Jiemin Shen
- State
Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People’s Republic of China
- Center for Cellular & Structural Biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Ye Yang
- Department
of Genetics and Biochemistry, Clemson University, South Carolina Experiment Station,
190 Collings Street, Clemson, South Carolina 29634, United States
| | - Jing Li
- Department
of Genetics and Biochemistry, Clemson University, South Carolina Experiment Station,
190 Collings Street, Clemson, South Carolina 29634, United States
| | - Weiguo Cao
- Department
of Genetics and Biochemistry, Clemson University, South Carolina Experiment Station,
190 Collings Street, Clemson, South Carolina 29634, United States
| | - Wei Xie
- State
Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People’s Republic of China
- Center for Cellular & Structural Biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou, Guangdong 510006, People’s Republic of China
| |
Collapse
|
15
|
Allgayer J, Kitsera N, Bartelt S, Epe B, Khobta A. Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine. Nucleic Acids Res 2016; 44:7267-80. [PMID: 27220469 PMCID: PMC5009734 DOI: 10.1093/nar/gkw473] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/12/2016] [Indexed: 12/18/2022] Open
Abstract
DNA damage can significantly modulate expression of the affected genes either by direct structural interference with transcription components or as a collateral outcome of cellular repair attempts. Thus, DNA glycosylases of the base excision repair (BER) pathway have been implicated in negative transcriptional response to several spontaneously generated DNA base modifications, including a common oxidative DNA base modification 8-oxoguanine (8-oxoG). Here, we report that single 8-oxoG situated in the non-transcribed DNA strand of a reporter gene has a pronounced negative effect on transcription, driven by promoters of various strength and with different structural properties, including viral, human, and artificial promoters. We further show that the magnitude of the negative effect on the gene expression correlates with excision of the modified base by OGG1 in all promoter constructs tested. Moreover, by using expression vectors with nuclease resistant backbone modifications, we demonstrate that OGG1 does not catalyse DNA strand cleavage in vivo. Rather, cleavage of the phosphate bond 5′ to 8-oxodG (catalysed by APE1) is essential and universally required for the onset of transcriptional silencing, regardless of the promoter structure. Hence, induction of transcriptional silencing emerges as a ubiquitous mode of biological response to 8-oxoG in DNA.
Collapse
Affiliation(s)
- Julia Allgayer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| | - Nataliya Kitsera
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Solveig Bartelt
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| | - Andriy Khobta
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| |
Collapse
|