1
|
Yang L, Yang W, Shen Y, Zhou Y. Advance in candidate genes in mandibular retrognathism: A systematic review. Arch Oral Biol 2025; 174:106234. [PMID: 40132276 DOI: 10.1016/j.archoralbio.2025.106234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
OBJECTIVE This research aims to dissect the polygenic nature of non-syndromic mandibular retrognathism (MR) and to better understand the genetic underpinnings of MR, with a particular focus on the role of ethnic diversity in influencing genetic predispositions. METHODS A comprehensive systematic review was conducted on MR. Electronic databases such as PubMed and Google Scholar were employed, utilizing terms like 'mandibular', 'retrognathism', 'gene', and 'genetic'. This study strictly adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. RESULTS Ten genetic studies were identified that satisfied the eligibility criteria, involving 1010 participants. Variations in candidate genes were reported across different populations, including myosin 1 H (MYO1H), matrilin 1 (MATN1), a disintegrin and metalloproteinase with thrombospondin motifs 9 (ADAMTS9), bone morphogenetic protein 2 (BMP2), parathyroid hormone (PTH), the vitamin-D related genes: vitamin D receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), and cytochrome P450 family 27 subfamily B member 1 (CYP27B1), collagen type II alpha 1 chain (COL2A1), transforming growth factor-β (TGF-β), TGF-β receptor 2 (TGFBR2), epidermal growth factor (EGF), and EGF receptor gene (EGFR). CONCLUSION These findings shed light on the role of genetic factors in MR. Future studies should adopt a multicentric approach to expand sample sizes and enhance the analysis of genetic variants associated with MR.
Collapse
Affiliation(s)
- Li Yang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiping Yang
- Department of Orthodontics, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yining Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhang C, Zhang S, Wang G, Huang X, Xu S, Wang D, Guo C, Wang Y. Genomics and transcriptomics identify quantitative trait loci affecting growth-related traits in silver pomfret (Pampus argenteus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101414. [PMID: 39813916 DOI: 10.1016/j.cbd.2025.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources. Therefore, we conducted mass selection for fast-growing strain P. argenteus for several consecutive years. Various genetic improvement programs have modified its genome sequence through selective pressure, leaving nucleotide signals that can be detected at the genomic level. In the present study, we combined bulked segregant analysis and transcriptome sequencing to identify candidate single nucleotide polymorphisms (SNPs) and key genes for growth-related traits in P. argenteus. A total of 7,280,936 SNPs and 2,212,379 insertions/deletions were identified in the extreme phenotypes of the fast-growing and slow-growing groups. Based on the examination of SNP frequency differences and sliding-window analysis, 42 SNPs were identified as candidate markers. Moreover, 14 of the 42 SNPs linked to growth-related traits were confirmed to be credible SNPs, and eight growth-related genes were screened, namely myb-binding protein 1 A, insulin A/B chains, α-1B adrenoceptor, engulfment and cell motility protein 3, myosin light chain kinase family member 4, insulin receptor located, unconventional myosin-9b, and matrilin-1. An optimal three-factor model (SNP4&SNP12&SNP14) was constructed using the generalized multifactor dimensionality reduction method, and its accuracy was verified as 67.72 %. These results may benefit genetic studies and accelerate genetic improvement of fast-growing strains of P. argenteus.
Collapse
Affiliation(s)
- Cheng Zhang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shun Zhang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Guanlin Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Xiang Huang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shanliang Xu
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Danli Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Chunyang Guo
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China.
| | - Yajun Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China.
| |
Collapse
|
3
|
Stassen SV, Kobashi M, Lam EY, Huang Y, Ho JWK, Tsia KK. StaVia: spatially and temporally aware cartography with higher-order random walks for cell atlases. Genome Biol 2024; 25:224. [PMID: 39152459 PMCID: PMC11328412 DOI: 10.1186/s13059-024-03347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Single-cell atlases pose daunting computational challenges pertaining to the integration of spatial and temporal information and the visualization of trajectories across large atlases. We introduce StaVia, a computational framework that synergizes multi-faceted single-cell data with higher-order random walks that leverage the memory of cells' past states, fused with a cartographic Atlas View that offers intuitive graph visualization. This spatially aware cartography captures relationships between cell populations based on their spatial location as well as their gene expression and developmental stage. We demonstrate this using zebrafish gastrulation data, underscoring its potential to dissect complex biological landscapes in both spatial and temporal contexts.
Collapse
Affiliation(s)
- Shobana V Stassen
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
| | - Minato Kobashi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong
- AI Chip Center for Emerging Smart Systems, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Yuanhua Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
4
|
Zou W, Xia M, Jiang K, Cao Z, Zhang X, Hu X. Photo-Oxidative Degradation Mitigated the Developmental Toxicity of Polyamide Microplastics to Zebrafish Larvae by Modulating Macrophage-Triggered Proinflammatory Responses and Apoptosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13888-13898. [PMID: 33078945 DOI: 10.1021/acs.est.0c05399] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and pose substantial threats to the water ecosystem. However, the impact of natural aging of MPs on their toxicity has rarely been considered. This study found that visible light irradiation with hydrogen peroxide at environmentally relevant concentration for 90 days significantly altered the physicochemical properties and mitigated the toxicity of polyamide (PA) fragments to infantile zebrafish. The size of PA particles was reduced from ∼8.13 to ∼6.37 μm, and nanoparticles were produced with a maximum yield of 5.03%. The end amino groups were volatilized, and abundant oxygen-containing groups (e.g., hydroxyl and carboxyl) and carbon-centered free radicals were generated, improving the hydrophilicity and colloidal stability of degraded MPs. Compared with pristine PA, the depuration of degraded MPs mediated by multixenobiotics resistance was much quicker, leading to markedly lower bioaccumulation in fish and weaker inhibition on musculoskeletal development. By integrating transcriptomics and transgenic zebrafish [Tg(lyz:EGFP)] tests, differences in macrophages-triggered proinflammatory effects, apoptosis via IL-17 signaling pathway, and antioxidant damages were identified as the underlying mechanisms for the attenuated toxicity of degraded MPs. This work highlights the importance of natural degradation on the toxicity of MPs, which has great implications for risk assessment of MPs.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Mengli Xia
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Zhang X, Zhou Q, Li X, Zou W, Hu X. Integrating omics and traditional analyses to profile the synergistic toxicity of graphene oxide and triphenyl phosphate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114473. [PMID: 33618456 DOI: 10.1016/j.envpol.2020.114473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/02/2020] [Accepted: 03/25/2020] [Indexed: 06/12/2023]
Abstract
The increasing production and applications of graphene oxide (GO, a novel carbon nanomaterial) have raised numerous environmental concerns regarding its ecological risks. Triphenyl phosphate (TPhP) disperses in water and poses an increasing hazard to the ecosystem and human health. It is critical to study the environmental responses and molecular mechanisms of GO and TPhP together to assess both chemicals; however, this information is lacking. The present work revealed that GO promoted the bioaccumulation of TPhP in zebrafish larvae by 5.0%-24.3%. The TPhP-induced growth inhibition of embryos (malformation, mortality, heartbeat, and spontaneous movement) at environmentally relevant concentrations was significantly amplified by GO, and these results were supported by the downregulated levels of genes and proteins associated with cytoskeletal construction and cartilage and eye development. TPhP induced negligible alterations in the genes or proteins involved in oxidative stress and apoptosis, but those related proteins were all upregulated by GO. GO and TPhP coexposure activated the mTOR signaling pathway and subsequently promoted apoptosis in zebrafish by potentiating the oxidative stress induced by TPhP, presenting synergistic toxicity. These findings highlight the potential risks and specific molecular mechanisms of combining emerging carbon nanomaterials with coexisting organic contaminants.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xinyu Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, 453007, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
6
|
Zou W, Zhang X, Ouyang S, Hu X, Zhou Q. Graphene oxide nanosheets mitigate the developmental toxicity of TDCIPP in zebrafish via activating the mitochondrial respiratory chain and energy metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138486. [PMID: 32330713 DOI: 10.1016/j.scitotenv.2020.138486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 05/14/2023]
Abstract
Graphene oxide (GO), a novel two-dimension carbon nanomaterial, has showed tremendous potential for utilization in intelligent manufacturing and environmental protection. In parallel, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is widely distributed in the water environment and represents a great threat to ecosystem health. However, the related knowledge remained absent regarding the impact of GO on the biological risks of TDCIPP. Herein, GO significantly reduced the mortality and malformation rates of zebrafish induced by TDCIPP maximumly by 28.6% and 41.8%, respectively. Decreased mitochondrial respiratory chain (MRC) enzyme and ATP activity induced by TDCIPP were mitigated by GO. Integrating proteomics and metabolomics revealed TDCIPP obviously induced the downregulation of the proteins and metabolites involved in the cytoskeleton, mitochondrial function, carbohydrate and amino acid metabolism, and the TCA cycle, but the alterations were attenuated by GO. GO primarily promoted MRC activity, carbohydrate metabolism, and fatty acid β-oxidation, thus activating the energy metabolism of zebrafish and leading to antagonistic effects on the developmental toxicity of TDCIPP. These results provide a novel view on the co-exposure of GO with other pollutants and promote the reconsideration of the environmental risks of GO.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Junkunlo K, Söderhäll K, Söderhäll I. Clotting protein - An extracellular matrix (ECM) protein involved in crustacean hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:132-140. [PMID: 28943319 DOI: 10.1016/j.dci.2017.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Hematopoietic progenitor cells in crustaceans are organized in lobule-like structures surrounded by different types of cells and extracellular matrix (ECM) proteins in a Hematopoietic tissue (HPT). Here we show that the clotting protein (CP) is part of the ECM in HPT and is secreted during HPT cell culture. The formation of a filamentous network of CP was observed in HPT cell culture. A high amount of CP protein was detected at the surfaces of undifferentiated cells (round-shaped) compared with migrating cells (spindle shaped). Co-localization of the CP protein and TGase activity was observed on the cell surface and filamentous network between cells. A role for CP together with collagen was revealed in a 3D culture in which a collagen-I matrix was immobilized with CP or supplemented with CP. The results showed possible functions of CP, collagen, TGase and the cytokine Ast1 in the regulation of HPT progenitor cell behavior. This is the first study to provide insight into the role of CP, which probably not only participates in clot formation but also functions as an ECM component protein controlling hematopoietic stem cell behavior.
Collapse
Affiliation(s)
- Kingkamon Junkunlo
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| |
Collapse
|
8
|
Abstract
Marilins mediate interactions between macromolecular components of the extracellular matrix, e.g., collagens and proteoglycans. They are composed of von Willebrand factor type A and epidermal growth factor-like domains and the subunits oligomerize via coiled-coil domains. Matrilin-1 and -3 are abundant in hyaline cartilage, whereas matrilin-2 and -4 are widespread but less abundant. Mutations in matrilin genes have been linked to chondrodysplasias and osteoarthritis and recently characterization of matrilin-deficient mice revealed novel functions in mechanotransduction, regeneration, or inflammation. Due to their intrinsic adhesiveness and partially also low abundance, the study of matrilins is cumbersome. In this chapter, we describe methods for purification of matrilins from tissue, analysis of matrilins in tissue extracts, recombinant expression, and generation of matrilin-specific antibodies.
Collapse
Affiliation(s)
- Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Abstract
The zebrafish skeleton shares many similarities with human and other vertebrate skeletons. Over the past years, work in zebrafish has provided an extensive understanding of the basic developmental mechanisms and cellular pathways directing skeletal development and homeostasis. This review will focus on the cell biology of cartilage and bone and how the basic cellular processes within chondrocytes and osteocytes function to assemble the structural frame of a vertebrate body. We will discuss fundamental functions of skeletal cells in production and secretion of extracellular matrix and cellular activities leading to differentiation of progenitors to mature cells that make up the skeleton. We highlight important examples where findings in zebrafish provided direction for the search for genes causing human skeletal defects and also how zebrafish research has proven important for validating candidate human disease genes. The work we cover here illustrates utility of zebrafish in unraveling molecular mechanisms of cellular functions necessary to form and maintain a healthy skeleton.
Collapse
Affiliation(s)
- Lauryn N Luderman
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States
| | - Gokhan Unlu
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States
| | - Ela W Knapik
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
10
|
Haggard DE, Noyes PD, Waters KM, Tanguay RL. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish. Toxicol Appl Pharmacol 2016; 308:32-45. [PMID: 27538710 DOI: 10.1016/j.taap.2016.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/17/2016] [Accepted: 08/12/2016] [Indexed: 02/08/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent commonly found in a variety of personal care products and cosmetics. TCS readily enters the environment through wastewater and is detected in human plasma, urine, and breast milk due to its widespread use. Studies have implicated TCS as a disruptor of thyroid and estrogen signaling; therefore, research examining the developmental effects of TCS is warranted. In this study, we used embryonic zebrafish to investigate the developmental toxicity and potential mechanism of action of TCS. Embryos were exposed to graded concentrations of TCS from 6 to 120hours post-fertilization (hpf) and the concentration where 80% of the animals had mortality or morbidity at 120hpf (EC80) was calculated. Transcriptomic profiling was conducted on embryos exposed to the EC80 (7.37μM). We identified a total of 922 significant differentially expressed transcripts (FDR adjusted P-value≤0.05; fold change ≥2). Pathway and gene ontology enrichment analyses identified biological networks and transcriptional hubs involving normal liver functioning, suggesting TCS may be hepatotoxic in zebrafish. Tissue-specific gene enrichment analysis further supported the role of the liver as a target organ for TCS toxicity. We also examined the in vitro bioactivity profile of TCS reported by the ToxCast screening program. TCS had a diverse bioactivity profile and was a hit in 217 of the 385 assay endpoints we identified. We observed similarities in gene expression and hepatic steatosis assays; however, hit data for TCS were more concordant with the hypothesized CAR/PXR activity of TCS from rodent and human in vitro studies.
Collapse
Affiliation(s)
- Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Pamela D Noyes
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; Office of Science Coordination and Policy (OSCP), Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Washington, DC, United States
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
11
|
Deficient Mechanical Activation of Anabolic Transcripts and Post-Traumatic Cartilage Degeneration in Matrilin-1 Knockout Mice. PLoS One 2016; 11:e0156676. [PMID: 27270603 PMCID: PMC4896629 DOI: 10.1371/journal.pone.0156676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/18/2016] [Indexed: 11/19/2022] Open
Abstract
Matrilin-1 (Matn1), a cartilage-specific peri-cellular and extracellular matrix (ECM) protein, has been hypothesized to regulate ECM interactions and transmit mechanical signals in cartilage. Since Matn1 knock-out (Matn1-/-) mice exhibit a normal skeleton, its function in vivo is unclear. In this study, we found that the anabolic Acan and Col2a transcript levels were significantly higher in wildtype (Matn1+/+) mouse cartilage than that of MATN1-/- mice in vivo. However, such difference was not observed between Matn1+/+ and MATN1-/- chondrocytes cultured under stationary conditions in vitro. Cyclic loading significantly stimulated Acan and Col2a transcript levels in Matn1+/+ but not in MATN1-/- chondrocytes. This suggests that, while Matn1+/+ chondrocytes increase their anabolic gene expression in response to mechanical loading, the MATN1-/- chondrocytes fail to do so because of the deficiency in mechanotransduction. We also found that altered elastic modulus of cartilage matrix in Matn1-/- mice, suggesting the mechanotransduction has changed due to the deficiency of Matn1. To understand the impact of such deficiency on joint disease, mechanical loading was altered in vivo by destabilization of medial meniscus. While Matn1+/+ mice exhibited superficial fissures and clefts consistent with mechanical damage to the articular joint, Matn1-/- mice presented more severe cartilage lesions characterized by proteoglycan loss and disorganization of cells and ECM. This suggests that Matn1 deficiency affects pathogenesis of post-traumatic osteoarthritis by failing to up-regulate anabolic gene expression. This is the first demonstration of Matn1 function in vivo, which suggests its protective role in cartilage degeneration under altered mechanical environment.
Collapse
|
12
|
Harney E, Artigaud S, Le Souchu P, Miner P, Corporeau C, Essid H, Pichereau V, Nunes FLD. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas. J Proteomics 2015; 135:151-161. [PMID: 26657130 DOI: 10.1016/j.jprot.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022]
Abstract
UNLABELLED Increasing atmospheric carbon dioxide results in ocean acidification and warming, significantly impacting marine invertebrate larvae development. We investigated how ocean acidification in combination with warming affected D-veliger larvae of the Pacific oyster Crassostrea gigas. Larvae were reared for 40h under either control (pH8.1, 20 °C), acidified (pH7.9, 20 °C), warm (pH8.1, 22 °C) or warm acidified (pH7.9, 22 °C) conditions. Larvae in acidified conditions were significantly smaller than in the control, but warm acidified conditions mitigated negative effects on size, and increased calcification. A proteomic approach employing two-dimensional electrophoresis (2-DE) was used to quantify proteins and relate their abundance to phenotypic traits. In total 12 differentially abundant spots were identified by nano-liquid chromatography-tandem mass spectrometry. These proteins had roles in metabolism, intra- and extra-cellular matrix formations, stress response, and as molecular chaperones. Seven spots responded to reduced pH, four to increased temperature, and six to acidification and warming. Reduced abundance of proteins such as ATP synthase and GAPDH, and increased abundance of superoxide dismutase, occurred when both pH and temperature changes were imposed, suggesting altered metabolism and enhanced oxidative stress. These results identify key proteins that may be involved in the acclimation of C. gigas larvae to ocean acidification and warming. SIGNIFICANCE Increasing atmospheric CO2 raises sea surface temperatures and results in ocean acidification, two climatic variables known to impact marine organisms. Larvae of calcifying species may be particularly at risk to such changing environmental conditions. The Pacific oyster Crassostrea gigas is ecologically and commercially important, and understanding its ability to acclimate to climate change will help to predict how aquaculture of this species is likely to be impacted. Modest, yet realistic changes in pH and/or temperature may be more informative of how populations will respond to contemporary climate change. We showed that concurrent acidification and warming mitigates the negative effects of pH alone on size of larvae, but proteomic analysis reveals altered patterns of metabolism and an increase in oxidative stress suggesting non-additive effects of the interaction between pH and temperature on protein abundance. Thus, even small changes in climate may influence development, with potential consequences later in life.
Collapse
Affiliation(s)
- Ewan Harney
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France.
| | - Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| | - Pierrick Le Souchu
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne Z.I. Pointe du Diable, 29280 Plouzané, France
| | - Philippe Miner
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne Z.I. Pointe du Diable, 29280 Plouzané, France
| | - Charlotte Corporeau
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne Z.I. Pointe du Diable, 29280 Plouzané, France
| | - Hafida Essid
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| | - Flavia L D Nunes
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| |
Collapse
|
13
|
Patterson SE, Dealy CN. Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia. Dev Dyn 2014; 243:875-93. [DOI: 10.1002/dvdy.24131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sara E. Patterson
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
| | - Caroline N. Dealy
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
- Center for Regenerative Medicine and Skeletal Development; Department of Orthopedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| |
Collapse
|
14
|
Li M, Lu S, Liu X, Zhao J, Zhang H, Ling C. [Expression of endoglin in human non-small cell lung cancer and its clinical significance]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2013; 129:706-16. [PMID: 23746240 DOI: 10.1242/jcs.180216] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/03/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the expression of endoglin (ENG) in human non small cell lung cancer (NSCLC) cell lines, cancer and adjacent non-cancer tissues, and its role in NSCLC development, progression, metastasis and recurrence. METHODS Five strains of NSCLC cells and one strain of normal human bronchial epithelial (HBE) cells were cultured in vitro. Human NSCLC tissues and their corresponding adjacent lung tissues were taken from 22 NSCLC cases to detect the mRNA and protein levels of ENG using real-time PCR and Western blotting, respectively. Chi-square test was performed to analyze the correlations between the ENG expression and clinical data. RESULTS The mRNA and protein levels of ENG were up-regulated in 3 NSCLC cell strains of high metastasis. However, the expression of ENG was missing in the other low-metastatic NSCLC cell strains and the HBE cell strain. Besides, the mRNA and protein levels of ENG were up-regulated in the 19 out of 22 lung cancer tissues (86.36%), which were significantly higher than those in the adjacent non-cancer tissues (P<0.01). The over-expression of ENG was significantly correlated positively with lymph node metastasis (P<0.01), but not with age, sex, tumor size, clinical stage, pathological grade or histopathological type. CONCLUSION The expression of ENG in NSCLC is significantly correlated positively with lymph node metastasis, and it might be a biomarker for the metastasis and prognosis of NSCLC.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Pulmonary Diseases, First Affiliated Hospital, Soochow University, Soochow 215000, China
| | | | | | | | | | | |
Collapse
|