1
|
Stilgoe A, Favre-Bulle IA, Watson ML, Gomez-Godinez V, Berns MW, Preece D, Rubinsztein-Dunlop H. Shining Light in Mechanobiology: Optical Tweezers, Scissors, and Beyond. ACS PHOTONICS 2024; 11:917-940. [PMID: 38523746 PMCID: PMC10958612 DOI: 10.1021/acsphotonics.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Mechanobiology helps us to decipher cell and tissue functions by looking at changes in their mechanical properties that contribute to development, cell differentiation, physiology, and disease. Mechanobiology sits at the interface of biology, physics and engineering. One of the key technologies that enables characterization of properties of cells and tissue is microscopy. Combining microscopy with other quantitative measurement techniques such as optical tweezers and scissors, gives a very powerful tool for unraveling the intricacies of mechanobiology enabling measurement of forces, torques and displacements at play. We review the field of some light based studies of mechanobiology and optical detection of signal transduction ranging from optical micromanipulation-optical tweezers and scissors, advanced fluorescence techniques and optogenentics. In the current perspective paper, we concentrate our efforts on elucidating interesting measurements of forces, torques, positions, viscoelastic properties, and optogenetics inside and outside a cell attained when using structured light in combination with optical tweezers and scissors. We give perspective on the field concentrating on the use of structured light in imaging in combination with tweezers and scissors pointing out how novel developments in quantum imaging in combination with tweezers and scissors can bring to this fast growing field.
Collapse
Affiliation(s)
- Alexander
B. Stilgoe
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
- ARC
CoE in Quantum Biotechnology, The University
of Queensland, 4074, Brisbane, Australia
| | - Itia A. Favre-Bulle
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- Queensland
Brain Institute, The University of Queensland, Brisbane, 4074, Australia
| | - Mark L. Watson
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
| | - Veronica Gomez-Godinez
- Institute
of Engineering and Medicine, University
of California San Diego, San Diego, California 92093, United States
| | - Michael W. Berns
- Institute
of Engineering and Medicine, University
of California San Diego, San Diego, California 92093, United States
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Daryl Preece
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Halina Rubinsztein-Dunlop
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
- ARC
CoE in Quantum Biotechnology, The University
of Queensland, 4074, Brisbane, Australia
| |
Collapse
|
2
|
Mazzagatti A, Engel JL, Ly P. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors. Mol Cell 2024; 84:55-69. [PMID: 38029753 PMCID: PMC10842135 DOI: 10.1016/j.molcel.2023.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.
Collapse
Affiliation(s)
- Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Rodriguez-Muñoz M, Serrat M, Soler D, Genescà A, Anglada T. Breakage of CRISPR/Cas9-Induced Chromosome Bridges in Mitotic Cells. Front Cell Dev Biol 2021; 9:745195. [PMID: 34650988 PMCID: PMC8505897 DOI: 10.3389/fcell.2021.745195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Chromosomal instability, the most frequent form of plasticity in cancer cells, often proceeds through the formation of chromosome bridges. Despite the importance of these bridges in tumor initiation and progression, debate remains over how and when they are resolved. In this study, we investigated the behavior and properties of chromosome bridges to gain insight into the potential mechanisms underlying bridge-induced genome instability. We report that bridges may break during mitosis or may remain unbroken until the next interphase. During mitosis, we frequently observed discontinuities in the bridging chromatin, and our results strongly suggest that a substantial fraction of chromosome bridges are broken during this stage of the cell cycle. This notion is supported by the observation that the chromatin flanking mitotic bridge discontinuities is often decorated with the phosphorylated form of the histone H2AX, a marker of DNA breaks, and by MDC1, an early mediator of the cell response to DNA breaks. Also, free 3′OH DNA ends were detected in more than half of the bridges during the final stages of cell division. However, even if detected, the DNA ends of broken bridges are not repaired in mitosis. To investigate whether mitotic bridge breakage depends on mechanical stress, we used experimental models in which chromosome bridges with defined geometry are formed. Although there was no association between spindle pole separation or the distance among non-bridge kinetochores and bridge breakage, we found a direct correlation between the distance between bridge kinetochores and bridge breakage. Altogether, we conclude that the discontinuities observed in bridges during mitosis frequently reflect a real breakage of the chromatin and that the mechanisms responsible for chromosome bridge breakage during mitosis may depend on the separation between the bridge kinetochores. Considering that previous studies identified mechanical stress or biochemical digestion as possible causes of bridge breakage in interphase cells, a multifactorial model emerges for the breakage of chromosome bridges that, according to our results, can occur at different stages of the cell cycle and can obey different mechanisms.
Collapse
Affiliation(s)
- Marina Rodriguez-Muñoz
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Martina Serrat
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Soler
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Teresa Anglada
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
4
|
Blázquez-Castro A, Fernández-Piqueras J, Santos J. Genetic Material Manipulation and Modification by Optical Trapping and Nanosurgery-A Perspective. Front Bioeng Biotechnol 2020; 8:580937. [PMID: 33072730 PMCID: PMC7530750 DOI: 10.3389/fbioe.2020.580937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Light can be employed as a tool to alter and manipulate matter in many ways. An example has been the implementation of optical trapping, the so called optical tweezers, in which light can hold and move small objects with 3D control. Of interest for the Life Sciences and Biotechnology is the fact that biological objects in the size range from tens of nanometers to hundreds of microns can be precisely manipulated through this technology. In particular, it has been shown possible to optically trap and move genetic material (DNA and chromatin) using optical tweezers. Also, these biological entities can be severed, rearranged and reconstructed by the combined use of laser scissors and optical tweezers. In this review, the background, current state and future possibilities of optical tweezers and laser scissors to manipulate, rearrange and alter genetic material (DNA, chromatin and chromosomes) will be presented. Sources of undesirable effects by the optical procedure and measures to avoid them will be discussed. In addition, first tentative approaches at cellular-level genetic and organelle surgery, in which genetic material or DNA-carrying organelles are extracted out or introduced into cells, will be presented.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain
| | - José Fernández-Piqueras
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain.,Institute of Health Research Jiménez Diaz Foundation, Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBERER), Carlos III Institute of Health, Madrid, Spain
| | - Javier Santos
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain.,Institute of Health Research Jiménez Diaz Foundation, Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBERER), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
5
|
Berns MW. Laser Scissors and Tweezers to Study Chromosomes: A Review. Front Bioeng Biotechnol 2020; 8:721. [PMID: 32850689 PMCID: PMC7401452 DOI: 10.3389/fbioe.2020.00721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023] Open
Abstract
Starting in 1969 laser scissors have been used to study and manipulate chromosomes in mitotic animal cells. Key studies demonstrated that using the “hot spot” in the center of a focused Gaussian laser beam it was possible to delete the ribosomal genes (secondary constriction), and this deficiency was maintained in clonal daughter cells. It wasn’t until 2020 that it was demonstrated that cells with focal-point damaged chromosomes could replicate due to the cell’s DNA damage repair molecular machinery. A series of studies leading up to this conclusion involved using cells expressing different GFP DNA damage recognition and repair molecules. With the advent of optical tweezers in 1987, laser tweezers have been used to study the behavior and forces on chromosomes in mitotic and meiotic cells. The combination of laser scissors and tweezers were employed since 1991 to study various aspects of chromosome behavior during cell division. These studies involved holding chromosomes in an optical while gradually reducing the laser power until the chromosome recovered their movement toward the cell pole. It was determined in collaborative studies with Prof. Arthur Forer from York University, Toronto, Canada, cells from diverse group vertebrate and invertebrates, that forces necessary to move chromosomes to cell poles during cell division were between 2 and 17pN, orders of magnitude below the 700 pN generally found in the literature.
Collapse
Affiliation(s)
- Michael W Berns
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States.,Department of Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Landmann C, Pierre-Elies P, Goutte-Gattat D, Montembault E, Claverie MC, Royou A. The Mre11-Rad50-Nbs1 complex mediates the robust recruitment of Polo to DNA lesions during mitosis in Drosophila. J Cell Sci 2020; 133:jcs244442. [PMID: 32487663 DOI: 10.1242/jcs.244442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
The DNA damage sensor Mre11-Rad50-Nbs1 complex and Polo kinase are recruited to DNA lesions during mitosis. However, their mechanism of recruitment is elusive. Here, using live-cell imaging combined with micro-irradiation of single chromosomes, we analyze the dynamics of Polo and Mre11 at DNA lesions during mitosis in Drosophila These two proteins display distinct kinetics. Whereas Polo kinetics at double-strand breaks (DSBs) are Cdk1-driven, Mre11 promptly but briefly associates with DSBs regardless of the phase of mitosis and re-associates with DSBs in the proceeding interphase. Mechanistically, Polo kinase activity is required for its own recruitment and that of the mitotic proteins BubR1 and Bub3 to DSBs. Moreover, depletion of Rad50 severely impaired Polo kinetics at mitotic DSBs. Conversely, ectopic tethering of Mre11 to chromatin was sufficient to recruit Polo. Our study highlights a novel pathway that links the DSB sensor Mre11-Rad50-Nbs1 complex and Polo kinase to initiate a prompt, decisive response to the presence of DNA damage during mitosis.
Collapse
Affiliation(s)
- Cedric Landmann
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Priscillia Pierre-Elies
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Damien Goutte-Gattat
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Emilie Montembault
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Marie-Charlotte Claverie
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Anne Royou
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
7
|
Abdisalaam S, Bhattacharya S, Mukherjee S, Sinha D, Srinivasan K, Zhu M, Akbay EA, Sadek HA, Shay JW, Asaithamby A. Dysfunctional telomeres trigger cellular senescence mediated by cyclic GMP-AMP synthase. J Biol Chem 2020; 295:11144-11160. [PMID: 32540968 DOI: 10.1074/jbc.ra120.012962] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
Defective DNA damage response (DDR) signaling is a common mechanism that initiates and maintains the cellular senescence phenotype. Dysfunctional telomeres activate DDR signaling, genomic instability, and cellular senescence, but the links among these events remains unclear. Here, using an array of biochemical and imaging techniques, including a highly regulatable CRISPR/Cas9 strategy to induce DNA double strand breaks specifically in the telomeres, ChIP, telomere immunofluorescence, fluorescence in situ hybridization (FISH), micronuclei imaging, and the telomere shortest length assay (TeSLA), we show that chromosome mis-segregation due to imperfect DDR signaling in response to dysfunctional telomeres creates a preponderance of chromatin fragments in the cytosol, which leads to a premature senescence phenotype. We found that this phenomenon is caused not by telomere shortening, but by cyclic GMP-AMP synthase (cGAS) recognizing cytosolic chromatin fragments and then activating the stimulator of interferon genes (STING) cytosolic DNA-sensing pathway and downstream interferon signaling. Significantly, genetic and pharmacological manipulation of cGAS not only attenuated immune signaling, but also prevented premature cellular senescence in response to dysfunctional telomeres. The findings of our study uncover a cellular intrinsic mechanism involving the cGAS-mediated cytosolic self-DNA-sensing pathway that initiates premature senescence independently of telomere shortening.
Collapse
Affiliation(s)
- Salim Abdisalaam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shibani Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Debapriya Sinha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kalayarasan Srinivasan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mingrui Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hesham A Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Gomez Godinez V, Kabbara S, Sherman A, Wu T, Cohen S, Kong X, Maravillas-Montero JL, Shi Z, Preece D, Yokomori K, Berns MW. DNA damage induced during mitosis undergoes DNA repair synthesis. PLoS One 2020; 15:e0227849. [PMID: 32343690 PMCID: PMC7188217 DOI: 10.1371/journal.pone.0227849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the mitotic DNA damage response (DDR) is critical to our comprehension of cancer, premature aging and developmental disorders which are marked by DNA repair deficiencies. In this study we use a micro-focused laser to induce DNA damage in selected mitotic chromosomes to study the subsequent repair response. Our findings demonstrate that (1) mitotic cells are capable of DNA repair as evidenced by DNA synthesis at damage sites, (2) Repair is attenuated when DNA-PKcs and ATM are simultaneously compromised, (3) Laser damage may permit the observation of previously undetected DDR proteins when damage is elicited by other methods in mitosis, and (4) Twenty five percent of mitotic DNA-damaged cells undergo a subsequent mitosis. Together these findings suggest that mitotic DDR is more complex than previously thought and may involve factors from multiple repair pathways that are better understood in interphase.
Collapse
Affiliation(s)
- Veronica Gomez Godinez
- Institute of Engineering in Medicine, University of California-San Diego, San Diego, California, United States of America
| | - Sami Kabbara
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, California, United States of America
- Beckman Laser Institute, University of California-Irvine, Irvine, California, United States of America
| | - Adria Sherman
- Institute of Engineering in Medicine, University of California-San Diego, San Diego, California, United States of America
- Beckman Laser Institute, University of California-Irvine, Irvine, California, United States of America
| | - Tao Wu
- Beckman Laser Institute, University of California-Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California, United States of America
| | - Shirli Cohen
- Institute of Engineering in Medicine, University of California-San Diego, San Diego, California, United States of America
| | - Xiangduo Kong
- Department of Biological Chemistry, University of California-Irvine, Irvine, California, United States of America
| | | | - Zhixia Shi
- Institute of Engineering in Medicine, University of California-San Diego, San Diego, California, United States of America
| | - Daryl Preece
- Beckman Laser Institute, University of California-Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California, United States of America
| | - Kyoko Yokomori
- Department of Biological Chemistry, University of California-Irvine, Irvine, California, United States of America
| | - Michael W. Berns
- Institute of Engineering in Medicine, University of California-San Diego, San Diego, California, United States of America
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, California, United States of America
- Beckman Laser Institute, University of California-Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California, United States of America
| |
Collapse
|
9
|
Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, Berns MW, Yokomori K, Digman MA. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 2019; 30:2584-2597. [PMID: 31390283 PMCID: PMC6740200 DOI: 10.1091/mbc.e18-10-0650] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA damage signaling is critical for the maintenance of genome integrity and cell fate decision. Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor rapidly activated in a damage dose- and complexity-dependent manner playing a critical role in the initial chromatin organization and DNA repair pathway choice at damage sites. However, our understanding of a cell-wide consequence of its activation in damaged cells is still limited. Using the phasor approach to fluorescence lifetime imaging microscopy and fluorescence-based biosensors in combination with laser microirradiation, we found a rapid cell-wide increase of the bound NADH fraction in response to nuclear DNA damage, which is triggered by PARP-dependent NAD+ depletion. This change is linked to the metabolic balance shift to oxidative phosphorylation (oxphos) over glycolysis. Inhibition of oxphos, but not glycolysis, resulted in parthanatos due to rapid PARP-dependent ATP deprivation, indicating that oxphos becomes critical for damaged cell survival. The results reveal the novel prosurvival response to PARP activation through a change in cellular metabolism and demonstrate how unique applications of advanced fluorescence imaging and laser microirradiation-induced DNA damage can be a powerful tool to interrogate damage-induced metabolic changes at high spatiotemporal resolution in a live cell.
Collapse
Affiliation(s)
- Michael M Murata
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697
| | - Xiangduo Kong
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Emmanuel Moncada
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA 92697
| | - Yumay Chen
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697.,UC Irvine Diabetes Center, University of California, Irvine, Irvine, CA 92697
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ping Wang
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697.,UC Irvine Diabetes Center, University of California, Irvine, Irvine, CA 92697
| | - Michael W Berns
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697.,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA 92697
| | - Kyoko Yokomori
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Michelle A Digman
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
10
|
Peropadre A, Fernández Freire P, Hazen MJ. A moderate exposure to perfluorooctanoic acid causes persistent DNA damage and senescence in human epidermal HaCaT keratinocytes. Food Chem Toxicol 2018; 121:351-359. [DOI: 10.1016/j.fct.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/15/2023]
|
11
|
Kong X, Cruz GMS, Silva BA, Wakida NM, Khatibzadeh N, Berns MW, Yokomori K. Laser Microirradiation to Study In Vivo Cellular Responses to Simple and Complex DNA Damage. J Vis Exp 2018. [PMID: 29443023 DOI: 10.3791/56213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA damage induces specific signaling and repair responses in the cell, which is critical for protection of genome integrity. Laser microirradiation became a valuable experimental tool to investigate the DNA damage response (DDR) in vivo. It allows real-time high-resolution single-cell analysis of macromolecular dynamics in response to laser-induced damage confined to a submicrometer region in the cell nucleus. However, various laser conditions have been used without appreciation of differences in the types of damage induced. As a result, the nature of the damage is often not well characterized or controlled, causing apparent inconsistencies in the recruitment or modification profiles. We demonstrated that different irradiation conditions (i.e., different wavelengths as well as different input powers (irradiances) of a femtosecond (fs) near-infrared (NIR) laser) induced distinct DDR and repair protein assemblies. This reflects the type of DNA damage produced. This protocol describes how titration of laser input power allows induction of different amounts and complexities of DNA damage, which can easily be monitored by detection of base and crosslinking damages, differential poly (ADP-ribose) (PAR) signaling, and pathway-specific repair factor assemblies at damage sites. Once the damage conditions are determined, it is possible to investigate the effects of different damage complexity and differential damage signaling as well as depletion of upstream factor(s) on any factor of interest.
Collapse
Affiliation(s)
- Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine
| | - Gladys M S Cruz
- Beckman Laser Institute and Medical Clinic, University of California, Irvine
| | - Bárbara A Silva
- Beckman Laser Institute and Medical Clinic, University of California, Irvine
| | - Nicole M Wakida
- Beckman Laser Institute and Medical Clinic, University of California, Irvine
| | - Nima Khatibzadeh
- Beckman Laser Institute and Medical Clinic, University of California, Irvine
| | - Michael W Berns
- Beckman Laser Institute and Medical Clinic, University of California, Irvine; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine; Department of Biomedical Engineering and Surgery, University of California, Irvine
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine;
| |
Collapse
|
12
|
Bakhoum SF, Kabeche L, Compton DA, Powell SN, Bastians H. Mitotic DNA Damage Response: At the Crossroads of Structural and Numerical Cancer Chromosome Instabilities. Trends Cancer 2017; 3:225-234. [PMID: 28718433 DOI: 10.1016/j.trecan.2017.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
DNA double-strand breaks (DSBs) prevent cells from entering mitosis allowing cells to repair their genomic damage. Little is known about the response to DSBs once cells have already committed to mitosis. Here, we review the genome-protective role of the mitotic DNA damage response (DDR) and evidence suggesting that its untimely activation induces chromosome segregation errors and paradoxically undermines genomic integrity. In contrast to normal cells, cancer cells coopt this pathway to propagate structural and numerical chromosomal instabilities. Cells derived from genomically unstable tumors exhibit evidence for a partially activated DDR during mitosis, which leads to ongoing chromosome segregation errors. Thus, a thorough understanding of the consequences of mitotic DNA damage is key to our ability to devise novel anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Lilian Kabeche
- Massachusetts General Hospital Cancer Center, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Duane A Compton
- Department of Biochemistry and the Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Holger Bastians
- Institute of Molecular Oncology, Section for Cellular Oncology, Goettingen Center for Molecular Biosciences (GZMB) and University Medical Center, University of Göttingen, D-37077 Goettingen, Germany
| |
Collapse
|
13
|
Derive N, Landmann C, Montembault E, Claverie MC, Pierre-Elies P, Goutte-Gattat D, Founounou N, McCusker D, Royou A. Bub3-BubR1-dependent sequestration of Cdc20Fizzy at DNA breaks facilitates the correct segregation of broken chromosomes. J Cell Biol 2016; 211:517-32. [PMID: 26553926 PMCID: PMC4639866 DOI: 10.1083/jcb.201504059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BubR1 depends on its association with Bub3 to localize on DNA breaks during mitosis, where it sequesters Cdc20Fizzy and induces the inhibition of the APC/C locally, promoting the faithful segregation of broken chromatids. The presence of DNA double-strand breaks during mitosis is particularly challenging for the cell, as it produces broken chromosomes lacking a centromere. This situation can cause genomic instability resulting from improper segregation of the broken fragments into daughter cells. We recently uncovered a process by which broken chromosomes are faithfully transmitted via the BubR1-dependent tethering of the two broken chromosome ends. However, the mechanisms underlying BubR1 recruitment and function on broken chromosomes were largely unknown. We show that BubR1 requires interaction with Bub3 to localize on the broken chromosome fragments and to mediate their proper segregation. We also find that Cdc20, a cofactor of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box–dependent manner. A biosensor for APC/C activity demonstrates a BubR1-dependent local inhibition of APC/C around the segregating broken chromosome. We therefore propose that the Bub3–BubR1 complex on broken DNA inhibits the APC/C locally via the sequestration of Cdc20, thus promoting proper transmission of broken chromosomes.
Collapse
Affiliation(s)
- Nicolas Derive
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France Centre National de la Recherche Scientifique, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France
| | - Cedric Landmann
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France Centre National de la Recherche Scientifique, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France
| | - Emilie Montembault
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France Centre National de la Recherche Scientifique, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France
| | - Marie-Charlotte Claverie
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France Centre National de la Recherche Scientifique, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France
| | - Priscillia Pierre-Elies
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France Centre National de la Recherche Scientifique, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France
| | - Damien Goutte-Gattat
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France Centre National de la Recherche Scientifique, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France
| | - Nabila Founounou
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France Centre National de la Recherche Scientifique, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France
| | - Derek McCusker
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France Centre National de la Recherche Scientifique, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France
| | - Anne Royou
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France Centre National de la Recherche Scientifique, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France
| |
Collapse
|
14
|
Zhu S, Pabla N, Tang C, He L, Dong Z. DNA damage response in cisplatin-induced nephrotoxicity. Arch Toxicol 2015; 89:2197-205. [PMID: 26564230 DOI: 10.1007/s00204-015-1633-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/29/2015] [Indexed: 01/17/2023]
Abstract
Cisplatin and its derivatives are widely used chemotherapeutic drugs for cancer treatment. However, they have debilitating side effects in normal tissues and induce ototoxicity, neurotoxicity, and nephrotoxicity. In kidneys, cisplatin preferentially accumulates in renal tubular cells causing tubular cell injury and death, resulting in acute kidney injury (AKI). Recent studies have suggested that DNA damage and the associated DNA damage response (DDR) are an important pathogenic mechanism of AKI following cisplatin treatment. Activation of DDR may lead to cell cycle arrest and DNA repair for cell survival or, in the presence of severe injury, kidney cell death. Modulation of DDR may provide novel renoprotective strategies for cancer patients undergoing cisplatin chemotherapy.
Collapse
Affiliation(s)
- Shiyao Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Navjotsingh Pabla
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
15
|
Saquilabon Cruz GM, Kong X, Silva BA, Khatibzadeh N, Thai R, Berns MW, Yokomori K. Femtosecond near-infrared laser microirradiation reveals a crucial role for PARP signaling on factor assemblies at DNA damage sites. Nucleic Acids Res 2015; 44:e27. [PMID: 26424850 PMCID: PMC4756852 DOI: 10.1093/nar/gkv976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/18/2015] [Indexed: 01/04/2023] Open
Abstract
Laser microirradiation is a powerful tool for real-time single-cell analysis of the DNA damage response (DDR). It is often found, however, that factor recruitment or modification profiles vary depending on the laser system employed. This is likely due to an incomplete understanding of how laser conditions/dosages affect the amounts and types of damage and the DDR. We compared different irradiation conditions using a femtosecond near-infrared laser and found distinct damage site recruitment thresholds for 53BP1 and TRF2 correlating with the dose-dependent increase of strand breaks and damage complexity. Low input-power microirradiation that induces relatively simple strand breaks led to robust recruitment of 53BP1 but not TRF2. In contrast, increased strand breaks with complex damage including crosslinking and base damage generated by high input-power microirradiation resulted in TRF2 recruitment to damage sites with no 53BP1 clustering. We found that poly(ADP-ribose) polymerase (PARP) activation distinguishes between the two damage states and that PARP activation is essential for rapid TRF2 recruitment while suppressing 53BP1 accumulation at damage sites. Thus, our results reveal that careful titration of laser irradiation conditions allows induction of varying amounts and complexities of DNA damage that are gauged by differential PARP activation regulating protein assembly at the damage site.
Collapse
Affiliation(s)
- Gladys Mae Saquilabon Cruz
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| | - Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Bárbara Alcaraz Silva
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92617, USA
| | - Nima Khatibzadeh
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| | - Ryan Thai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Michael W Berns
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92617, USA Department of Biomedical Engineering and Surgery, University of California, Irvine, CA 92617, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| |
Collapse
|
16
|
RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev 2015; 23:12-28. [PMID: 25555679 DOI: 10.1016/j.arr.2014.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/04/2023]
Abstract
Genome instability represents a primary hallmark of aging and cancer. RecQL helicases (i.e., RECQL1, WRN, BLM, RECQL4, RECQL5) as well as poly(ADP-ribose) polymerases (PARPs, in particular PARP1) represent two central quality control systems to preserve genome integrity in mammalian cells. Consistently, both enzymatic families have been linked to mechanisms of aging and carcinogenesis in mice and humans. This is in accordance with clinical and epidemiological findings demonstrating that defects in three RecQL helicases, i.e., WRN, BLM, RECQL4, are related to human progeroid and cancer predisposition syndromes, i.e., Werner, Bloom, and Rothmund Thomson syndrome, respectively. Moreover, PARP1 hypomorphy is associated with a higher risk for certain types of cancer. On a molecular level, RecQL helicases and PARP1 are involved in the control of DNA repair, telomere maintenance, and replicative stress. Notably, over the last decade, it became apparent that all five RecQL helicases physically or functionally interact with PARP1 and/or its enzymatic product poly(ADP-ribose) (PAR). Furthermore, a profound body of evidence revealed that the cooperative function of RECQLs and PARP1 represents an important factor for maintaining genome integrity. In this review, we summarize the status quo of this molecular cooperation and discuss open questions that provide a basis for future studies to dissect the cooperative functions of RecQL helicases and PARP1 in aging and carcinogenesis.
Collapse
|