1
|
Pan X, Hao L, Yang C, Lin H, Wu D, Chen X, Zhang M, Ma D, Wang Y, Fu W, Yao Y, Wang S, Zhuang Z. SWD1 epigenetically chords fungal morphogenesis, aflatoxin biosynthesis, metabolism, and virulence of Aspergillus flavus. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131542. [PMID: 37172387 DOI: 10.1016/j.jhazmat.2023.131542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023]
Abstract
As the main producer of aflatoxins, Aspergillus flavus is also one of the most important causes of invasive and non-invasive aspergillosis. Therefore, it is crucial to unravel the regulatory mechanisms of growth, metabolism, and pathogenicity of A. flavus. SWD1 is highly conserved across species for maintaining COMPASS methyltransferase activity, but the bio-function of SWD1 in A. flavus has not been explored. Through genetic analysis, this study revealed that SWD1 is involved in fungal morphogenesis and AFB1 biosynthesis by regulating the orthodox pathways through H3K4me1-3. Stresses sensitivity and crop models analysis revealed that SWD1 is a key regulator for the resistance of A. flavus to adapt to extreme adverse environments and to colonize crop kernels. It also revealed that the WD40 domain and 25 aa highly conserved sequence are indispensable for SWD1 in the regulation of mycotoxin bio-synthesis and fungal virulence. Metabolomic analysis inferred that SWD1 is crucial for the biosynthesis of numerous primary and secondary metabolites, regulates biological functions by reshaping the whole metabolic process, and may inhibit fungal virulence by inducing the apoptosis of mycelia through the inducer sphingosine. This study elucidates the epigenetic mechanism of SWD1 in regulating fungal pathogenicity and mycotoxin biosynthesis, and provides a potential novel target for controlling the virulence of A. flavus.
Collapse
Affiliation(s)
- Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Propagated Sensation along Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou 350003, China
| | - Ling Hao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chi Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Chen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjuan Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Ma
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Schafer CM, Martin-Almedina S, Kurylowicz K, Dufton N, Osuna-Almagro L, Wu ML, Johnson CF, Shah AV, Haskard DO, Buxton A, Willis E, Wheeler K, Turner S, Chlebicz M, Scott RP, Kovats S, Cleuren A, Birdsey GM, Randi AM, Griffin CT. Cytokine-Mediated Degradation of the Transcription Factor ERG Impacts the Pulmonary Vascular Response to Systemic Inflammatory Challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527788. [PMID: 36798267 PMCID: PMC9934599 DOI: 10.1101/2023.02.08.527788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background During infectious diseases, pro-inflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. Methods Cytokine-dependent ubiquitination and proteasomal degradation of ERG was analyzed in cultured Human Umbilical Vein ECs (HUVECs). Systemic administration of TNFα or the bacterial cell wall component lipopolysaccharide (LPS) was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs ( Erg fl/fl ;Cdh5(PAC)Cre ERT2 ), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. Results In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or LPS resulted in a rapid and substantial degradation of ERG within lung ECs, but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Erg fl/fl ;Cdh5(PAC)-Cre ERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek , a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. Conclusions Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.
Collapse
|
3
|
West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Mol Cell Proteomics 2021; 20:100024. [PMID: 32994314 PMCID: PMC8724618 DOI: 10.1074/mcp.r120.002263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Glycosylation is a highly diverse set of co- and posttranslational modifications of proteins. For mammalian glycoproteins, glycosylation is often site-, tissue-, and species-specific and diversified by microheterogeneity. Multitudinous biochemical, cellular, physiological, and organismic effects of their glycans have been revealed, either intrinsic to the carrier proteins or mediated by endogenous reader proteins with carbohydrate recognition domains. Furthermore, glycans frequently form the first line of access by or defense from foreign invaders, and new roles for nucleocytoplasmic glycosylation are blossoming. We now know enough to conclude that the same general principles apply in invertebrate animals and unicellular eukaryotes-different branches of which spawned the plants or fungi and animals. The two major driving forces for exploring the glycomes of invertebrates and protists are (i) to understand the biochemical basis of glycan-driven biology in these organisms, especially of pathogens, and (ii) to uncover the evolutionary relationships between glycans, their biosynthetic enzyme genes, and biological functions for new glycobiological insights. With an emphasis on emerging areas of protist glycobiology, here we offer an overview of glycan diversity and evolution, to promote future access to this treasure trove of glycobiological processes.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; VetCore Facility for Research/Proteomics Unit, Veterinärmedizinische Universität, Vienna, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| |
Collapse
|
4
|
Tian C, Lang T, Qiu J, Han K, Zhou L, Min D, Zhang Z, Qi D. SKP1 promotes YAP-mediated colorectal cancer stemness via suppressing RASSF1. Cancer Cell Int 2020; 20:579. [PMID: 33292299 PMCID: PMC7713163 DOI: 10.1186/s12935-020-01683-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) have been recognized as an important drug target, however, the underlying mechanisms have not been fully understood. SKP1 is a traditional drug target for cancer therapy, while, whether SKP1 promotes colorectal cancer (CRC) stem cells (CRC-SCs) and the underlying mechanisms have remained elusive. METHODS Human CRC cell lines and primary human CRC cells were used in this study. Gene manipulation was performed by lentivirus system. The mRNA and protein levels of target genes were examined by qRT-PCR and western blot. The sphere-forming and in vitro migration capacities were determined by sphere formation and transwell assay. The self-renewal was determined by limiting dilution assay. The tumorigenicity and metastasis of cancer cells were examined by xenograft model. The promoter activity was examined by luciferase reporter assay. Nuclear run-on and Chromatin immunoprecipitation-PCR (ChIP-PCR) assay were employed to examine the transcription and protein-DNA interaction. Co-immunoprecipitation assay was used to test protein-protein interaction. The relationship between gene expression and survival was analyzed by Kaplan-meier analysis. The correlation between two genes was analyzed by Spearman analysis. Data are represented as mean ± SD and the significance was determined by Student's t test. RESULTS SKP1 was upregulated in CRC-SCs and predicted poor prognosis of colon cancer patients. Overexpression of SKP1 promoted the stemness of CRC cells reflected by increased sphere-forming, migration and self-renewal capacities as well as the expression of CSCs markers. In contrast, SKP1 depletion produced the opposite effects. SKP1 strengthened YAP activity and knockdown of YAP abolished the effect of SKP1 on the stemness of CRC cells. SKP1 suppressed RASSF1 at both mRNA and protein level. Overexpression of RASSF1 abolished the effect of SKP1 on YAP activity and CRC stemness. CONCLUSION Our results demonstrated that SKP1 suppresses RASSF1 at both mRNA and protein level, attenuates Hippo signaling, activates YAP, and thereby promoting the stemness of CRC cells.
Collapse
Affiliation(s)
- Cong Tian
- Department of Medical Oncology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
- Department of Medical Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, Chongqing, People's Republic of China
| | - Jiangfeng Qiu
- Department of Gastrointestinal Surgery, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Kun Han
- Department of Medical Oncology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
- Department of Medical Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
| | - Lei Zhou
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS, Tower Block Level 7, Singapore, 119228, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, 8 College Road, Singapore, 169867, Singapore
| | - Daliu Min
- Department of Medical Oncology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
- Department of Medical Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
| | - Zhiqi Zhang
- Department of General Surgery, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China.
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, People's Republic of China.
| | - Dachuan Qi
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
5
|
Mandalasi M, Kim HW, Thieker D, Sheikh MO, Gas-Pascual E, Rahman K, Zhao P, Daniel NG, van der Wel H, Ichikawa HT, Glushka JN, Wells L, Woods RJ, Wood ZA, West CM. A terminal α3-galactose modification regulates an E3 ubiquitin ligase subunit in Toxoplasma gondii. J Biol Chem 2020; 295:9223-9243. [PMID: 32414843 PMCID: PMC7335778 DOI: 10.1074/jbc.ra120.013792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Skp1, a subunit of E3 Skp1/Cullin-1/F-box protein ubiquitin ligases, is modified by a prolyl hydroxylase that mediates O2 regulation of the social amoeba Dictyostelium and the parasite Toxoplasma gondii The full effect of hydroxylation requires modification of the hydroxyproline by a pentasaccharide that, in Dictyostelium, influences Skp1 structure to favor assembly of Skp1/F-box protein subcomplexes. In Toxoplasma, the presence of a contrasting penultimate sugar assembled by a different glycosyltransferase enables testing of the conformational control model. To define the final sugar and its linkage, here we identified the glycosyltransferase that completes the glycan and found that it is closely related to glycogenin, an enzyme that may prime glycogen synthesis in yeast and animals. However, the Toxoplasma enzyme catalyzes formation of a Galα1,3Glcα linkage rather than the Glcα1,4Glcα linkage formed by glycogenin. Kinetic and crystallographic experiments showed that the glycosyltransferase Gat1 is specific for Skp1 in Toxoplasma and also in another protist, the crop pathogen Pythium ultimum The fifth sugar is important for glycan function as indicated by the slow-growth phenotype of gat1Δ parasites. Computational analyses indicated that, despite the sequence difference, the Toxoplasma glycan still assumes an ordered conformation that controls Skp1 structure and revealed the importance of nonpolar packing interactions of the fifth sugar. The substitution of glycosyltransferases in Toxoplasma and Pythium by an unrelated bifunctional enzyme that assembles a distinct but structurally compatible glycan in Dictyostelium is a remarkable case of convergent evolution, which emphasizes the importance of the terminal α-galactose and establishes the phylogenetic breadth of Skp1 glycoregulation.
Collapse
Affiliation(s)
- Msano Mandalasi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Hyun W Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - David Thieker
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Kazi Rahman
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Nitin G Daniel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - H Travis Ichikawa
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - John N Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Robert J Woods
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
6
|
Bandini G, Albuquerque-Wendt A, Hegermann J, Samuelson J, Routier FH. Protein O- and C-Glycosylation pathways in Toxoplasma gondii and Plasmodium falciparum. Parasitology 2019; 146:1755-1766. [PMID: 30773146 PMCID: PMC6939170 DOI: 10.1017/s0031182019000040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Apicomplexan parasites are amongst the most prevalent and morbidity-causing pathogens worldwide. They are responsible for severe diseases in humans and livestock and are thus of great public health and economic importance. Until the sequencing of apicomplexan genomes at the beginning of this century, the occurrence of N- and O-glycoproteins in these parasites was much debated. The synthesis of rudimentary and divergent N-glycans due to lineage-specific gene loss is now well established and has been recently reviewed. Here, we will focus on recent studies that clarified classical O-glycosylation pathways and described new nucleocytosolic glycosylations in Toxoplasma gondii, the causative agents of toxoplasmosis. We will also review the glycosylation of proteins containing thrombospondin type 1 repeats by O-fucosylation and C-mannosylation, newly discovered in Toxoplasma and the malaria parasite Plasmodium falciparum. The functional significance of these post-translational modifications has only started to emerge, but the evidence points towards roles for these protein glycosylation pathways in tissue cyst wall rigidity and persistence in the host, oxygen sensing, and stability of proteins involved in host invasion.
Collapse
Affiliation(s)
- Giulia Bandini
- Department of Molecular and Cell Biology, Boston University, Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Andreia Albuquerque-Wendt
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jan Hegermann
- Hannover Medical School, Electron Microscopy Facility OE8840, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University, Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Françoise H. Routier
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Sheikh MO, Halmo SM, Patel S, Middleton D, Takeuchi H, Schafer CM, West CM, Haltiwanger RS, Avci FY, Moremen KW, Wells L. Rapid screening of sugar-nucleotide donor specificities of putative glycosyltransferases. Glycobiology 2018; 27:206-212. [PMID: 28177478 DOI: 10.1093/glycob/cww114] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/20/2016] [Accepted: 11/17/2016] [Indexed: 01/09/2023] Open
Abstract
Determining the correct enzymatic activity of putative glycosyltransferases (GTs) can be challenging as these enzymes can utilize multiple donor and acceptor substrates. Upon initial determination of the donor-sugar nucleotide(s), a GT utilizes various acceptor molecules that can then be tested. Here, we describe a quick method to screen sugar-nucleotide donor specificities of GTs utilizing a sensitive, nonradioactive, commercially available bioluminescent uridine diphosphate detection kit. This in vitro method allowed us to validate the sugar-nucleotide donor-substrate specificities of recombinantly expressed human, bovine, bacterial and protozoan GTs. Our approach, which is less time consuming than many traditional assays that utilize radiolabeled sugars and chromatographic separations, should facilitate discovery of novel GTs that participate in diverse biological processes.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Stephanie M Halmo
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Sneha Patel
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Dustin Middleton
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Hideyuki Takeuchi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | | | - Christopher M West
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Fikri Y Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Sheikh MO, Thieker D, Chalmers G, Schafer CM, Ishihara M, Azadi P, Woods RJ, Glushka JN, Bendiak B, Prestegard JH, West CM. O 2 sensing-associated glycosylation exposes the F-box-combining site of the Dictyostelium Skp1 subunit in E3 ubiquitin ligases. J Biol Chem 2017; 292:18897-18915. [PMID: 28928219 PMCID: PMC5704474 DOI: 10.1074/jbc.m117.809160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
Skp1 is a conserved protein linking cullin-1 to F-box proteins in SCF (Skp1/Cullin-1/F-box protein) E3 ubiquitin ligases, which modify protein substrates with polyubiquitin chains that typically target them for 26S proteasome-mediated degradation. In Dictyostelium (a social amoeba), Toxoplasma gondii (the agent for human toxoplasmosis), and other protists, Skp1 is regulated by a unique pentasaccharide attached to hydroxylated Pro-143 within its C-terminal F-box-binding domain. Prolyl hydroxylation of Skp1 contributes to O2-dependent Dictyostelium development, but full glycosylation at that position is required for optimal O2 sensing. Previous studies have shown that the glycan promotes organization of the F-box-binding region in Skp1 and aids in Skp1's association with F-box proteins. Here, NMR and MS approaches were used to determine the glycan structure, and then a combination of NMR and molecular dynamics simulations were employed to characterize the impact of the glycan on the conformation and motions of the intrinsically flexible F-box-binding domain of Skp1. Molecular dynamics trajectories of glycosylated Skp1 whose calculated monosaccharide relaxation kinetics and rotational correlation times agreed with the NMR data indicated that the glycan interacts with the loop connecting two α-helices of the F-box-combining site. In these trajectories, the helices separated from one another to create a more accessible and dynamic F-box interface. These results offer an unprecedented view of how a glycan modification influences a disordered region of a full-length protein. The increased sampling of an open Skp1 conformation can explain how glycosylation enhances interactions with F-box proteins in cells.
Collapse
Affiliation(s)
- M Osman Sheikh
- From the Department of Biochemistry and Molecular Biology
- the Complex Carbohydrate Research Center, and
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | | | - Gordon Chalmers
- the Complex Carbohydrate Research Center, and
- the Department of Computer Science, University of Georgia, Athens, Georgia 30602
| | - Christopher M Schafer
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | | | | | - Robert J Woods
- From the Department of Biochemistry and Molecular Biology
- the Complex Carbohydrate Research Center, and
| | | | - Brad Bendiak
- the Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - James H Prestegard
- From the Department of Biochemistry and Molecular Biology
- the Complex Carbohydrate Research Center, and
| | - Christopher M West
- From the Department of Biochemistry and Molecular Biology,
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| |
Collapse
|
9
|
Rahman K, Mandalasi M, Zhao P, Sheikh MO, Taujale R, Kim HW, van der Wel H, Matta K, Kannan N, Glushka JN, Wells L, West CM. Characterization of a cytoplasmic glucosyltransferase that extends the core trisaccharide of the Toxoplasma Skp1 E3 ubiquitin ligase subunit. J Biol Chem 2017; 292:18644-18659. [PMID: 28928220 DOI: 10.1074/jbc.m117.809301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Indexed: 01/06/2023] Open
Abstract
Skp1 is a subunit of the SCF (Skp1/Cullin 1/F-box protein) class of E3 ubiquitin ligases that are important for eukaryotic protein degradation. Unlike its animal counterparts, Skp1 from Toxoplasma gondii is hydroxylated by an O2-dependent prolyl-4-hydroxylase (PhyA), and the resulting hydroxyproline can subsequently be modified by a five-sugar chain. A similar modification is found in the social amoeba Dictyostelium, where it regulates SCF assembly and O2-dependent development. Homologous glycosyltransferases assemble a similar core trisaccharide in both organisms, and a bifunctional α-galactosyltransferase from CAZy family GT77 mediates the addition of the final two sugars in Dictyostelium, generating Galα1, 3Galα1,3Fucα1,2Galβ1,3GlcNAcα1-. Here, we found that Toxoplasma utilizes a cytoplasmic glycosyltransferase from an ancient clade of CAZy family GT32 to catalyze transfer of the fourth sugar. Catalytically active Glt1 was required for the addition of the terminal disaccharide in cells, and cytosolic extracts catalyzed transfer of [3H]glucose from UDP-[3H]glucose to the trisaccharide form of Skp1 in a glt1-dependent fashion. Recombinant Glt1 catalyzed the same reaction, confirming that it directly mediates Skp1 glucosylation, and NMR demonstrated formation of a Glcα1,3Fuc linkage. Recombinant Glt1 strongly preferred the full core trisaccharide attached to Skp1 and labeled only Skp1 in glt1Δ extracts, suggesting specificity for Skp1. glt1-knock-out parasites exhibited a growth defect not rescued by catalytically inactive Glt1, indicating that the glycan acts in concert with the first enzyme in the pathway, PhyA, in cells. A genomic bioinformatics survey suggested that Glt1 belongs to the ancestral Skp1 glycosylation pathway in protists and evolved separately from related Golgi-resident GT32 glycosyltransferases.
Collapse
Affiliation(s)
- Kazi Rahman
- From the Department of Biochemistry and Molecular Biology.,the Departments of Microbiology and Immunology and
| | - Msano Mandalasi
- From the Department of Biochemistry and Molecular Biology.,Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | - Peng Zhao
- the Complex Carbohydrate Research Center, and
| | | | - Rahil Taujale
- the Complex Carbohydrate Research Center, and.,the Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | - Hyun W Kim
- From the Department of Biochemistry and Molecular Biology
| | | | - Khushi Matta
- the Department of Chemical and Biological Engineering, State University of New York, Buffalo, New York 14260
| | - Natarajan Kannan
- From the Department of Biochemistry and Molecular Biology.,the Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | | | - Lance Wells
- From the Department of Biochemistry and Molecular Biology.,the Complex Carbohydrate Research Center, and
| | - Christopher M West
- From the Department of Biochemistry and Molecular Biology, .,Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| |
Collapse
|
10
|
Rahman K, Zhao P, Mandalasi M, van der Wel H, Wells L, Blader IJ, West CM. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development. J Biol Chem 2016; 291:4268-80. [PMID: 26719340 PMCID: PMC4813455 DOI: 10.1074/jbc.m115.703751] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/19/2015] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.
Collapse
Affiliation(s)
- Kazi Rahman
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Peng Zhao
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, the Complex Carbohydrate Research Center, Athens, Georgia 30602, and
| | - Msano Mandalasi
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Hanke van der Wel
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Lance Wells
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, the Complex Carbohydrate Research Center, Athens, Georgia 30602, and
| | - Ira J Blader
- the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14214
| | - Christopher M West
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602,
| |
Collapse
|
11
|
Chinoy ZS, Schafer CM, West CM, Boons GJ. Chemical Synthesis of a Glycopeptide Derived from Skp1 for Probing Protein Specific Glycosylation. Chemistry 2015; 21:11779-87. [PMID: 26179871 DOI: 10.1002/chem.201501598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 01/13/2023]
Abstract
Skp1 is a cytoplasmic and nuclear protein, best known as an adaptor of the SCF family of E3-ubiquitin ligases that label proteins for their degradation. Skp1 in Dictyostelium is posttranslationally modified on a specific hydroxyproline (Hyp) residue by a pentasaccharide, which consists of a Fucα1,2-Galβ-1,3-GlcNAcα core, decorated with two α-linked Gal residues. A glycopeptide derived form Skp1 was prepared to characterize the α-galactosyltransferase (AgtA) that mediates the addition of the α-Gal moieties, and to develop antibodies suitable for tracking the trisaccharide isoform of Skp1 in cells. A strategy was developed for the synthesis of the core trisaccharide-Hyp based on the use of 2-naphthylmethyl (Nap) ethers as permanent protecting groups to allow late stage installation of the Hyp moiety. Tuning of glycosyl donor and acceptor reactivities was critical for achieving high yields and anomeric selectivities of glycosylations. The trisaccharide-Hyp moiety was employed for the preparation of the glycopeptide using microwave-assisted solid phase peptide synthesis. Enzyme kinetic studies revealed that trisaccharide-Hyp and trisaccharide-peptide are poorly recognized by AgtA, indicating the importance of context provided by the native Skp1 protein for engagement with the active site. The trisaccharide-peptide was a potent immunogen capable of generating a rabbit antiserum that was highly selective toward the trisaccharide isoform of full-length Skp1.
Collapse
Affiliation(s)
- Zoeisha S Chinoy
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Christopher M Schafer
- Department of Biochemistry and Molecular Biology and Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 (USA).,Current address: Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104 (USA)
| | - Christopher M West
- Department of Biochemistry and Molecular Biology and Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 (USA).,Current address: Dept. of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602 (USA)
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA).
| |
Collapse
|
12
|
West CM, Blader IJ. Oxygen sensing by protozoans: how they catch their breath. Curr Opin Microbiol 2015; 26:41-7. [PMID: 25988702 DOI: 10.1016/j.mib.2015.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 04/24/2015] [Indexed: 01/09/2023]
Abstract
Cells must know the local levels of available oxygen and either adapt accordingly or relocate to more favorable environments. Prolyl 4-hydroxylases (P4Hs) are emerging as universal cellular oxygen sensors. In animals, these oxygen sensors respond to decreased oxygen availability by up-regulating hypoxia-inducible transcription factors. In protozoa, the P4Hs appear to activate E3-SCF ubiquitin ligase complexes via a glycosylation-dependent mechanism, potentially to turn over their proteomes. Intracellular parasites are impacted by both types of oxygen-sensing pathways. Since parasites are exposed to diverse oxygen tensions during their life cycles, this review identifies emerging oxygen-sensing mechanisms and discusses how these mechanisms probably contribute to the regulation of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC 417, Oklahoma City, OK 73104, USA.
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, 347 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
13
|
Karunaratne C, Weldeghiorghis TK, West CM, Taylor CM. Conformational changes associated with post-translational modifications of Pro(143) in Skp1 of Dictyostelium--a dipeptide model system. J Am Chem Soc 2014; 136:15170-5. [PMID: 25250945 PMCID: PMC4227711 DOI: 10.1021/ja5033277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Indexed: 01/16/2023]
Abstract
Prolyl hydroxylation and subsequent glycosylation of the E3(SCF) ubiquitin ligase subunit Skp1 affects its conformation and its interaction with F-box proteins and, ultimately, O2-sensing in the organism. Taking a reductionist approach to understand the molecular basis for these effects, a series of end-capped Thr-Pro dipeptides was synthesized, tracking the sequential post-translational modifications that occur in the protein. The conformation of the pyrrolidine ring in each compound was gauged via coupling constants ((3)JHα,Hβ) and the electronegativity of the Cγ-substituents by chemical shifts ((13)C). The equilibrium between the cis-trans conformations about the central prolyl peptide bond was investigated by integration of signals corresponding to the two species in the (1)H NMR spectra over a range of temperatures. These studies revealed an increasing preference for the trans-conformation in the order Pro < Hyp < [α-(1,4)GlcNAc]Hyp. Rates for the forward and reverse reactions, determined by magnetization transfer experiments, demonstrated a reduced rate for the trans-to-cis conversion and a significant increase in the cis-to-trans conversion upon hydroxylation of the proline residue in the dipeptide. NOE experiments suggest that the Thr side chain pushes the sugar away from the pyrrolidine ring. These effects, which depended on the presence of the N-terminal Thr residue, offer a mechanism to explain altered properties of the corresponding full-length proteins.
Collapse
Affiliation(s)
- Chamini
V. Karunaratne
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Thomas K. Weldeghiorghis
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Christopher M. West
- Department
of Biochemistry & Molecular Biology, Oklahoma Center for Medical
Glycobiology, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Carol M. Taylor
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|