1
|
Wang K, Guo D, Sun S, Tian K, Shen H, Du J. Old versus new: upstream and downstream of promyelocytic leukemia zinc finger protein. Cancer Gene Ther 2025:10.1038/s41417-025-00912-w. [PMID: 40348913 DOI: 10.1038/s41417-025-00912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Promyelocytic leukemia zinc finger (PLZF) is a member of the zinc finger protein family and has been extensively studied due to its crucial role in influencing stem cell self-renewal, spermatogenesis, T cell differentiation, tumorigenesis, and development. Its function is regulated by multidimensional and multilevel regulation. Recent studies have explored the mechanism of action of PLZF in different diseases and related treatment strategies. This study aimed to summarize the regulatory mechanisms underlying PLZF expression and function, and update the latest PLZF regulatory targets and interacting molecules. We also summarized the mechanism by which PLZF promoted the transcriptional activation of target genes, besides its role as a transcriptional repressor. This study revealed a more detailed upstream and downstream regulatory mechanism of PLZF, providing directions for future research.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Department of Healthcare Respiratory Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Deyu Guo
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shijie Sun
- Institute of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Kang Tian
- Institute of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Hongchang Shen
- Institute of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China.
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Kim D, Yoon MS, Lee J, Park SY, Han JS. Effects of phospholipase D1-inhibitory peptide on the growth and metastasis of gastric cancer cells. Mol Cells 2024; 47:100128. [PMID: 39426685 PMCID: PMC11582423 DOI: 10.1016/j.mocell.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Phospholipase D1 (PLD1) contributes to cancer development and progression through its effects on cell proliferation, survival, invasion, metastasis, angiogenesis, drug resistance, and modulation of the tumor microenvironment. Its central role in these processes makes it a promising target for novel cancer treatments aimed at inhibiting its activity and disrupting the signaling pathways it regulates. In this study, we aimed to investigate the effect of PLD1 inhibition on gastric cancer cell growth using a novel peptide inhibitor, TAT-TVTSP. PLD1, which plays a role in cancer progression, catalyzes the conversion of phosphatidylcholine into choline and phosphatidic acid through hydrolysis. To effectively target PLD1 in cells, we engineered TAT-TVTSP by fusing a PLD1-inhibitory peptide (TVTSP) with a cell-penetrating peptide (TAT). We observed that TAT-TVTSP effectively inhibited PLD1 activity in AGS gastric cancer cells. Moreover, TAT-TVTSP significantly inhibited the mammalian target of the rapamycin signaling pathway, including the phosphorylation of key downstream targets such as S6K1, AKT, S473, glycogen synthase kinase-3b, and forkhead box O1. TAT-TVTSP did not induce cell death, but it triggered cell cycle arrest by activating p21 and p27 via AKT phosphorylation. Functional assays revealed that TAT-TVTSP significantly impaired the colony-forming ability of AGS cells, thus inhibiting cell proliferation. Transwell and wound-healing assays revealed that this peptide disrupted the cellular behaviors critical to cancer progression, such as migration and invasion. In vivo, TAT-TVTSP significantly reduced tumor growth in the xenograft model of gastric cancer without any toxicity. Overall, our results suggest that TAT-TVTSP is a novel therapeutic agent for PLD1-mediated cancers.
Collapse
Affiliation(s)
- Dongju Kim
- Department of Biomedical Sciences, Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Junwon Lee
- Department of Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea
| | - Shin-Young Park
- Department of Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea.
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea; Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Li J, Huang X, Luo L, Sun J, Guo Q, Yang X, Zhang C, Ni B. The role of p53 in male infertility. Front Endocrinol (Lausanne) 2024; 15:1457985. [PMID: 39469578 PMCID: PMC11513281 DOI: 10.3389/fendo.2024.1457985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor involved in a variety of crucial cellular functions, including cell cycle arrest, DNA repair and apoptosis. Still, a growing number of studies indicate that p53 plays multiple roles in spermatogenesis, as well as in the occurrence and development of male infertility. The representative functions of p53 in spermatogenesis include the proliferation of spermatogonial stem cells (SSCs), spermatogonial differentiation, spontaneous apoptosis, and DNA damage repair. p53 is involved in various male infertility-related diseases. Innovative therapeutic strategies targeting p53 have emerged in recent years. This review focuses on the role of p53 in spermatogenesis and male infertility and analyses the possible underlying mechanism involved. All these conclusions may provide a new perspective on drug intervention targeting p53 for male infertility treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Huang
- Department of Human Resource, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanzhou Zhang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Beibei Ni
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Wang K, Guo D, Yan T, Sun S, Wang Y, Zheng H, Wang G, Du J. ZBTB16 inhibits DNA replication and induces cell cycle arrest by targeting WDHD1 transcription in lung adenocarcinoma. Oncogene 2024; 43:1796-1810. [PMID: 38654107 DOI: 10.1038/s41388-024-03041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Lung adenocarcinoma is a malignant tumor with high morbidity and mortality. ZBTB16 plays a double role in various tumors; however, the potential mechanism of ZBTB16 in the pathophysiology of lung adenocarcinoma has yet to be elucidated. We herein observed a decreased expression of ZBTB16 mRNA and protein in lung adenocarcinoma and a significantly increased DNA methylation level of ZBTB16 in patients with lung adenocarcinoma. Analysis of public databases and patients' clinical data indicated a close association between ZBTB16 and patient survival. Ectopic expression of ZBTB16 in lung adenocarcinoma cells significantly inhibited cell proliferation, invasion, and migration. It also induced cell cycle arrest in the S phase. Meanwhile, mitotic catastrophe was induced, and DNA damage and apoptosis occurred. In line with these findings, the overexpression of ZBTB16 in xenograft mice resulted in the inhibition of tumor growth. Comprehensive analysis showed that WDHD1 was a potential target for ZBTB16. The overexpression of both isoforms of WDHD1 significantly reversed the ZBTB16-mediated inhibition of lung adenocarcinoma proliferation and cell cycle. These studies suggest that ZBTB16 impedes the progression of lung adenocarcinoma by interfering with WDHD1 transcription, making it a potential novel therapeutic target in the management of lung adenocarcinoma.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Healthcare Respiratory Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Deyu Guo
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Tao Yan
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, China
| | - Shijie Sun
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Haotian Zheng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China.
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China.
| |
Collapse
|
5
|
Sha J, Zhang M, Feng J, Shi T, Li N, Jie Z. Promyelocytic leukemia zinc finger controls type 2 immune responses in the lungs by regulating lineage commitment and the function of innate and adaptive immune cells. Int Immunopharmacol 2024; 130:111670. [PMID: 38373386 DOI: 10.1016/j.intimp.2024.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Type 2 immune responses are critical for host defense, mediate allergy and Th2-high asthma. The transcription factor, promyelocytic leukemia zinc finger (PLZF), has emerged as a significant regulator of type 2 inflammation in the lung; however, its exact mechanism remains unclear. In this review, we summarized recent findings regarding the ability of PLZF to control the development and function of innate lymphoid cells (ILCs), iNKT cells, memory T cells, basophils, and other immune cells that drive type 2 responses. We discussed the important role of PLZF in the pathogenesis of Th2-high asthma. Collectively, prior studies have revealed the critical role of PLZF in the regulation of innate and adaptive immune cells involved in type 2 inflammation in the lung. Therefore, targeting PLZF signaling represents a promising therapeutic approach to suppress Th2-high asthma.
Collapse
Affiliation(s)
- Jiafeng Sha
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Ramsoomair CK, Ceccarelli M, Heiss JD, Shah AH. The epitranscriptome of high-grade gliomas: a promising therapeutic target with implications from the tumor microenvironment to endogenous retroviruses. J Transl Med 2023; 21:893. [PMID: 38071304 PMCID: PMC10709919 DOI: 10.1186/s12967-023-04725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Glioblastoma (GBM) comprises 45.6% of all primary malignant brain cancers and is one of the most common and aggressive intracranial tumors in adults. Intratumoral heterogeneity with a wide range of proteomic, genetic, and epigenetic dysregulation contributes to treatment resistance and poor prognosis, thus demanding novel therapeutic approaches. To date, numerous clinical trials have been developed to target the proteome and epigenome of high-grade gliomas with promising results. However, studying RNA modifications, or RNA epitranscriptomics, is a new frontier within neuro-oncology. RNA epitranscriptomics was discovered in the 1970s, but in the last decade, the extent of modification of mRNA and various non-coding RNAs has emerged and been implicated in transposable element activation and many other oncogenic processes within the tumor microenvironment. This review provides background information and discusses the therapeutic potential of agents modulating epitranscriptomics in high-grade gliomas. A particular emphasis will be placed on how combination therapies that include immune agents targeting hERV-mediated viral mimicry could improve the treatment of GBM.
Collapse
Affiliation(s)
- Christian K Ramsoomair
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1095 NW 14Th Terrace, Miami, FL, 33136, USA.
- Medical Scientist Training Program, University of Miami Miller School of Medicine, 1095 NW 14Th Terrace, Miami, FL, 33136, USA.
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1550 N.W. 10Th Avenue, Miami, FL, 33136, USA
| | - John D Heiss
- Surgical Neurology Branch, Disorders and Stroke, National Institute of Neurological, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashish H Shah
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1095 NW 14Th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
7
|
Fang H, Zhang Y, Lin C, Sun Z, Wen W, Sheng H, Lin J. Primary microcephaly gene CENPE is a novel biomarker and potential therapeutic target for non-WNT/non-SHH medulloblastoma. Front Immunol 2023; 14:1227143. [PMID: 37593739 PMCID: PMC10427915 DOI: 10.3389/fimmu.2023.1227143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Background Non-WNT/non-SHH medulloblastoma (MB) is one of the subtypes with the highest genetic heterogeneity in MB, and its current treatment strategies have unsatisfactory results and significant side effects. As a member of the centromere protein (CENP) family, centromeric protein E (CENPE) is a microtubule plus-end-directed kinetochore protein. Heterozygous mutations in CENPE can leads to primary microcephaly syndrome. It has been reported that CENPE is upregulated in MB, but its role in MB development is still unknown. Methods We downloaded the relevant RNA seq data and matched clinical information from the GEO database. Bioinformatics analysis includes differential gene expression analysis, Kaplan-Meier survival analysis, nomogram analysis, ROC curve analysis, immune cell infiltration analysis, and gene function enrichment analysis. Moreover, the effects of CENPE expression on cell proliferation, cell cycle, and p53 signaling pathway of non-WNT/non-SHH MB were validated using CENPE specific siRNA in vitro experiments. Results Compared with normal tissues, CENPE was highly expressed in MB tissues and served as an independent prognostic factor for survival in non-WNT/non-SHH MB patients. The nomogram analysis and ROC curve further confirmed these findings. At the same time, immune cell infiltration analysis showed that CENPE may participate in the immune response and tumor microenvironment (TME) of non-WNT/non-SHH MB. In addition, gene enrichment analysis showed that CENPE was closely related to the cell cycle and p53 pathway in non-WNT/non-SHH MB. In vitro experimental validation showed that knockdown of CENPE inhibited cell proliferation by activating the p53 signaling pathway and blocking the cell cycle. Conclusion The expression of CENPE in non-WNT/non-SHH MB was positively correlated with poor prognosis. CENPE may affect tumor progression by regulating cell cycle, p53 pathway, and immune infiltration. Hence, CENPE is highly likely a novel biomarker and potential therapeutic target for non-WNT/non-SHH MB.
Collapse
Affiliation(s)
- Huangyi Fang
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Wenzhou Medical University, Wenzhou, China
- Department of Surgery, The First People’s Hospital of Jiashan, Jiaxing, China
| | | | - Zhenkai Sun
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wen
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Jiang YH, Bi JH, Wu MR, Ye SJ, Hu L, Li LJ, Yi Y, Wang HX, Wang LM. In vitro anti-hepatocellular carcinogenesis of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose. Food Nutr Res 2023; 67:9244. [PMID: 37050924 PMCID: PMC10084503 DOI: 10.29219/fnr.v67.9244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background 1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) is a polyphenol ellagic compound with a variety of pharmacological effects and has an inhibitory effect on lots of cancers. Objective To explore the antitumor effects and mechanism of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose on human hepatocellular carcinoma HepG2 cells. Design A network pharmacology method was first used to predict the possible inhibition of hepatocellular carcinoma growth by 1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) through the p53 signaling pathway. Next, the Cell Counting Kit (CCK-8) assay was performed to evaluate changes in the survival rate of human hepatocellular carcinoma HepG2 cells treated with different concentrations of the drug; flow cytometry was used to detect changes in cell cycle, apoptosis, mitochondrial membrane potential (MMP) and intracellular Ca2+ concentration; real-time fluorescence quantification and immunoblotting showed that the expression of P53 genes and proteins associated with the p53 signaling pathway was significantly increased by β-PGG treatment. Reasult It was found that β-PGG significantly inhibited survival of HepG2 cells, promoted apoptosis, decreased MMP and intracellular Ca2+ concentration, upregulated P53 gene and protein expression, increased CASP3 expression, and induced apoptosis in HepG2 cells. Conclusion This study has shown that network pharmacology can accurately predict the target of β-PGG's anti-hepatocellular carcinoma action. Moreover, it was evident that β-PGG can induce apoptosis in HepG2 cells by activating the p53 signaling pathway to achieve its anti-hepatocellular carcinoma effect in vitro.
Collapse
Affiliation(s)
- Yu-han Jiang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jing-hui Bi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Min-rui Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Shi-jie Ye
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Lei Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Long-jie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yang Yi
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hong-xun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Li-mei Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
9
|
Li Y, Zhu Y, Chen L, Xia S, Adegboro AA, Wanggou S, Li X. Transcription factor ZBTB42 is a novel prognostic factor associated with immune cell infiltration in glioma. Front Pharmacol 2023; 14:1102277. [PMID: 36762114 PMCID: PMC9905726 DOI: 10.3389/fphar.2023.1102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Background: ZBTB42 is a transcription factor that belongs to the ZBTB transcript factor family and plays an important role in skeletal muscle development. Dysregulation of ZBTB42 expression can lead to a variety of diseases. However, the function of ZBTB42 in glioma development has not been studied by now. Methods: We analyzed the expression of ZBTB42 in LGG and GBM via the The Cancer Genome Atlas CGA and Chinese Glioma Genome Atlas database. Gene Ontology, KEGG, and GSVA analyses were performed to illustrate ZBTB42-related pathways. ESTIMATE and CIBERSORT were applied to calculate the immune score and immune cell proportion in glioma. One-class logistic regression OCLR algorithm was used to study the stemness of glioma. Multivariate Cox analysis was employed to detect the prognostic value of five ZBTB42-related genes. Results: Our results show that ZBTB42 is highly expressed in glioma and may be a promising prognostic factor for Low Grade Glioma and GBM. In addition, ZBTB42 is related to immune cell infiltration and may play a role in the immune suppression microenvironment. What's more, ZBTB42 is correlated with stem cell markers and positively associated with glioma stemness. Finally, a five genes nomogram based on ZBTB42 was constructed and has an effective prognosis prediction ability. Conclusion: We identify that ZBTB42 is a prognostic biomarker for Low Grade Glioma and GBM and its function is related to the suppressive tumor microenvironment and stemness of glioma.
Collapse
Affiliation(s)
- Yanwen Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yongwei Zhu, ; Xuejun Li,
| | - Long Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Shunjin Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Abraham Ayodeji Adegboro
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yongwei Zhu, ; Xuejun Li,
| |
Collapse
|
10
|
Lee SJ, Kim KH, Lee DJ, Kim P, Park J, Kim SJ, Jung HS. MAST4 controls cell cycle in spermatogonial stem cells. Cell Prolif 2023; 56:e13390. [PMID: 36592615 PMCID: PMC10068930 DOI: 10.1111/cpr.13390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023] Open
Abstract
Spermatogonial stem cell (SSC) self-renewal is regulated by reciprocal interactions between Sertoli cells and SSCs in the testis. In a previous study, microtubule-associated serine/threonine kinase 4 (MAST4) has been studied in Sertoli cells as a regulator of SSC self-renewal. The present study focused on the mechanism by which MAST4 in Sertoli cells transmits the signal and regulates SSCs, especially cell cycle regulation. The expression of PLZF, CDK2 and PLZF target genes was examined in WT and Mast4 KO testes by Immunohistochemistry, RT-qPCR and western blot. In addition, IdU and BrdU were injected into WT and Mast4 KO mice and cell cycle of SSCs was analysed. Finally, the testis tissues were cultured in vitro to examine the regulation of cell cycle by MAST4 pathway. Mast4 KO mice showed infertility with Sertoli cell-only syndrome and reduced sperm count. Furthermore, Mast4 deletion led to decreased PLZF expression and cell cycle progression in the testes. MAST4 also induced cyclin-dependent kinase 2 (CDK2) to phosphorylate PLZF and activated PLZF suppressed the transcriptional levels of genes related to cell cycle arrest, leading SSCs to remain stem cell state. MAST4 is essential for maintaining cell cycle in SSCs via the CDK2-PLZF interaction. These results demonstrate the pivotal role of MAST4 regulating cell cycle of SSCs and the significance of spermatogenesis.
Collapse
Affiliation(s)
- Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ka-Hwa Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Pyunggang Kim
- Department of MAST Research, Division in GILO Research Institute, GILO Foundation, Seoul, South Korea
| | - Jinah Park
- Department of MAST Research, Division in GILO Research Institute, GILO Foundation, Seoul, South Korea
| | - Seong-Jin Kim
- Department of MAST Research, Division in GILO Research Institute, GILO Foundation, Seoul, South Korea.,Division in Research Institute, Laboratory of Musculoskeletal Research, Medpacto Inc., Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
11
|
Chronic stress-driven glucocorticoid receptor activation programs key cell phenotypes and functional epigenomic patterns in human fibroblasts. iScience 2022; 25:104960. [PMID: 36065188 PMCID: PMC9440308 DOI: 10.1016/j.isci.2022.104960] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic environmental stress can profoundly impact cell and body function. Although the underlying mechanisms are poorly understood, epigenetics has emerged as a key link between environment and health. The genomic effects of stress are thought to be mediated by the action of glucocorticoid stress hormones, primarily cortisol in humans, which act via the glucocorticoid receptor (GR). To dissect how chronic stress-driven GR activation influences epigenetic and cell states, human fibroblasts underwent prolonged exposure to physiological stress levels of cortisol and/or a selective GR antagonist. Cortisol was found to drive robust changes in cell proliferation, migration, and morphology, which were abrogated by concomitant GR blockade. The GR-driven cell phenotypes were accompanied by widespread, yet genomic context-dependent, changes in DNA methylation and mRNA expression, including gene loci with known roles in cell proliferation and migration. These findings provide insights into how chronic stress-driven functional epigenomic patterns become established to shape key cell phenotypes. Physiological stress levels of cortisol drive robust changes in key cell phenotypes Stress-driven changes in cell phenotypes are abrogated by concomitant GR blockade GR activation induces functional and phenotypically relevant epigenomic changes
Collapse
|
12
|
Li N, Zeng A, Wang Q, Chen M, Zhu S, Song L. Regulatory function of DNA methylation mediated lncRNAs in gastric cancer. Cancer Cell Int 2022; 22:227. [PMID: 35810299 PMCID: PMC9270757 DOI: 10.1186/s12935-022-02648-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 12/31/2022] Open
Abstract
As one of the most common malignancies worldwide, gastric cancer contributes to cancer death with a high mortality rate partly responsible for its out-of-control progression as well as limited diagnosis. DNA methylation, one of the epigenetic events, plays an essential role in the carcinogenesis of many cancers, including gastric cancer. Long non-coding RNAs have emerged as the significant factors in the cancer progression functioned as the oncogene genes, the suppressor genes and regulators of signaling pathways over the decade. Intriguingly, increasing reports, recently, have claimed that abnormal DNA methylation regulates the expression of lncRNAs as tumor suppressor genes in gastric cancer and lncRNAs as regulators could exert the critical influence on tumor progression through acting on DNA methylation of other cancer-related genes. In this review, we summarized the DNA methylation-associated lncRNAs in gastric cancer which play a large impact on tumor progression, such as proliferation, invasion, metastasis and so on. Furthermore, the underlying molecular mechanism and signaling pathway might be developed as key points of gastric cancer range from diagnosis to prognosis and treatment in the future.
Collapse
Affiliation(s)
- Nan Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qian Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Maohua Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| |
Collapse
|
13
|
Li T, Sun Y, Zeng Y, Sanganyado E, Liang B, Liu W. 6-OH-BDE-47 inhibited proliferation of skin fibroblasts from pygmy killer whale by inducing cell cycle arrest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150561. [PMID: 34624692 DOI: 10.1016/j.scitotenv.2021.150561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/16/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are major transformation products of PBDEs that readily bioaccumulate in the marine food web. Although 6-OH-BDE-47 is frequently and abundantly detected in cetaceans, its potential toxic effects are largely unknown. We explored the toxicological pathways and mechanisms of OH-BDEs by exposing pygmy killer whale skin fibroblast cell lines (PKW-LWHT) to 6-OH-BDE-47 at concentrations ranging from 0.02, 0.2, 2 to 4 μM. The result showed that 6-OH-BDE-47 inhibited cell proliferation in a concentration- and time-dependent manner. The cell cycle data revealed that the cell cycle was arrest at the G0/G1 phase by 6-OH-BDE-47. Using qPCR and Western blot assay, we found that 6-OH-BDE-47 up-regulated the transcription and expression level of p21 and RB1 and down-regulated the expression level of Proliferating Cell Nuclear Antigen (PCNA), CDK2, CDK4, cyclin D1, cyclin E2, E2F1, and E2F3 and the cellular phosphorylated RB1. The results showed that 6-OH-BDE-47 was able to arrest the cell cycle of PKW-LWHT cells at G1 phase by changing the expression level of related regulatory genes in G1 stage, and finally inhibit cell proliferation.
Collapse
Affiliation(s)
- Tong Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ying Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
14
|
Liu S, Qiao W, Sun Q, Luo Y. Chromosome Region Maintenance 1 (XPO1/CRM1) as an Anticancer Target and Discovery of Its Inhibitor. J Med Chem 2021; 64:15534-15548. [PMID: 34669417 DOI: 10.1021/acs.jmedchem.1c01145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor protein and contributes to cell homeostasis by mediating the transport of cargo from the nucleus to the cytoplasm. CRM1 is a therapeutic target comprised of several tumor types, including osteosarcoma, multiple myeloma, gliomas, and pancreatic cancer. In the past decade, dozens of CRM1 inhibitors have been discovered and developed, including KPT-330, which received FDA approval for multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) in 2019 and 2020, respectively. This review summarizes the biological functions of CRM1, the current understanding of the role CRM1 plays in cancer, the discovery of CRM1 small-molecule inhibitors, preclinical and clinical studies on KPT-330, and other recently developed inhibitors. A new CRM1 inhibition mechanism and structural dynamics are discussed. Through this review, we hope to guide the future design and optimization of CRM1 inhibitors.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- State Key Laboratory of Biotherapy, Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Zhang X, Liu P, Zheng X, Wang J, Peng Q, Li Z, Wei L, Liu C, Wu Y, Wen Y, Yan Q, Ma J. N6-methyladenosine regulates ATM expression and downstream signaling. J Cancer 2021; 12:7041-7051. [PMID: 34729106 PMCID: PMC8558655 DOI: 10.7150/jca.64061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/03/2021] [Indexed: 01/22/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification in eukaryotic mRNAs, which plays an important role in regulating multiple biological processes. ATM is a major protein kinase that regulates the DNA damage response. Here, we identified that ATM is a m6A-modificated gene. METTL3 (a m6A "writer") and FTO (a m6A "eraser") oppositely regulated ATM expression and its downstream signaling. Mechanically, m6A "readers" YTHDFs and eIF3A suppressed ATM expression in the post-transcriptional levels. We also revealed the oncogenic potential of METTL3 and YTHDF1 related to ATM modulation. This is the first report that ATM, a master in the DNA damage response, is modified by m6A epigenetic modification, and METTL3 disrupts the ATM stability via m6A modification, thereby affecting the DNA-damage response.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Peishan Liu
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Xiang Zheng
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jia Wang
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
- Department of Immunology, Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi, China
| | - Qiu Peng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Lingyu Wei
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
- Department of Immunology, Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi, China
| | - Can Liu
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Yangge Wu
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Yuqing Wen
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| |
Collapse
|
16
|
Shah AH, Gilbert M, Ivan ME, Komotar RJ, Heiss J, Nath A. The role of human endogenous retroviruses in gliomas: from etiological perspectives and therapeutic implications. Neuro Oncol 2021; 23:1647-1655. [PMID: 34120190 DOI: 10.1093/neuonc/noab142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accounting for approximately 8% of the human genome, Human Endogenous Retroviruses (HERVs) have been implicated in a variety of cancers including gliomas. In normal cells, tight epigenetic regulation of HERVs prevent aberrant expression; however, in cancer cells, HERVs expression remains pervasive, suggesting a role of HERVs in oncogenic transformation. HERVs may contribute to oncogenesis in several ways including insertional mutagenesis, chromosomal rearrangements, proto-oncogene formation, and maintenance of stemness. On the other hand, recent data has suggested that reversing epigenetic silencing of HERVs may induce robust anti-tumor immune responses, suggesting HERVs' potential therapeutic utility in gliomas. By reversing epigenetic modifications that silence HERVs, DNA methyltransferase and histone deacetylase inhibitors may stimulate a viral-mimicry cascade via HERV-derived dsRNA formation that induce interferon-mediated apoptosis. Leveraging this anti-tumor autoimmune response may be a unique avenue to target certain subsets of epigenetically-dysregulated gliomas. Nevertheless, the role of HERVs in gliomas as either arbitrators of oncogenesis or forerunners of the innate anti-tumor immune response remains unclear. Here, we review the role of HERVs in gliomas, their potential dichotomous function in propagating oncogenesis and stimulating the anti-tumor immune response and identify future directions for research.
Collapse
Affiliation(s)
- Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine
| | - Mark Gilbert
- Neuro-oncology Branch, National Cancer Institute, National Institute of Health
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine
| | | | | |
Collapse
|
17
|
Metwally AM, Li H, Houghton JM. Alterations of epigenetic regulators and P53 mutations in murine mesenchymal stem cell cultures: A possible mechanism of spontaneous transformation. Cancer Biomark 2021; 32:327-337. [PMID: 34151835 DOI: 10.3233/cbm-203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies demonstrated the involvement of mesenchymal stem/stromal cells (MSCs) in carcinogenesis, but the molecular mechanism behind this transformation is still obscured. OBJECTIVE To screen both the expression levels of polycomb and trithorax epigenetic regulators and TrP53 mutations in early and late MSC culture passages in an attempt to decipher the mechanism of spontaneous transformation. METHODS The study was conducted on early and late passages of MSC culture model from C57BL/6J mice. The expression profile of 84 epigenetic regulators was examined using RT2 profiler PCR array. TrP53 mutations in the DNA binding domain was screened. Codons, amino acids positions and the corresponding human variants were detected in P53 sequences. RESULTS Sixty-two epigenetic regulators were dysregulated. Abnormalities were detected starting the third passage. Nine regulators were dysregulated in all passages. (C>G) substitution P53 mutation was detected in passage 3 resulting in Ser152Arg substitution. Passages 6, 9, 12 and the last passage showed T>C substitution resulting in Cys235Arg substitution. The last passage had T deletion and A insertion resulting in frame shift mutations changing the p.Phe286Ser and p.Asn103Lys respectively. CONCLUSION In vitro expanded MSCs undergo transformation through alteration of epigenetic regulators which results in genomic instability and frequent P53 mutations.
Collapse
Affiliation(s)
- Ayman Mohamed Metwally
- Technology of Medical Laboratory Department, College of Applied Health Science Technology, Misr University for Science and Technology, Egypt.,Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jean Marie Houghton
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
18
|
Zhang J, Li A, Sun H, Xiong X, Qin S, Wang P, Dai L, Zhang Z, Li X, Liu Z. Amentoflavone triggers cell cycle G2/M arrest by interfering with microtubule dynamics and inducing DNA damage in SKOV3 cells. Oncol Lett 2020; 20:168. [PMID: 32934735 PMCID: PMC7471765 DOI: 10.3892/ol.2020.12031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is the seventh most common cancer and the second most common cause of cancer-associated mortality among gynecological malignancies worldwide. The combination of antimitotic agents, such as taxanes, and the DNA-damaging agents, such as platinum compounds, is the standard treatment for ovarian cancer. However, due to chemoresistance, development of novel therapeutic strategies for the treatment of ovarian cancer remains critical. Amentoflavone (AMF) is a biflavonoid derived from the extracts of Selaginella tamariscina, which has been used as a Chinese herb for thousands of years. A previous study demonstrated that AMF inhibits angiogenesis of endothelial cells and induces apoptosis in hypertrophic scar fibroblasts. In order to check the influence of AMF on cell proliferation, the effects of AMF on cell cycle and DNA damage were measured by cell viability, flow cytometry, immunofluorescence and western blotting assays in SKOV3 cells, an ovarian cell line. In the present study, treatment with AMF inhibited ovarian cell proliferation, increased P21 expression, decreased CDK1/2 expression, interrupted the balance of microtubule dynamics and arrested cells at the G2 phase. Furthermore, treatment with AMF increased the expression levels of phospho-Histone H2AX (γ-H2AX; a variant of histone 2A, that belongs to the histone 2A family member X) and the DNA repair protein RAD51 homolog 1 (Rad51), indicating the occurrence of DNA damage since γ-H2AX and Rad51 are both key markers of DNA damage. Consistent with previous findings, the results of the present study suggest that AMF is a potential therapeutic agent for the treatment of ovarian cancer. In addition, the effects of AMF on cell cycle arrest and DNA damage induction may be the molecular mechanisms by which AMF might exert its potential therapeutic benefits in ovarian cancer.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Hanjing Sun
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Libing Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhi Zhang
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
19
|
Choi SH, Cho SY, Song J, Hur MW. KLHL4, a novel p53 target gene, inhibits cell proliferation by activating p21 WAF/CDKN1A. Biochem Biophys Res Commun 2020; 530:588-596. [PMID: 32753315 DOI: 10.1016/j.bbrc.2020.07.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
KLHL4 is a member of the KLHL protein family, many of whom bind the Cul3 E3 ligase, and mediate the ubiquitination of interacting proteins. The KLHL4 gene, localized on the X chromosome, associates with a disorder known as X-linked cleft palate (CPX). However, the biological functions of KLHL4 are largely unknown. In this study, microarray analysis of HEK293A embryonic kidney cells, expressing ectopic p53, showed a 3-fold increase of KLHL4 mRNA. Moreover, both KLHL4 mRNA and protein expression were elevated by p53 or DNA damage, suggesting that KLHL4 might be a p53 target gene. We also found that KLHL4 activates transcription of p21WAF/CDKN1A, a p53 target gene encoding a major negative regulator of the cell-cycle. KLHL4 interacted with p53 to increase its binding to p53 response element of the p21WAF/CDKN1A gene, resulting in transcriptional upregulation. Furthermore, we observed that KLHL4 can interact with the Cul3 ubiquitin ligase, to possibly play a role in ubiquitin-mediated proteasomal degradation, and Klhl4 knocked-out MEF mouse embryonic fibroblasts proliferated faster than WT MEF cells. These results suggest that KLHL4 upregulation by p53 may inhibit cell proliferation, by activating p21WAF/CDKN1A.
Collapse
Affiliation(s)
- Seo-Hyun Choi
- Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMoon-Ku, Seoul, 03722, Republic of Korea
| | - Su-Yeon Cho
- Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMoon-Ku, Seoul, 03722, Republic of Korea
| | - Jiyang Song
- Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMoon-Ku, Seoul, 03722, Republic of Korea
| | - Man-Wook Hur
- Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50-1 Yonsei-Ro, SeoDaeMoon-Ku, Seoul, 03722, Republic of Korea.
| |
Collapse
|
20
|
Mannan A, Muhsen IN, Barragán E, Sanz MA, Mohty M, Hashmi SK, Aljurf M. Genotypic and Phenotypic Characteristics of Acute Promyelocytic Leukemia Translocation Variants. Hematol Oncol Stem Cell Ther 2020; 13:189-201. [PMID: 32473106 DOI: 10.1016/j.hemonc.2020.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a special disease entity of acute myeloid leukemia (AML). The clinical use of all-trans retinoic acid (ATRA) has transformed APL into the most curable form of AML. The majority of APL cases are characterized by the fusion gene PML-RARA. Although the PML-RARA fusion gene can be detected in almost all APL cases, translocation variants of APL have been reported. To date, this is the most comprehensive review of these translocations, discussing 15 different variants. Reviewed genes involved in APL variants include: ZBTB16, NPM, NuMA, STAT5b, PRKAR1A, FIP1L1, BCOR, NABP1, TBLR1, GTF2I, IRF2BP2, FNDC3B, ADAMDTS17, STAT3, and TFG. The genotypic and phenotypic features of APL translocations are summarized. All reported studies were either case reports or case series indicating the rarity of these entities and limiting the ability to drive conclusions regarding their characteristics. However, reported variants have shown variable clinical and morphological features, with diverse responsiveness to ATRA.
Collapse
Affiliation(s)
- Abdul Mannan
- Betsi Cadwaladr University Health Board, Bangor, UK
| | - Ibrahim N Muhsen
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA.
| | - Eva Barragán
- Department of Hematology, Hospital Universitari i Politecnic La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Madrid, Spain
| | - Miguel A Sanz
- Department of Hematology, Hospital Universitari i Politecnic La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Madrid, Spain
| | | | - Shahrukh K Hashmi
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mahmoud Aljurf
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Su WW, Huang JY, Chen HM, Lin JT, Kao SH. Adenine inhibits growth of hepatocellular carcinoma cells via AMPK-mediated S phase arrest and apoptotic cascade. Int J Med Sci 2020; 17:678-684. [PMID: 32210718 PMCID: PMC7085215 DOI: 10.7150/ijms.42086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Adenine exhibits potential anticancer activity against several types of malignancies. However, whether adenine has anticancer effects on hepatocellular carcinoma (HCC) cells is incompletely explored. Methods: Human HCC cell lines HepG2 and SK-Hep-1 (p53-wild type) and Hep3B (p53-deficient) were used as cell model. Cell growth and cell cycle distribution were determined using MTT assay and flow cytometric analysis, respectively. Protein expression and phosphorylation were assessed by Western blot. Involvement of AMP-activated protein kinase (AMPK) was evaluated using specific inhibitor and small inhibitory RNA (siRNA). Results: Adenine treatments (0.5 - 2 mM) clearly decreased the cell growth of Hep G2 and SK-Hep-1 cells to 72.5 ± 3.4% and 71.3 ± 4.6% of control, respectively. In parallel, adenine also induced sub-G1 and S phase accumulation in both HCC cells. However, adenine did not affect the cell growth and cell cycle distribution of Hep3B cell. Western blot analysis showed that adenine reduced expression of cyclin A/D1 and cyclin-dependent kinase (CDK)2 and upregulated p53, p21, Bax, PUMA, and NOXA in HepG2 cell. Moreover, adenine induced AMPK activation that was involved in the p53-associated apoptotic cascade in HepG2 cells. Inhibition of AMPK activation or knockdown of AMPK restored the decreased cell growth of HepG2 and SK-Hep-1 cells in response to adenine. Conclusions: These findings reveal that adenine reduces the cell growth of HepG2 and SK-Hep-1 but not Hep3B cells, attributing to the AMPK/p53-mediated S phase arrest and apoptosis. It suggests that adenine has anticancer potential against p53-wild type HCC cells and may be beneficial as an adjuvant for HCC treatment.
Collapse
Affiliation(s)
- Wei-Wen Su
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Jen-Yu Huang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Han-Min Chen
- Institute of Applied Science and Engineering, Catholic Fu Jen University, New Taipei 24205, Taiwan
| | - Jiun-Tsai Lin
- Energenesis Biomedical Co. Ltd., Taipei 11492, Taiwan
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan.,Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
22
|
Zinc-finger protein p52-ZER6 accelerates colorectal cancer cell proliferation and tumour progression through promoting p53 ubiquitination. EBioMedicine 2019; 48:248-263. [PMID: 31521611 PMCID: PMC6838388 DOI: 10.1016/j.ebiom.2019.08.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background Aberrant expression of p53 and its downstream gene p21 is closely related to alterations in cell cycle and cell proliferation, and is common among cancer patients. However, the underlying molecular mechanism has not been fully unravelled. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini (N-termini) in their proteins, p52-ZER6 and p71-ZER6. The biological function of ZER6 isoforms, as well as their potential involvement in tumourigenesis and the regulation of p53 remain elusive. Methods The effect of ZER6 isoforms on p53 and p21 was determined using specific knockdown and overexpression. p52-ZER6 expression in tumours was analysed using clinical specimens, while gene modulation was used to explore p52-ZER6 roles in regulating cell proliferation and tumourigenesis. The mechanism of p52-ZER6 regulation on the p53/p21 axis was studied using molecular biology and biochemical methods. Findings p52-ZER6 was highly expressed in tumour tissues, and was closely related with tumour progression. Mechanistically, p52-ZER6 bound to p53 through a truncated KRAB (tKRAB) domain in its N-terminus and enhanced MDM2/p53 complex integrity, leading to increased p53 ubiquitination and degradation. p52-ZER6-silencing induced G0-G1 phase arrest, and subsequently reduced cell proliferation and tumourigenesis. Intriguingly, this regulation on p53 was specific to p52-ZER6, whereas p71-ZER6 did not affect p53 stability, most likely due to the presence of a HUB-1 domain. Interpretation We identified p52-ZER6 as a novel oncogene that enhances MDM2/p53 complex integrity, and might be a potential target for anti-cancer therapy.
Collapse
|
23
|
The regulatory elements of PLZF gene are not conserved as reveled by molecular cloning and functional characterization of PLZF gene promoter of Clarias batrachus. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Gao X, Chen H, Liu J, Shen S, Wang Q, Clement TM, Deskin BJ, Chen C, Zhao D, Wang L, Guo L, Ma X, Zhang B, Xu Y, Li X, Li L. The REGγ-Proteasome Regulates Spermatogenesis Partially by P53-PLZF Signaling. Stem Cell Reports 2019; 13:559-571. [PMID: 31402338 PMCID: PMC6742627 DOI: 10.1016/j.stemcr.2019.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
Development of spermatogonia and spermatocytes are the critical steps of spermatogenesis, impacting on male fertility. Investigation of the related regulators benefits the understanding of male reproduction. The proteasome system has been reported to regulate spermatogenesis, but the mechanisms and key contributing factors in vivo are poorly explored. Here we found that ablation of REGγ, a proteasome activator, resulted in male subfertility. Analysis of the mouse testes after birth showed there was a decreased number of PLZF+ spermatogonia and spermatocytes. Molecular analysis found that REGγ loss significantly increased the abundance of p53 protein in the testis, and directly repressed PLZF transcription in cell lines. Of note, allelic p53 haplodeficiency partially rescued the defects in spermatogenesis observed in REGγ-deficient mice. In summary, our results identify REGγ-p53-PLZF to be a critical pathway that regulates spermatogenesis and establishes a new molecular link between the proteasome system and male reproduction. REGγ loss results in male subfertility REGγ loss results in a decrease of spermatocytes and PLZF+ spermatogonial cells p53 protein, increased in REGγ−/− mouse testes, represses PLZF expression Allelic p53 haplodeficiency partially rescues defects in REGγ−/− mouse spermatogenesis
Collapse
Affiliation(s)
- Xiao Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jian Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shihui Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qingwei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tracy M Clement
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Brian J Deskin
- Epigenetic & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Caiyu Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dengpan Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Linjie Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xueqing Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiaotao Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
25
|
Clotaire DZJ, Wei Y, Yu X, Ousman T, Hua J. Functions of promyelocytic leukaemia zinc finger (Plzf) in male germline stem cell development and differentiation. Reprod Fertil Dev 2019; 31:1315-1320. [PMID: 31009592 DOI: 10.1071/rd18252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 02/16/2019] [Indexed: 01/12/2023] Open
Abstract
Promyelocytic leukaemia zinc finger (Plzf), also known as zinc finger and BTB domain containing 16 (ZBTB16) or zinc-finger protein 145 (ZFP145), is a critical zinc finger protein of male germline stem cells (mGSCs). Multiple lines of evidence indicate that Plzf has a central role in the development, differentiation and maintenance of many stem cells, including mGSCs, and Plzf has been validated as an essential transcription factor for mammalian testis development and spermatogenesis. This review summarises current literature focusing on the significance of Plzf in maintaining and regulating self-renewal and differentiation of mGSCs, especially goat mGSCs. The review summarises evidence of the specificity of Plzf expression in germ cell development stage, the known functions of Plzf and the microRNA-mediated mechanisms that control Plzf expression in mGSCs.
Collapse
Affiliation(s)
- Daguia Zambe John Clotaire
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; and Laboratoire des sciences Agronomiques et Biologiques pour le Développement (LASBAD), Faculty of Science, University of Bangui, Bangui, 999111, Central Africa
| | - Yudong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuwei Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tamgue Ousman
- Department of Biochemistry, University of Douala, Douala, 999108, Cameroon
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; and Corresponding author
| |
Collapse
|
26
|
Bai H, Chang Y, Li B, Mao Y, Jonas JB. Effects of lentivirus-mediated astrocyte elevated gene-1 overexpression on proliferation and apoptosis of human retinoblastoma cells. Acta Ophthalmol 2019; 97:e397-e402. [PMID: 30694025 DOI: 10.1111/aos.14034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the effect of astrocyte elevated gene-1 (AEG-1) overexpression on the biological behaviour of human retinoblastoma (RB) cells and its possible mechanism. METHODS Three human RB cell lines (SO-RB50, Y79 and WERI-RB1) were infected with AEG-1-GFP recombinant lentiviral vectors to induce AEG-1 overexpression, while the cells infected with negative lentiviral vectors and cells without any intervention formed control groups. RESULTS All three RB cell lines showed an overexpression of AEG-1 after lentivirus infection (p < 0.001 for all three cell lines). The survival rate of RB cells increased (all p < 0.001) in the AEG-1 overexpressed groups when compared with the control groups. There was a decrease in G0/G1 cell cycle phase arrest and an accumulation in G2/M cell cycle phase in all three RB cell lines (p < 0.001), with an induction in the S phase in WERI-RB1 cells. It was paralleled by a downregulation of p21 and p27 proteins and an upregulation of the Cdc2 protein. The apoptosis rate of RB cells declined (p < 0.001) when AEG-1 was overexpressed, in association with an upregulation of Bcl-2 protein and a downregulation of Bax protein and cleaved caspase-3 proteins. CONCLUSIONS A lentivirus-mediated AEG-1 overexpression in RB cells led in vitro to a growth promotion and an apoptosis inhibition of human RB cells, associated with an upregulation of the Bcl-2 protein, a downregulation of the Bax protein and of cleaved caspase-3 proteins, and with alterations of the cell cycle. AEG-1 may be involved in the development and progression of RB.
Collapse
Affiliation(s)
- Haixia Bai
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Ophthalmology & Visual Sciences Key Laboratory; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Ying Chang
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Ophthalmology & Visual Sciences Key Laboratory; Beijing Tongren Hospital; Capital Medical University; Beijing China
- Department of Ophthalmology; Shanxi Eye Hospital; Taiyuan Shanxi China
| | - Bin Li
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Ophthalmology & Visual Sciences Key Laboratory; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Ying Mao
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Ophthalmology & Visual Sciences Key Laboratory; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Jost B. Jonas
- Department of Ophthalmology; Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| |
Collapse
|
27
|
Sen K, Bhattacharyya D, Sarkar A, Das J, Maji N, Basu M, Ghosh Z, Ghosh TC. Exploring the major cross-talking edges of competitive endogenous RNA networks in human Chronic and Acute Myeloid Leukemia. Biochim Biophys Acta Gen Subj 2018; 1862:1883-1892. [DOI: 10.1016/j.bbagen.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
|
28
|
Robert AW, Angulski ABB, Spangenberg L, Shigunov P, Pereira IT, Bettes PSL, Naya H, Correa A, Dallagiovanna B, Stimamiglio MA. Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis. Sci Rep 2018; 8:4739. [PMID: 29549281 PMCID: PMC5856793 DOI: 10.1038/s41598-018-22991-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/06/2018] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely studied with regard to their potential use in cell therapy protocols and regenerative medicine. However, a better comprehension about the factors and molecular mechanisms driving cell differentiation is now mandatory to improve our chance to manipulate MSC behavior and to benefit future applications. In this work, we aimed to study gene regulatory networks at an early step of osteogenic differentiation. Therefore, we analyzed both the total mRNA and the mRNA fraction associated with polysomes on human adipose tissue-derived stem cells (hASCs) at 24 h of osteogenesis induction. The RNA-seq results evidenced that hASC fate is not compromised with osteogenesis at this time and that 21 days of continuous cell culture stimuli are necessary for full osteogenic differentiation of hASCs. Furthermore, early stages of osteogenesis induction involved gene regulation that was linked to the management of cell behavior in culture, such as the control of cell adhesion and proliferation. In conclusion, although discrete initial gene regulation related to osteogenesis occur, the first 24 h of induction is not sufficient to trigger and drive in vitro osteogenic differentiation of hASCs.
Collapse
Affiliation(s)
- Anny Waloski Robert
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Addeli Bez Batti Angulski
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Lucia Spangenberg
- Unidad de Bioinformática, Institut Pasteur Montevideo. Mataojo 2020, Montevideo, 11400, Uruguay
| | - Patrícia Shigunov
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Isabela Tiemy Pereira
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | | | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur Montevideo. Mataojo 2020, Montevideo, 11400, Uruguay
| | - Alejandro Correa
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Bruno Dallagiovanna
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Marco Augusto Stimamiglio
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil.
| |
Collapse
|
29
|
Shen H, Zhan M, Zhang Y, Huang S, Xu S, Huang X, He M, Yao Y, Man M, Wang J. PLZF inhibits proliferation and metastasis of gallbladder cancer by regulating IFIT2. Cell Death Dis 2018; 9:71. [PMID: 29358655 PMCID: PMC5833736 DOI: 10.1038/s41419-017-0107-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Gallbladder cancer (GBC) is a malignant cancer with very poor prognosis. Although promyelocytic leukemia zinc-finger protein (PLZF) was reported to be deregulated in numerous cancers and also relevant to clinical prognosis, its role in GBC progression has been little known. In this study, we found PLZF expression was decreased in GBC, correlating to advanced TNM stage, distant metastasis, and shorter overall survival. Moreover, ectopic PLZF expression in GBC cells (NOZ and GBC-SD) significantly reduced the cell proliferation, migration, and invasion. Consistently, overexpression of PLZF in xenograft mice model could suppress tumor growth and liver metastasis. Mechanical investigations verified PLZF could regulate the expression of cell cycle arrest-associated gene p21 and epithelial-mesenchymal transition (EMT)-related genes (E-cadherin and N-cadherin) in GBC cell lines. Importantly, PLZF remarkably increased the mRNA transcription of interferon-induced protein with tetratricopeptide repeat 2 (IFIT2) by increasing STAT1 protein level, a known factor involved in tumor progression. Furthermore, ablation of IFIT2 in PLZF overexpression cells abrogated the tumor-suppressive function of PLZF, at least partially, leading to impaired tumor growth and EMT program. These studies indicated PLZF inhibited the proliferation and metastasis via regulation of IFIT2. In conclusion, our study demonstrated PLZF could be a promising tumor biomarker for GBC, and also be a potential therapeutic target.
Collapse
Affiliation(s)
- Hui Shen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Yonglong Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Shuai Huang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Xince Huang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Min He
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Yanhua Yao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Institutes of Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Mohan Man
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Institutes of Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
30
|
Yao R, Han D, Sun X, Fu C, Wu Q, Yao Y, Li H, Li Z, Xu K. Histone deacetylase inhibitor NaBut suppresses cell proliferation and induces apoptosis by targeting p21 in multiple myeloma. Am J Transl Res 2017; 9:4994-5002. [PMID: 29218097 PMCID: PMC5714783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Multiple myeloma (MM) is an extremely serious hematological malignancy that remains incurable due to chemotherapy resistance. Epigenetic regulation is closely associated with progression of MM. Histone deacetylase inhibitor NaBut functions in various physiologic processes, including inflammation and differentiation. Its' possible roles in MM progression have not been explored. In this report, NaBut decreased survival of several human MM cell lines in a dose- and time-dependent manner. NaBut could also lead to cell cycle arrest at the G2/M phase in a dose-dependent manner. NaBut inhibited bortezomib-resistant cell proliferation in dose- and time-dependent manners, and NaBut was likely to induce partly bortezomib-resistant MM cell death. Moreover, NaBut induced MM cell apoptosis via transcriptional activation of p21. Overall, our results implicate NaBut as a potential therapeutic drug for MM.
Collapse
Affiliation(s)
- Ruosi Yao
- Blood Diseases Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Hematology, The Affliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem CellXuzhou, Jiangsu, China
| | - Danyang Han
- Blood Diseases Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem CellXuzhou, Jiangsu, China
| | - Xiaoyang Sun
- Blood Diseases Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem CellXuzhou, Jiangsu, China
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Hematology, The Affliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem CellXuzhou, Jiangsu, China
| | - Qingyun Wu
- Blood Diseases Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Hematology, The Affliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem CellXuzhou, Jiangsu, China
| | - Yao Yao
- Blood Diseases Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Hematology, The Affliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem CellXuzhou, Jiangsu, China
| | - Hujun Li
- Department of Hematology, The Affliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Zhenyu Li
- Department of Hematology, The Affliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Hematology, The Affliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem CellXuzhou, Jiangsu, China
| |
Collapse
|
31
|
Critical role of p21 on olaquindox-induced mitochondrial apoptosis and S-phase arrest involves activation of PI3K/AKT and inhibition of Nrf2/HO-1pathway. Food Chem Toxicol 2017; 108:148-160. [DOI: 10.1016/j.fct.2017.07.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
|
32
|
Jin Y, Nenseth HZ, Saatcioglu F. Role of PLZF as a tumor suppressor in prostate cancer. Oncotarget 2017; 8:71317-71324. [PMID: 29050363 PMCID: PMC5642638 DOI: 10.18632/oncotarget.19813] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
The promyelocytic leukemia zinc finger (PLZF), also known as ZBTB16 (Zinc Finger And BTB Domain Containing 16), is a transcription factor involved in the regulation of diverse biological processes, including cell proliferation, differentiation, organ development, stem cell maintenance and innate immune cell development. A number of recent studies have now implicated PLZF in cancer progression as a tumor suppressor. However, in certain cancer types, PLZF may function as an oncoprotein. Here, we summarize our current knowledge on the role of PLZF in various cancer types, in particular prostate cancer, including its deregulation, genomic alterations and potential functions in prostate cancer progression.
Collapse
Affiliation(s)
- Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | | | - Fahri Saatcioglu
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Ying W, Qimin W, Jinghua L, Jinhong H, Lili W, Chen C, Jianhua Z, Lei T, Xufei L, Yuan Z, Yixiang L, Zongxuan H, Ning L, Lei C, Wenjun L, Zhenggang C. [Effects of geranylgeranyltransferaseⅠsilencing on the proliferation of tongue squamous cancer cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:373-378. [PMID: 28853502 DOI: 10.7518/hxkq.2017.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective This study aims to investigate the effect of geranylgeranyltransferaseⅠ (GGTase-Ⅰ) on the proliferation and growth of tongue squamous cancer cells. Methods Three small interfering RNAs (siRNAs) were designed on the basis of the GGTase-Ⅰ sequence in GeneBank. These siRNAs were then transfected into tongue squamous cancer cells Cal-27. The mRNA and protein expression of GGTase-Ⅰ and RhoA were examined by real-time quantitative polymerase chain reaction and Western blotting, respectively. The expression of Cyclin D1 and p21 were examined by Western blotting. The proliferation and growth ability were analyzed by cell counting kit-8 assay and flow cytometry. Results The mRNA and protein expression of GGTase-Ⅰ in Cal-27 was reduced significantly after the GGTase-Ⅰ siRNAs were transfected (P<0.05). No significant difference in RhoA mRNA and protein expression was detected (P>0.05). Cyclin D1 expression decreased, whereas p21 expression increased significantly. The cell cycle was altered, and the growth-proliferative activity was inhibited (P<0.05). Conclusion GGTase-Ⅰ siRNA can inhibit the expression of GGTase-Ⅰ and the proliferative activity of tongue squamous cancer cells. GGTase-Ⅰ may be a potential target for gene therapy in tongue squamous cell cancer.
Collapse
Affiliation(s)
- Wang Ying
- College of Stomatology, Weifang Medical University, Weifang 261021, China
| | - Wang Qimin
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Li Jinghua
- Central Lab, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Han Jinhong
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China;Dept. of Oral and Maxillofacial Surgery, Yantai Stomatological Hospital, Yantai 264008, China
| | - Wang Lili
- Central Lab, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Chao Chen
- Dept. of Surgery, Qingdao Clinical Hospital Affiliated to Nanjing Medical University, Qingdao 266071, China
| | - Zhou Jianhua
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Tong Lei
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Lu Xufei
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China;Dept. of Stomatology, Pudong Hospital of Jimo City, Qingdao 266234, China
| | - Zhou Yuan
- College of Stomatology, Weifang Medical University, Weifang 261021, China
| | - Liao Yixiang
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| | - He Zongxuan
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Li Ning
- Postgraduate School, Dalian Medical University, Dalian 116044, China
| | - Cao Lei
- Postgraduate School, Dalian Medical University, Dalian 116044, China
| | - Liu Wenjun
- Dept. of Otorhinolaryngology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Chen Zhenggang
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China;Dept. of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
34
|
Cañete A, Cano E, Muñoz-Chápuli R, Carmona R. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis. Nutrients 2017; 9:E159. [PMID: 28230720 PMCID: PMC5331590 DOI: 10.3390/nu9020159] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/05/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.
Collapse
Affiliation(s)
- Ana Cañete
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| | - Elena Cano
- Max-Delbruck Center for Molecular Medicine, Robert Roessle-Strasse 10, 13125 Berlin, Germany.
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| | - Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| |
Collapse
|
35
|
DNA methylation of the Fthl17 5'-upstream region regulates differential Fthl17 expression in lung cancer cells and germline stem cells. PLoS One 2017; 12:e0172219. [PMID: 28207785 PMCID: PMC5312872 DOI: 10.1371/journal.pone.0172219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022] Open
Abstract
The Ferritin heavy polypeptide-like 17 (Fthl17) gene is a member of the cancer/testis antigen gene family, and is preferentially expressed in cancer cells and in testis. Although DNA methylation has been linked to the regulation of human FTHL17 gene expression, detailed epigenetic regulation of its expression has not been investigated. To address this, we assessed the epigenetic regulation of murine Fthl17 gene expression in cancer cells and germ cells. Fthl17 was more highly expressed in testis, a murine lung cancer cell line, KLN205, and in germline stem cells (GSCs) than in normal lung tissues. Furthermore, the Fthl17 expression level in GSCs was significantly higher than in KLN205 cells. We performed bisulfite-sequencing and luciferase (luc) reporter assays to examine the role of DNA methylation of the Fthl17 promoter in the regulation of Fthl17 expression. In KLN205 cells, testis, and GSCs, the Fthl17 5’-upstream region was hypo-methylated compared with normal lung tissues. Luc reporter assays indicated that hypo-methylation of the -0.6 kb to 0 kb region upstream from the transcription start site (TSS) was involved in the up-regulation of Fthl17 expression in KLN205 cells and GSCs. Because the -0.6 kb to -0.3 kb or the -0.3 kb to 0 kb region were relatively more hypo-methylated in KLN205 cells and in GSCs, respectively, compared with other regions between -0.6 kb to 0 kb, those regions may contribute to Fthl17 up-regulation in each cell type. Following treatment with 5-Azacytidine, the -0.3 kb to 0 kb region became hypo-methylated, and Fthl17 expression was up-regulated in KLN205 cells to a level comparable to that in GSCs. Together, the results suggest that hypo-methylation of different but adjacent regions immediately upstream of the Fthl17 gene contribute to differential expression levels in lung cancer cells and GSCs, and hypo-methylation of the TSS-proximal region may be critical for high level expression.
Collapse
|
36
|
Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst) 2016; 42:63-71. [PMID: 27156098 DOI: 10.1016/j.dnarep.2016.04.008] [Citation(s) in RCA: 794] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Abstract
An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity.
Collapse
Affiliation(s)
- Ansar Karimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasin Ahmadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Kommagani R, Szwarc MM, Vasquez YM, Peavey MC, Mazur EC, Gibbons WE, Lanz RB, DeMayo FJ, Lydon JP. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization. PLoS Genet 2016; 12:e1005937. [PMID: 27035670 PMCID: PMC4817989 DOI: 10.1371/journal.pgen.1005937] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/24/2016] [Indexed: 11/17/2022] Open
Abstract
Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights into the molecular mechanisms by which progesterone drives hESC decidualization, our findings provide a new conceptual framework that could lead to new avenues for diagnosis and/or treatment of adverse reproductive outcomes associated with a dysfunctional uterus.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yasmin M. Vasquez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary C. Peavey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erik C. Mazur
- Houston Fertility Specialists, Houston, Texas, United States of America
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rainer B. Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
38
|
Naito M, Vongsa S, Tsukune N, Ohashi A, Takahashi T. Promyelocytic leukemia zinc finger mediates glucocorticoid-induced cell cycle arrest in the chondroprogenitor cell line ATDC5. Mol Cell Endocrinol 2015; 417:114-23. [PMID: 26419928 DOI: 10.1016/j.mce.2015.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 12/21/2022]
Abstract
Glucocorticoids (GCs) affect the proliferation of growth plate chondrocytes. In this study, we investigated the role of the GC-inducible promyelocytic leukemia zinc finger (PLZF) gene in chondrocyte differentiation by using the chondrogenic cell line ATDC5. PLZF overexpression suppressed cell cycle progression (p < 0.01) and promoted differentiation into hypertrophic chondrocytes by inducing mRNA expression of alkaline phosphatase (p < 0.01), and the cyclin-dependent kinase (CDK) inhibitor p21 (p < 0.01). In contrast, PLZF knockdown impaired differentiation into hypertrophic chondrocytes and promoted cell cycle progression (p < 0.01). Treatment with the GC analogue dexamethasone (10(-6) M) suppressed cell cycle progression in ATDC5 cells. PLZF shRNA attenuated dexamethasone-induced cell cycle arrest (p < 0.01) by downregulating the mRNA expression of the CDK inhibitors p21 and p57 (p < 0.01). These results clearly indicated that PLZF promoted differentiation into hypertrophic chondrocytes and mediated dexamethasone-induced cell cycle arrest by regulating CDK inhibitors.
Collapse
Affiliation(s)
- Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.
| | - Souksavanh Vongsa
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Naoya Tsukune
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Akiko Ohashi
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Tomihisa Takahashi
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
39
|
Lu Y, Cao X, Zhang X, Kovalovsky D. PLZF Controls the Development of Fetal-Derived IL-17+Vγ6+ γδ T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:4273-81. [PMID: 26408661 DOI: 10.4049/jimmunol.1500939] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 01/15/2023]
Abstract
Expression of promyelocytic leukemia zinc finger (PLZF) protein directs the effector differentiation of invariant NKT (iNKT) cells and IL-4(+) γδ NKT cells. In this study, we show that PLZF is also required for the development and function of IL-17(+) γδ T cells. We observed that PLZF is expressed in fetal-derived invariant Vγ5(+) and Vγ6(+) γδ T cells, which secrete IFN-γ and IL-17, respectively. PLZF deficiency specifically affected the effector differentiation of Vγ6(+) cells, leading to reduced numbers of mature CD27(-)CD44(+) phenotype capable of secreting IL-17. Although PLZF was not required for Vγ5(+) γδ T cells to develop, when these cells were reprogrammed into IL-17-secreting cells in Skint-1 mutant mice, they required PLZF for their effector maturation, similarly to Vγ6(+) γδ T cells. The impaired effector differentiation of PLZF-deficient Vγ6(+) γδ T cells was not due to increased apoptosis and it was related to reduced proliferation of immature CD27(+)CD44(-) Vγ6(+) γδ T cells, which was required for their differentiation into mature CD27(-)CD44(+) IL-17-secreting cells. Thus, the present study identifies that PLZF function is not restricted to NKT or IL-4(+) T cells, but it also controls the development of IL-17(+) γδ T cells.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xin Cao
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xianyu Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Damian Kovalovsky
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|