1
|
Cudia DL, Ahoulou EO, Bej A, Janssen AN, Scholten A, Koch KW, Ames JB. NMR Structure of Retinal Guanylate Cyclase Activating Protein 5 (GCAP5) with R22A Mutation That Abolishes Dimerization and Enhances Cyclase Activation. Biochemistry 2024; 63:1246-1256. [PMID: 38662574 DOI: 10.1021/acs.biochem.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Guanylate cyclase activating protein-5 (GCAP5) in zebrafish photoreceptors promotes the activation of membrane receptor retinal guanylate cyclase (GC-E). Previously, we showed the R22A mutation in GCAP5 (GCAP5R22A) abolishes dimerization of GCAP5 and activates GC-E by more than 3-fold compared to that of wild-type GCAP5 (GCAP5WT). Here, we present ITC, NMR, and functional analysis of GCAP5R22A to understand how R22A causes a decreased dimerization affinity and increased cyclase activation. ITC experiments reveal GCAP5R22A binds a total of 3 Ca2+, including two sites in the nanomolar range followed by a single micromolar site. The two nanomolar sites in GCAP5WT were not detected by ITC, suggesting that R22A may affect the binding of Ca2+ to these sites. The NMR-derived structure of GCAP5R22A is overall similar to that of GCAP5WT (RMSD = 2.3 Å), except for local differences near R22A (Q19, W20, Y21, and K23) and an altered orientation of the C-terminal helix near the N-terminal myristate. GCAP5R22A lacks an intermolecular salt bridge between R22 and D71 that may explain the weakened dimerization. We present a structural model of GCAP5 bound to GC-E in which the R22 side-chain contacts exposed hydrophobic residues in GC-E. Cyclase assays suggest that GC-E binds to GCAP5R22A with ∼25% higher affinity compared to GCAP5WT, consistent with more favorable hydrophobic contact by R22A that may help explain the increased cyclase activation.
Collapse
Affiliation(s)
- Diana L Cudia
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Effibe O Ahoulou
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Aritra Bej
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Annika N Janssen
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Alexander Scholten
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Karl-W Koch
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - James B Ames
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Jacobson SG, Cideciyan AV, Ho AC, Roman AJ, Wu V, Garafalo AV, Sumaroka A, Krishnan AK, Swider M, Mascio AA, Kay CN, Yoon D, Fujita KP, Boye SL, Peshenko IV, Dizhoor AM, Boye SE. Night vision restored in days after decades of congenital blindness. iScience 2022; 25:105274. [PMID: 36274938 PMCID: PMC9579015 DOI: 10.1016/j.isci.2022.105274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Signaling of vision to the brain starts with the retinal phototransduction cascade which converts visible light from the environment into chemical changes. Vision impairment results when mutations inactivate proteins of the phototransduction cascade. A severe monogenically inherited blindness, Leber congenital amaurosis (LCA), is caused by mutations in the GUCY2D gene, leading to a molecular defect in the production of cyclic GMP, the second messenger of phototransduction. We studied two patients with GUCY2D-LCA who were undergoing gene augmentation therapy. Both patients had large deficits in rod photoreceptor-based night vision before intervention. Within days of therapy, rod vision in both patients changed dramatically; improvements in visual function and functional vision in these hyper-responding patients reached more than 3 log10 units (1000-fold), nearing healthy rod vision. Quick activation of the complex molecular pathways from retinal photoreceptor to visual cortex and behavior is thus possible in patients even after being disabled and dormant for decades.
Collapse
Affiliation(s)
- Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allen C. Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arun K. Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abraham A. Mascio
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Dan Yoon
- Atsena Therapeutics, Inc., Durham, NC 27709, USA
| | | | - Sanford L. Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32601, USA
| | - Igor V. Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| | | | - Shannon E. Boye
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Ames JB. Structural basis of retinal membrane guanylate cyclase regulation by GCAP1 and RD3. Front Mol Neurosci 2022; 15:988142. [PMID: 36157073 PMCID: PMC9493048 DOI: 10.3389/fnmol.2022.988142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal membrane guanylate cyclases (RetGC1 and RetGC2) are expressed in photoreceptor rod and cone cells, where they promote the onset of visual recovery during phototransduction. The catalytic activity of RetGCs is regulated by their binding to regulatory proteins, guanylate cyclase activating proteins (GCAP1-5) and the retinal degeneration 3 protein (RD3). RetGC1 is activated by its binding to Ca2+-free/Mg2+-bound GCAP1 at low cytosolic Ca2+ levels in light-activated photoreceptors. By contrast, RetGC1 is inactivated by its binding to Ca2+-bound GCAP1 and/or RD3 at elevated Ca2+ levels in dark-adapted photoreceptors. The Ca2+ sensitive cyclase activation helps to replenish the cytosolic cGMP levels in photoreceptors during visual recovery. Mutations in RetGC1, GCAP1 or RD3 that disable the Ca2+-dependent regulation of cyclase activity are genetically linked to rod/cone dystrophies and other inherited forms of blindness. Here I review the structural interaction of RetGC1 with GCAP1 and RD3. I propose a two-state concerted model in which the dimeric RetGC1 allosterically switches between active and inactive conformational states with distinct quaternary structures that are oppositely stabilized by the binding of GCAP1 and RD3. The binding of Ca2+-free/Mg2+-bound GCAP1 is proposed to activate the cyclase by stabilizing RetGC1 in an active conformation (R-state), whereas Ca2+-bound GCAP1 and/or RD3 inhibit the cyclase by locking RetGC1 in an inactive conformation (T-state). Exposed hydrophobic residues in GCAP1 (residues H19, Y22, M26, F73, V77, W94) are essential for cyclase activation and could be targeted by rational drug design for the possible treatment of rod/cone dystrophies.
Collapse
|
4
|
Cudia D, Roseman GP, Assafa TE, Shahu MK, Scholten A, Menke-Sell SK, Yamada H, Koch KW, Milhauser G, Ames JB. NMR and EPR-DEER Structure of a Dimeric Guanylate Cyclase Activator Protein-5 from Zebrafish Photoreceptors. Biochemistry 2021; 60:3058-3070. [PMID: 34609135 DOI: 10.1021/acs.biochem.1c00612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retinal guanylate cyclases (RetGCs) are regulated by a family of guanylate cyclase-activating proteins (called GCAP1-7). GCAPs form dimers that bind to Ca2+ and confer Ca2+ sensitive activation of RetGC during visual phototransduction. The GCAP5 homologue from zebrafish contains two nonconserved cysteine residues (Cys15 and Cys17) that bind to ferrous ion, which stabilizes GCAP5 dimerization and diminishes its ability to activate RetGC. Here, we present NMR and EPR-DEER structural analysis of a GCAP5 dimer in the Mg2+-bound, Ca2+-free, Fe2+-free activator state. The NMR-derived structure of GCAP5 is similar to the crystal structure of Ca2+-bound GCAP1 (root-mean-square deviation of 2.4 Å), except that the N-terminal helix of GCAP5 is extended by two residues, which allows the sulfhydryl groups of Cys15 and Cys17 to become more solvent exposed in GCAP5 to facilitate Fe2+ binding. Nitroxide spin-label probes were covalently attached to particular cysteine residues engineered in GCAP5: C15, C17, T26C, C28, N56C, C69, C105, N139C, E152C, and S159C. The intermolecular distance of each spin-label probe in dimeric GCAP5 (measured by EPR-DEER) defined restraints for calculating the dimer structure by molecular docking. The GCAP5 dimer possesses intermolecular hydrophobic contacts involving the side chain atoms of H18, Y21, M25, F72, V76, and W93, as well as an intermolecular salt bridge between R22 and D71. The structural model of the GCAP5 dimer was validated by mutations (H18E/Y21E, H18A/Y21A, R22D, R22A, M25E, D71R, F72E, and V76E) at the dimer interface that disrupt dimerization of GCAP5 and affect the activation of RetGC. We propose that GCAP5 dimerization may play a role in the Fe2+-dependent regulation of cyclase activity in zebrafish photoreceptors.
Collapse
Affiliation(s)
- Diana Cudia
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Graham P Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Tufa E Assafa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Manisha Kumari Shahu
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Alexander Scholten
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Sarah-Karina Menke-Sell
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Hiroaki Yamada
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Karl-W Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Glenn Milhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - James B Ames
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
5
|
Biasi A, Marino V, Dal Cortivo G, Maltese PE, Modarelli AM, Bertelli M, Colombo L, Dell’Orco D. A Novel GUCA1A Variant Associated with Cone Dystrophy Alters cGMP Signaling in Photoreceptors by Strongly Interacting with and Hyperactivating Retinal Guanylate Cyclase. Int J Mol Sci 2021; 22:ijms221910809. [PMID: 34639157 PMCID: PMC8509414 DOI: 10.3390/ijms221910809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Guanylate cyclase-activating protein 1 (GCAP1), encoded by the GUCA1A gene, is a neuronal calcium sensor protein involved in shaping the photoresponse kinetics in cones and rods. GCAP1 accelerates or slows the cGMP synthesis operated by retinal guanylate cyclase (GC) based on the light-dependent levels of intracellular Ca2+, thereby ensuring a timely regulation of the phototransduction cascade. We found a novel variant of GUCA1A in a patient affected by autosomal dominant cone dystrophy (adCOD), leading to the Asn104His (N104H) amino acid substitution at the protein level. While biochemical analysis of the recombinant protein showed impaired Ca2+ sensitivity of the variant, structural properties investigated by circular dichroism and limited proteolysis excluded major structural rearrangements induced by the mutation. Analytical gel filtration profiles and dynamic light scattering were compatible with a dimeric protein both in the presence of Mg2+ alone and Mg2+ and Ca2+. Enzymatic assays showed that N104H-GCAP1 strongly interacts with the GC, with an affinity that doubles that of the WT. The doubled IC50 value of the novel variant (520 nM for N104H vs. 260 nM for the WT) is compatible with a constitutive activity of GC at physiological levels of Ca2+. The structural region at the interface with the GC may acquire enhanced flexibility under high Ca2+ conditions, as suggested by 2 μs molecular dynamics simulations. The altered interaction with GC would cause hyper-activity of the enzyme at both low and high Ca2+ levels, which would ultimately lead to toxic accumulation of cGMP and Ca2+ in the photoreceptor outer segment, thus triggering cell death.
Collapse
Affiliation(s)
- Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | | | - Antonio Mattia Modarelli
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milano, Italy;
| | - Matteo Bertelli
- MAGI’S Lab s.r.l., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
- MAGI Euregio, 39100 Bolzano, Italy
| | - Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milano, Italy;
- Correspondence: (L.C.); (D.D.); Tel.: +39-02-81844301 (L.C.); +39-045-802-7637 (D.D.)
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
- Correspondence: (L.C.); (D.D.); Tel.: +39-02-81844301 (L.C.); +39-045-802-7637 (D.D.)
| |
Collapse
|
6
|
Retinal degeneration-3 protein attenuates photoreceptor degeneration in transgenic mice expressing dominant mutation of human retinal guanylyl cyclase. J Biol Chem 2021; 297:101201. [PMID: 34537244 PMCID: PMC8517212 DOI: 10.1016/j.jbc.2021.101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
Different forms of photoreceptor degeneration cause blindness. Retinal degeneration-3 protein (RD3) deficiency in photoreceptors leads to recessive congenital blindness. We proposed that aberrant activation of the retinal membrane guanylyl cyclase (RetGC) by its calcium-sensor proteins (guanylyl cyclase-activating protein [GCAP]) causes this retinal degeneration and that RD3 protects photoreceptors by preventing such activation. We here present in vivo evidence that RD3 protects photoreceptors by suppressing activation of both RetGC1 and RetGC2 isozymes. We further suggested that insufficient inhibition of RetGC by RD3 could contribute to some dominant forms of retinal degeneration. The R838S substitution in RetGC1 that causes autosomal-dominant cone-rod dystrophy 6, not only impedes deceleration of RetGC1 activity by Ca2+GCAPs but also elevates this isozyme's resistance to inhibition by RD3. We found that RD3 prolongs the survival of photoreceptors in transgenic mice harboring human R838S RetGC1 (R838S+). Overexpression of GFP-tagged human RD3 did not improve the calcium sensitivity of cGMP production in R838S+ retinas but slowed the progression of retinal blindness and photoreceptor degeneration. Fluorescence of the GFP-tagged RD3 in the retina only partially overlapped with immunofluorescence of RetGC1 or GCAP1, indicating that RD3 separates from the enzyme before the RetGC1:GCAP1 complex is formed in the photoreceptor outer segment. Most importantly, our in vivo results indicate that, in addition to the abnormal Ca2+ sensitivity of R838S RetGC1 in the outer segment, the mutated RetGC1 becomes resistant to inhibition by RD3 in a different cellular compartment(s) and suggest that RD3 overexpression could be utilized to reduce the severity of cone-rod dystrophy 6 pathology.
Collapse
|
7
|
Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs). Int J Mol Sci 2021; 22:ijms22168731. [PMID: 34445435 PMCID: PMC8395740 DOI: 10.3390/ijms22168731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Retinal guanylate cyclases (RetGCs) promote the Ca2+-dependent synthesis of cGMP that coordinates the recovery phase of visual phototransduction in retinal rods and cones. The Ca2+-sensitive activation of RetGCs is controlled by a family of photoreceptor Ca2+ binding proteins known as guanylate cyclase activator proteins (GCAPs). The Mg2+-bound/Ca2+-free GCAPs bind to RetGCs and activate cGMP synthesis (cyclase activity) at low cytosolic Ca2+ levels in light-activated photoreceptors. By contrast, Ca2+-bound GCAPs bind to RetGCs and inactivate cyclase activity at high cytosolic Ca2+ levels found in dark-adapted photoreceptors. Mutations in both RetGCs and GCAPs that disrupt the Ca2+-dependent cyclase activity are genetically linked to various retinal diseases known as cone-rod dystrophies. In this review, I will provide an overview of the known atomic-level structures of various GCAP proteins to understand how protein dimerization and Ca2+-dependent conformational changes in GCAPs control the cyclase activity of RetGCs. This review will also summarize recent structural studies on a GCAP homolog from zebrafish (GCAP5) that binds to Fe2+ and may serve as a Fe2+ sensor in photoreceptors. The GCAP structures reveal an exposed hydrophobic surface that controls both GCAP1 dimerization and RetGC binding. This exposed site could be targeted by therapeutics designed to inhibit the GCAP1 disease mutants, which may serve to mitigate the onset of retinal cone-rod dystrophies.
Collapse
|
8
|
Regulation of retinal membrane guanylyl cyclase (RetGC) by negative calcium feedback and RD3 protein. Pflugers Arch 2021; 473:1393-1410. [PMID: 33537894 PMCID: PMC8329130 DOI: 10.1007/s00424-021-02523-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/07/2022]
Abstract
This article presents a brief overview of the main biochemical and cellular processes involved in regulation of cyclic GMP production in photoreceptors. The main focus is on how the fluctuations of free calcium concentrations in photoreceptors between light and dark regulate the activity of retinal membrane guanylyl cyclase (RetGC) via calcium sensor proteins. The emphasis of the review is on the structure of RetGC and guanylyl cyclase activating proteins (GCAPs) in relation to their functional role in photoreceptors and congenital diseases of photoreceptors. In addition to that, the structure and function of retinal degeneration-3 protein (RD3), which regulates RetGC in a calcium-independent manner, is discussed in detail in connections with its role in photoreceptor biology and inherited retinal blindness.
Collapse
|
9
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. GUCY2D mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone-rod dystrophy but not for stationary night blindness. J Biol Chem 2020; 295:18301-18315. [PMID: 33109612 PMCID: PMC7939455 DOI: 10.1074/jbc.ra120.015553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/23/2020] [Indexed: 11/07/2022] Open
Abstract
Mutations in the GUCY2D gene coding for the dimeric human retinal membrane guanylyl cyclase (RetGC) isozyme RetGC1 cause various forms of blindness, ranging from rod dysfunction to rod and cone degeneration. We tested how the mutations causing recessive congenital stationary night blindness (CSNB), recessive Leber's congenital amaurosis (LCA1), and dominant cone-rod dystrophy-6 (CORD6) affected RetGC1 activity and regulation by RetGC-activating proteins (GCAPs) and retinal degeneration-3 protein (RD3). CSNB mutations R666W, R761W, and L911F, as well as LCA1 mutations R768W and G982VfsX39, disabled RetGC1 activation by human GCAP1, -2, and -3. The R666W and R761W substitutions compromised binding of GCAP1 with RetGC1 in HEK293 cells. In contrast, G982VfsX39 and L911F RetGC1 retained the ability to bind GCAP1 in cyto but failed to effectively bind RD3. R768W RetGC1 did not bind either GCAP1 or RD3. The co-expression of GUCY2D allelic combinations linked to CSNB did not restore RetGC1 activity in vitro The CORD6 mutation R838S in the RetGC1 dimerization domain strongly dominated the Ca2+ sensitivity of cyclase regulation by GCAP1 in RetGC1 heterodimer produced by co-expression of WT and the R838S subunits. It required higher Ca2+ concentrations to decelerate GCAP-activated RetGC1 heterodimer-6-fold higher than WT and 2-fold higher than the Ser838-harboring homodimer. The heterodimer was also more resistant than homodimers to inhibition by RD3. The observed biochemical changes can explain the dominant CORD6 blindness and recessive LCA1 blindness, both of which affect rods and cones, but they cannot explain the selective loss of rod function in recessive CSNB.
Collapse
Affiliation(s)
- Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA.
| |
Collapse
|
10
|
Peshenko IV, Dizhoor AM. Two clusters of surface-exposed amino acid residues enable high-affinity binding of retinal degeneration-3 (RD3) protein to retinal guanylyl cyclase. J Biol Chem 2020; 295:10781-10793. [PMID: 32493772 PMCID: PMC7397094 DOI: 10.1074/jbc.ra120.013789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Indexed: 11/06/2022] Open
Abstract
Retinal degeneration-3 (RD3) protein protects photoreceptors from degeneration by preventing retinal guanylyl cyclase (RetGC) activation via calcium-sensing guanylyl cyclase-activating proteins (GCAP), and RD3 truncation causes severe congenital blindness in humans and other animals. The three-dimensional structure of RD3 has recently been established, but the molecular mechanisms of its inhibitory binding to RetGC remain unclear. Here, we report the results of probing 133 surface-exposed residues in RD3 by single substitutions and deletions to identify side chains that are critical for the inhibitory binding of RD3 to RetGC. We tested the effects of these substitutions and deletions in vitro by reconstituting purified RD3 variants with GCAP1-activated human RetGC1. Although the vast majority of the surface-exposed residues tolerated substitutions without loss of RD3's inhibitory activity, substitutions in two distinct narrow clusters located on the opposite sides of the molecule effectively suppressed RD3 binding to the cyclase. The first surface-exposed cluster included residues adjacent to Leu63 in the loop connecting helices 1 and 2. The second cluster surrounded Arg101 on a surface of helix 3. Single substitutions in those two clusters drastically, i.e. up to 245-fold, reduced the IC50 for the cyclase inhibition. Inactivation of the two binding sites completely disabled binding of RD3 to RetGC1 in living HEK293 cells. In contrast, deletion of 49 C-terminal residues did not affect the apparent affinity of RD3 for RetGC. Our findings identify the functional interface on RD3 required for its inhibitory binding to RetGC, a process essential for protecting photoreceptors from degeneration.
Collapse
Affiliation(s)
- Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| |
Collapse
|
11
|
Abbas S, Marino V, Weisschuh N, Kieninger S, Solaki M, Dell’Orco D, Koch KW. Neuronal Calcium Sensor GCAP1 Encoded by GUCA1A Exhibits Heterogeneous Functional Properties in Two Cases of Retinitis Pigmentosa. ACS Chem Neurosci 2020; 11:1458-1470. [PMID: 32298085 DOI: 10.1021/acschemneuro.0c00111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic heterogeneity leading to retinal disorders impairs biological processes by causing, for example, severe disorder of signal transduction in photoreceptor outer segments. A normal balance of the second messenger homeostasis in photoreceptor cells seems to be a crucial factor for healthy and normal photoreceptor function. Genes like GUCY2D coding for guanylate cyclase GC-E and GUCA1A coding for the Ca2+-sensor guanylate cyclase-activating protein GCAP1 are critical for a precisely controlled synthesis of the second messenger cGMP. Mutations in GUCA1A frequently correlate in patients with cone dystrophy and cone-rod dystrophy. Here, we report two mutations in the GUCA1A gene that were found in patients diagnosed with retinitis pigmentosa, a phenotype that was rarely detected among previous cases of GUCA1A related retinopathies. One patient was heterozygous for the missense variant c.55C > T (p.H19Y), while the other patient was heterozygous for the missense variant c.479T > G (p.V160G). Using heterologous expression and cell culture systems, we examined the functional and molecular consequences of these point mutations. Both variants showed a dysregulation of guanylate cyclase activity, either a profound shift in Ca2+-sensitivity (H19Y) or a nearly complete loss of activating potency (V160G). Functional heterogeneity became also apparent in Ca2+/Mg2+-binding properties and protein conformational dynamics. A faster progression of retinal dystrophy in the patient carrying the V160G mutation seems to correlate with the more severe impairment of this variant.
Collapse
Affiliation(s)
- Seher Abbas
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Sinja Kieninger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Maria Solaki
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
12
|
Tang S, Xia Y, Dai Y, Liu Y, Li J, Pan X, Chen P. Functional characterization of a novel GUCA1A missense mutation (D144G) in autosomal dominant cone dystrophy: A novel pathogenic GUCA1A variant in COD. Mol Vis 2019; 25:921-xxx. [PMID: 32025184 PMCID: PMC6982429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/30/2019] [Indexed: 10/26/2022] Open
Abstract
Purpose To elucidate the clinical phenotypes and pathogenesis of a novel missense mutation in guanylate cyclase activator A1A (GUCA1A) associated with autosomal dominant cone dystrophy (adCOD). Methods The members of a family with adCOD were clinically evaluated. Relevant genes were captured before being sequenced with targeted next-generation sequencing and confirmed with Sanger sequencing. Sequence analysis was made of the conservativeness of mutant residues. An enzyme-linked immunosorbent assay (ELISA) was implemented to detect the cyclic guanosine monophosphate (cGMP) concentration. Then limited protein hydrolysis and an electrophoresis shift were used to assess possible changes in the structure. Coimmunoprecipitation was employed to analyze the interaction between GCAP1 and retGC1. Immunofluorescence staining was performed to observe the colocalization of GCAP1 and retGC1 in human embryonic kidney (HEK)-293 cells. Results A pathogenic mutation in GUCA1A (c.431A>G, p.D144G, exon 5) was revealed in four generations of a family with adCOD. GUCA1A encodes guanylate cyclase activating protein 1 (GCAP1). D144, located in the EF4 loop involving calcium binding, was highly conserved in the species. GCAP1-D144G was more susceptible to hydrolysis, and the mobility of the D144G band became slower in the presence of Ca2+. At high Ca2+ concentrations, GCAP1-D144G stimulated retGC1 in the HEK-293 membrane to significantly increase intracellular cGMP protein concentrations. Compared with wild-type (WT) GCAP1, GCAP1-D144G had an increased interaction with retGC1, as detected in the coimmunoprecipitation assay. Conclusions The newly discovered missense mutation in GUCA1A (p.D144G) might lead to an imbalance of Ca2+ and cGMP homeostasis and eventually, cause a significant variation in adCOD.
Collapse
Affiliation(s)
- Suzhen Tang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Yunhai Dai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yaning Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Jingshuo Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Xiaojing Pan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| |
Collapse
|
13
|
Lamb TD. Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Prog Retin Eye Res 2019; 76:100823. [PMID: 31790748 DOI: 10.1016/j.preteyeres.2019.100823] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
This paper reviews current knowledge of the evolution of the multiple genes encoding proteins that mediate the process of phototransduction in rod and cone photoreceptors of vertebrates. The approach primarily involves molecular phylogenetic analysis of phototransduction protein sequences, combined with analysis of the syntenic arrangement of the genes. At least 35 of these phototransduction genes appear to reside on no more than five paralogons - paralogous regions that each arose from a common ancestral region. Furthermore, it appears that such paralogs arose through quadruplication during the two rounds of genome duplication (2R WGD) that occurred in a chordate ancestor prior to the vertebrate radiation, probably around 600 millions years ago. For several components of the phototransduction cascade, it is shown that distinct isoforms already existed prior to WGD, with the likely implication that separate classes of scotopic and photopic photoreceptor cells had already evolved by that stage. The subsequent quadruplication of the entire genome then permitted the refinement of multiple distinct protein isoforms in rods and cones. A unified picture of the likely pattern and approximate timing of all the important gene duplications is synthesised, and the implications for our understanding of the evolution of rod and cone phototransduction are presented.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
14
|
Dizhoor AM, Olshevskaya EV, Peshenko IV. Retinal guanylyl cyclase activation by calcium sensor proteins mediates photoreceptor degeneration in an rd3 mouse model of congenital human blindness. J Biol Chem 2019; 294:13729-13739. [PMID: 31346032 DOI: 10.1074/jbc.ra119.009948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Indexed: 01/19/2023] Open
Abstract
Deficiency of RD3 (retinal degeneration 3) protein causes recessive blindness and photoreceptor degeneration in humans and in the rd3 mouse strain, but the disease mechanism is unclear. Here, we present evidence that RD3 protects photoreceptors from degeneration by competing with guanylyl cyclase-activating proteins (GCAPs), which are calcium sensor proteins for retinal membrane guanylyl cyclase (RetGC). RetGC activity in rd3/rd3 retinas was drastically reduced but stimulated by the endogenous GCAPs at low Ca2+ concentrations. RetGC activity completely failed to accelerate in rd3/rd3GCAPs -/- hybrid photoreceptors, whose photoresponses remained drastically suppressed compared with the WT. However, ∼70% of the hybrid rd3/rd3GCAPs -/- photoreceptors survived past 6 months, in stark contrast to <5% in the nonhybrid rd3/rd3 retinas. GFP-tagged human RD3 inhibited GCAP-dependent activation of RetGC in vitro similarly to the untagged RD3. When transgenically expressed in rd3/rd3 mouse retinas under control of the rhodopsin promoter, the RD3GFP construct increased RetGC levels to near normal levels, restored dark-adapted photoresponses, and rescued rods from degeneration. The fluorescence of RD3GFP in rd3/rd3RD3GFP + retinas was mostly restricted to the rod photoreceptor inner segments, whereas GCAP1 immunofluorescence was concentrated predominantly in the outer segment. However, RD3GFP became distributed to the outer segments when bred into a GCAPs -/- genetic background. These results support the hypothesis that an essential biological function of RD3 is competition with GCAPs that inhibits premature cyclase activation in the inner segment. Our findings also indicate that the fast rate of degeneration in RD3-deficient photoreceptors results from the lack of this inhibition.
Collapse
Affiliation(s)
- Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
15
|
Peshenko IV, Cideciyan AV, Sumaroka A, Olshevskaya EV, Scholten A, Abbas S, Koch KW, Jacobson SG, Dizhoor AM. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration. J Biol Chem 2019; 294:3476-3488. [PMID: 30622141 DOI: 10.1074/jbc.ra118.006180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
The guanylyl cyclase-activating protein, GCAP1, activates photoreceptor membrane guanylyl cyclase (RetGC) in the light, when free Ca2+ concentrations decline, and decelerates the cyclase in the dark, when Ca2+ concentrations rise. Here, we report a novel mutation, G86R, in the GCAP1 (GUCA1A) gene in a family with a dominant retinopathy. The G86R substitution in a "hinge" region connecting EF-hand domains 2 and 3 in GCAP1 strongly interfered with its Ca2+-dependent activator-to-inhibitor conformational transition. The G86R-GCAP1 variant activated RetGC at low Ca2+ concentrations with higher affinity than did the WT GCAP1, but failed to decelerate the cyclase at the Ca2+ concentrations characteristic of dark-adapted photoreceptors. Ca2+-dependent increase in Trp94 fluorescence, indicative of the GCAP1 transition to its RetGC inhibiting state, was suppressed and shifted to a higher Ca2+ range. Conformational changes in G86R GCAP1 detectable by isothermal titration calorimetry (ITC) also became less sensitive to Ca2+, and the dose dependence of the G86R GCAP1-RetGC1 complex inhibition by retinal degeneration 3 (RD3) protein was shifted toward higher than normal concentrations. Our results indicate that the flexibility of the hinge region between EF-hands 2 and 3 is required for placing GCAP1-regulated Ca2+ sensitivity of the cyclase within the physiological range of intracellular Ca2+ at the expense of reducing GCAP1 affinity for the target enzyme. The disease-linked mutation of the hinge Gly86, leading to abnormally high affinity for the target enzyme and reduced Ca2+ sensitivity of GCAP1, is predicted to abnormally elevate cGMP production and Ca2+ influx in photoreceptors in the dark.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Artur V Cideciyan
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander Sumaroka
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Elena V Olshevskaya
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander Scholten
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Seher Abbas
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Karl-Wilhelm Koch
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Samuel G Jacobson
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander M Dizhoor
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027,
| |
Collapse
|
16
|
Ames JB. Dimerization of Neuronal Calcium Sensor Proteins. Front Mol Neurosci 2018; 11:397. [PMID: 30450035 PMCID: PMC6224351 DOI: 10.3389/fnmol.2018.00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/11/2018] [Indexed: 12/27/2022] Open
Abstract
Neuronal calcium sensor (NCS) proteins are EF-hand containing Ca2+ binding proteins that regulate sensory signal transduction. Many NCS proteins (recoverin, GCAPs, neurocalcin and visinin-like protein 1 (VILIP1)) form functional dimers under physiological conditions. The dimeric NCS proteins have similar amino acid sequences (50% homology) but each bind to and regulate very different physiological targets. Retinal recoverin binds to rhodopsin kinase and promotes Ca2+-dependent desensitization of light-excited rhodopsin during visual phototransduction. The guanylyl cyclase activating proteins (GCAP1–5) each bind and activate retinal guanylyl cyclases (RetGCs) in light-adapted photoreceptors. VILIP1 binds to membrane targets that modulate neuronal secretion. Here, I review atomic-level structures of dimeric forms of recoverin, GCAPs and VILIP1. The distinct dimeric structures in each case suggest that NCS dimerization may play a role in modulating specific target recognition. The dimerization of recoverin and VILIP1 is Ca2+-dependent and enhances their membrane-targeting Ca2+-myristoyl switch function. The dimerization of GCAP1 and GCAP2 facilitate their binding to dimeric RetGCs and may allosterically control the Ca2+-dependent activation of RetGCs.
Collapse
Affiliation(s)
- James B Ames
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Vinberg F, Peshenko IV, Chen J, Dizhoor AM, Kefalov VJ. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors. J Biol Chem 2018; 293:7457-7465. [PMID: 29549122 DOI: 10.1074/jbc.ra117.001574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Light adaptation of photoreceptor cells is mediated by Ca2+-dependent mechanisms. In darkness, Ca2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca2+ extrusion via Na+/Ca2+, K+ exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca2+ levels in photoreceptor outer segment because of continuing Ca2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca2+-feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033
| | - Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
18
|
Lim S, Roseman G, Peshenko I, Manchala G, Cudia D, Dizhoor AM, Millhauser G, Ames JB. Retinal guanylyl cyclase activating protein 1 forms a functional dimer. PLoS One 2018. [PMID: 29513743 PMCID: PMC5841803 DOI: 10.1371/journal.pone.0193947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Retinal guanylyl cyclases (RetGCs) in vertebrate photoreceptors are regulated by the guanylyl cyclase activator proteins (GCAP1 and GCAP2). Here, we report EPR double electron-electron resonance (DEER) studies on the most ubiquitous GCAP isoform, GCAP1 and site-directed mutagenesis analysis to determine an atomic resolution structural model of a GCAP1 dimer. Nitroxide spin-label probes were introduced at individual GCAP1 residues: T29C, E57C, E133C, and E154C. The intermolecular distance of each spin-label probe (measured by DEER) defined restraints for calculating the GCAP1 dimeric structure by molecular docking. The DEER-derived structural model of the GCAP1 dimer was similar within the experimental error for both the Mg2+-bound activator and Ca2+-bound inhibitor states (RMSD < 2.0 Å). The GCAP1 dimer possesses intermolecular hydrophobic contacts involving the side chain atoms of H19, Y22, F73 and V77. The structural model of the dimer was validated by GCAP1 mutations (H19R, Y22D, F73E, and V77E) at the dimer interface that each abolished protein dimerization. Previous studies have shown that each of these mutants either diminished or completely suppressed the ability of GCAP1 to activate the cyclase. These results suggest that GCAP1 dimerization may affect compartmentalization of GCAP1 in the photoreceptors and/or affect regulation of the cyclase activity.
Collapse
Affiliation(s)
- Sunghyuk Lim
- Department of Chemistry, University of California, Davis, CA, United States of America
| | - Graham Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, United States of America
| | - Igor Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA, United States of America
| | - Grace Manchala
- Department of Chemistry, University of California, Davis, CA, United States of America
| | - Diana Cudia
- Department of Chemistry, University of California, Davis, CA, United States of America
| | - Alexander M. Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA, United States of America
| | - Glenn Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, United States of America
| | - James B. Ames
- Department of Chemistry, University of California, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
19
|
López-Begines S, Plana-Bonamaisó A, Méndez A. Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in photoreceptor cells of the retina. Sci Rep 2018; 8:2903. [PMID: 29440717 PMCID: PMC5811540 DOI: 10.1038/s41598-018-20893-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/26/2018] [Indexed: 11/10/2022] Open
Abstract
Retinal guanylate cyclase (RetGC) and guanylate cyclase activating proteins (GCAPs) play an important role during the light response in photoreceptor cells. Mutations in these proteins are linked to distinct forms of blindness. RetGC and GCAPs exert their role at the ciliary outer segment where phototransduction takes place. We investigated the mechanisms governing GCAP1 and GCAP2 distribution to rod outer segments by expressing selected GCAP1 and GCAP2 mutants as transient transgenes in the rods of GCAP1/2 double knockout mice. We show that precluding GCAP1 direct binding to RetGC (K23D/GCAP1) prevented its distribution to rod outer segments, while preventing GCAP1 activation of RetGC post-binding (W94A/GCAP1) did not. We infer that GCAP1 translocation to the outer segment strongly depends on GCAP1 binding affinity for RetGC, which points to GCAP1 requirement to bind to RetGC to be transported. We gain further insight into the distinctive regulatory steps of GCAP2 distribution, by showing that a phosphomimic at position 201 is sufficient to retain GCAP2 at proximal compartments; and that the bovine equivalent to blindness-causative mutation G157R/GCAP2 results in enhanced phosphorylation in vitro and significant retention at the inner segment in vivo, as likely contributing factors to the pathophysiology.
Collapse
Affiliation(s)
- Santiago López-Begines
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Physiology, University of Barcelona School of Medicine-Bellvitge Health Science Campus, Barcelona, Spain
| | - Anna Plana-Bonamaisó
- Department of Physiology, University of Barcelona School of Medicine-Bellvitge Health Science Campus, Barcelona, Spain
| | - Ana Méndez
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. .,Department of Physiology, University of Barcelona School of Medicine-Bellvitge Health Science Campus, Barcelona, Spain.
| |
Collapse
|
20
|
Lim S, Scholten A, Manchala G, Cudia D, Zlomke-Sell SK, Koch KW, Ames JB. Structural Characterization of Ferrous Ion Binding to Retinal Guanylate Cyclase Activator Protein 5 from Zebrafish Photoreceptors. Biochemistry 2017; 56:6652-6661. [PMID: 29172459 DOI: 10.1021/acs.biochem.7b01029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensory guanylate cyclases (zGCs) in zebrafish photoreceptors are regulated by a family of guanylate cyclase activator proteins (called GCAP1-7). GCAP5 contains two nonconserved cysteine residues (Cys15 and Cys17) that could in principle bind to biologically active transition state metal ions (Zn2+ and Fe2+). Here, we present nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) binding analyses that demonstrate the binding of one Fe2+ ion to two GCAP5 molecules (in a 1:2 complex) with a dissociation constant in the nanomolar range. At least one other Fe2+ binds to GCAP5 with micromolar affinity that likely represents electrostatic Fe2+ binding to the EF-hand loops. The GCAP5 double mutant (C15A/C17A) lacks nanomolar binding to Fe2+, suggesting that Fe2+ at this site is ligated directly by thiolate groups of Cys15 and Cys17. Size exclusion chromatography analysis indicates that GCAP5 forms a dimer in the Fe2+-free and Fe2+-bound states. NMR structural analysis and molecular docking studies suggest that a single Fe2+ ion is chelated by thiol side chains from Cys15 and Cys17 in the GCAP5 dimer, forming an [Fe(SCys)4] complex like that observed previously in two-iron superoxide reductases. Binding of Fe2+ to GCAP5 weakens its ability to activate photoreceptor human GC-E by decreasing GC activity >10-fold. Our results indicate a strong Fe2+-induced inhibition of GC by GCAP5 and suggest that GCAP5 may serve as a redox sensor in visual phototransduction.
Collapse
Affiliation(s)
- Sunghyuk Lim
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Alexander Scholten
- Department of Neuroscience, University of Oldenburg , 26129 Oldenburg, Germany
| | - Grace Manchala
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Diana Cudia
- Department of Chemistry, University of California , Davis, California 95616, United States
| | | | - Karl-W Koch
- Department of Neuroscience, University of Oldenburg , 26129 Oldenburg, Germany
| | - James B Ames
- Department of Chemistry, University of California , Davis, California 95616, United States
| |
Collapse
|
21
|
Marino V, Dell'Orco D. Allosteric communication pathways routed by Ca 2+/Mg 2+ exchange in GCAP1 selectively switch target regulation modes. Sci Rep 2016; 6:34277. [PMID: 27739433 PMCID: PMC5064319 DOI: 10.1038/srep34277] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022] Open
Abstract
GCAP1 is a neuronal calcium sensor protein that regulates the phototransduction cascade in vertebrates by switching between activator and inhibitor of the target guanylate cyclase (GC) in a Ca2+-dependent manner. We carried out exhaustive molecular dynamics simulations of GCAP1 and determined the intramolecular communication pathways involved in the specific GC activator/inhibitor switch. The switch was found to depend on the Mg2+/Ca2+ loading states of the three EF hands and on the way the information is transferred from each EF hand to specific residues at the GCAP1/GC interface. Post-translational myristoylation is fundamental to mediate long range allosteric interactions including the EF2-EF4 coupling and the communication between EF4 and the GC binding interface. Some hubs in the identified protein network are the target of retinal dystrophy mutations, suggesting that the lack of complete inhibition of GC observed in many cases is likely due to the perturbation of intra/intermolecular communication routes.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, strada le Grazie 8, I-37134 Verona, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, strada le Grazie 8, I-37134 Verona, Italy.,Centre for BioMedical Computing (CBMC), University of Verona, strada le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
22
|
Dizhoor AM, Olshevskaya EV, Peshenko IV. The R838S Mutation in Retinal Guanylyl Cyclase 1 (RetGC1) Alters Calcium Sensitivity of cGMP Synthesis in the Retina and Causes Blindness in Transgenic Mice. J Biol Chem 2016; 291:24504-24516. [PMID: 27703005 DOI: 10.1074/jbc.m116.755553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/03/2016] [Indexed: 11/06/2022] Open
Abstract
Substitutions of Arg838 in the dimerization domain of a human retinal membrane guanylyl cyclase 1 (RetGC1) linked to autosomal dominant cone-rod degeneration type 6 (CORD6) change RetGC1 regulation in vitro by Ca2+ In addition, we find that R838S substitution makes RetGC1 less sensitive to inhibition by retinal degeneration-3 protein (RD3). We selectively expressed human R838S RetGC1 in mouse rods and documented the decline in rod vision and rod survival. To verify that changes in rods were specifically caused by the CORD6 mutation, we used for comparison cones, which in the same mice did not express R838S RetGC1 from the transgenic construct. The R838S RetGC1 expression in rod outer segments reduced inhibition of cGMP production in the transgenic mouse retinas at the free calcium concentrations typical for dark-adapted rods. The transgenic mice demonstrated early-onset and rapidly progressed with age decline in visual responses from the targeted rods, in contrast to the longer lasting preservation of function in the non-targeted cones. The decline in rod function in the retina resulted from a progressive degeneration of rods between 1 and 6 months of age, with the severity and pace of the degeneration consistent with the extent to which the Ca2+ sensitivity of the retinal cGMP production was affected. Our study presents a new experimental model for exploring cellular mechanisms of the CORD6-related photoreceptor death. This mouse model provides the first direct biochemical and physiological in vivo evidence for the Arg838 substitutions in RetGC1 being the culprit behind the pathogenesis of the CORD6 congenital blindness.
Collapse
Affiliation(s)
- Alexander M Dizhoor
- From the Department of Research, Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027.
| | - Elena V Olshevskaya
- From the Department of Research, Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Igor V Peshenko
- From the Department of Research, Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
23
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. Functional Study and Mapping Sites for Interaction with the Target Enzyme in Retinal Degeneration 3 (RD3) Protein. J Biol Chem 2016; 291:19713-23. [PMID: 27471269 DOI: 10.1074/jbc.m116.742288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 12/24/2022] Open
Abstract
Retinal degeneration 3 (RD3) protein, essential for normal expression of retinal membrane guanylyl cyclase (RetGC) in photoreceptor cells, blocks RetGC catalytic activity and stimulation by guanylyl cyclase-activating proteins (GCAPs). In a mouse retina, RD3 inhibited both RetGC1 and RetGC2 isozymes. Photoreceptors in the rd3/rd3 mouse retinas lacking functional RD3 degenerated more severely than in the retinas lacking both RetGC isozymes, consistent with a hypothesis that the inhibitory activity of RD3 has a functional role in photoreceptors. To map the potential target-binding site(s) on RD3, short evolutionary conserved regions of its primary structure were scrambled and the mutations were tested for the RD3 ability to inhibit RetGC1 and co-localize with the cyclase in co-transfected cells. Substitutions in 4 out of 22 tested regions, (87)KIHP(90), (93)CGPAI(97), (99)RFRQ(102), and (119)RSVL(122), reduced the RD3 apparent affinity for the cyclase 180-700-fold. Changes of amino acid sequences outside the Lys(87)-Leu(122) central portion of the molecule either failed to prevent RD3 binding to the cyclase or had a much smaller effect. Mutations in the (93)CGPAI(97) portion of a predicted central α-helix most drastically suppressed the inhibitory activity of RD3 and disrupted RD3 co-localization with RetGC1 in HEK293 cells. Different side chains replacing Cys(93) profoundly reduced RD3 affinity for the cyclase, irrespective of their relative helix propensities. We conclude that the main RetGC-binding interface on RD3 required for the negative regulation of the cyclase localizes to the Lys(87)-Leu(122) region.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Pennsylvania College of Optometry, Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Elena V Olshevskaya
- From the Pennsylvania College of Optometry, Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander M Dizhoor
- From the Pennsylvania College of Optometry, Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
24
|
Lim S, Peshenko IV, Olshevskaya EV, Dizhoor AM, Ames JB. Structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) Mutant V77E in a Ca2+-free/Mg2+-bound Activator State. J Biol Chem 2015; 291:4429-41. [PMID: 26703466 DOI: 10.1074/jbc.m115.696161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 12/27/2022] Open
Abstract
GCAP1, a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca(2+)-sensitive activation of retinal guanylyl cyclase 1 (RetGC1). We present NMR resonance assignments, residual dipolar coupling data, functional analysis, and a structural model of GCAP1 mutant (GCAP1(V77E)) in the Ca(2+)-free/Mg(2+)-bound state. NMR chemical shifts and residual dipolar coupling data reveal Ca(2+)-dependent differences for residues 170-174. An NMR-derived model of GCAP1(V77E) contains Mg(2+) bound at EF2 and looks similar to Ca(2+) saturated GCAP1 (root mean square deviations = 2.0 Å). Ca(2+)-dependent structural differences occur in the fourth EF-hand (EF4) and adjacent helical region (residues 164-174 called the Ca(2+) switch helix). Ca(2+)-induced shortening of the Ca(2+) switch helix changes solvent accessibility of Thr-171 and Leu-174 that affects the domain interface. Although the Ca(2+) switch helix is not part of the RetGC1 binding site, insertion of an extra Gly residue between Ser-173 and Leu-174 as well as deletion of Arg-172, Ser-173, or Leu-174 all caused a decrease in Ca(2+) binding affinity and abolished RetGC1 activation. We conclude that Ca(2+)-dependent conformational changes in the Ca(2+) switch helix are important for activating RetGC1 and provide further support for a Ca(2+)-myristoyl tug mechanism.
Collapse
Affiliation(s)
- Sunghyuk Lim
- From the Department of Chemistry, University of California, Davis, California 95616 and
| | - Igor V Peshenko
- Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | | | | | - James B Ames
- From the Department of Chemistry, University of California, Davis, California 95616 and
| |
Collapse
|
25
|
Marino V, Scholten A, Koch KW, Dell'Orco D. Two retinal dystrophy-associated missense mutations in GUCA1A with distinct molecular properties result in a similar aberrant regulation of the retinal guanylate cyclase. Hum Mol Genet 2015; 24:6653-66. [PMID: 26358777 DOI: 10.1093/hmg/ddv370] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/04/2015] [Indexed: 11/13/2022] Open
Abstract
Two recently identified missense mutations (p. L84F and p. I107T) in GUCA1A, the gene coding for guanylate cyclase (GC)-activating protein 1 (GCAP1), lead to a phenotype ascribable to cone, cone-rod and macular dystrophies. Here, we present a thorough biochemical and biophysical characterization of the mutant proteins and their distinct molecular features. I107T-GCAP1 has nearly wild-type-like protein secondary and tertiary structures, and binds Ca(2+) with a >10-fold lower affinity than the wild-type. On the contrary, L84F-GCAP1 displays altered tertiary structure in both GC-activating and inhibiting states, and a wild type-like apparent affinity for Ca(2+). The latter mutant also shows a significantly high affinity for Mg(2+), which might be important for stabilizing the GC-activating state and inducing a cooperative mechanism for the binding of Ca(2+), so far not been observed in other GCAP1 variants. Moreover, the thermal stability of L84F-GCAP1 is particularly high in the Ca(2+)-bound, GC-inhibiting state. Molecular dynamics simulations suggest that such enhanced stability arises from a deeper burial of the myristoyl moiety within the EF1-EF2 domain. The simulations also support an allosteric mechanism connecting the myristoyl moiety to the highest-affinity Ca(2+) binding site EF3. In spite of their remarkably distinct molecular features, both mutants cause constitutive activation of the target GC at physiological Ca(2+). We conclude that the similar aberrant regulation of the target enzyme results from a similar perturbation of the GCAP1-GC interaction, which may eventually cause dysregulation of both Ca(2+) and cyclic GMP homeostasis and result in retinal degeneration.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurological, Biomedical and Movement Sciences, Section of Biological Chemistry
| | - Alexander Scholten
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, 26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, 26111 Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurological, Biomedical and Movement Sciences, Section of Biological Chemistry, Centre for BioMedical Computing (CBMC), University of Verona, 37134 Verona, Italy and
| |
Collapse
|
26
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. Dimerization Domain of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Is an Essential Part of Guanylyl Cyclase-activating Protein (GCAP) Binding Interface. J Biol Chem 2015; 290:19584-96. [PMID: 26100624 DOI: 10.1074/jbc.m115.661371] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 01/11/2023] Open
Abstract
The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met(823) was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg(822). The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met(823) or Arg(822) was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg(822) and Met(823).
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Elena V Olshevskaya
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander M Dizhoor
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
27
|
Zernii EY, Grigoriev II, Nazipova AA, Scholten A, Kolpakova TV, Zinchenko DV, Kazakov AS, Senin II, Permyakov SE, Dell'Orco D, Philippov PP, Koch KW. Regulatory function of the C-terminal segment of guanylate cyclase-activating protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1325-37. [PMID: 26001899 DOI: 10.1016/j.bbapap.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/22/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
Abstract
Neuronal responses to Ca2+-signals are provided by EF-hand-type neuronal Ca2+-sensor (NCS) proteins, which have similar core domains containing Ca2+-binding and target-recognizing sites. NCS proteins vary in functional specificity, probably depending on the structure and conformation of their non-conserved C-terminal segments. Here, we investigated the role of the C-terminal segment in guanylate cyclase activating protein-2, GCAP2, an NCS protein controlling the Ca2+-dependent regulation of photoreceptor guanylate cyclases. We obtained two chimeric proteins by exchanging C-terminal segments between GCAP2 and its photoreceptor homolog recoverin, a Ca2+-sensor controlling rhodopsin kinase (RK) activity. The exchange affected neither the structural integrity of GCAP2 and recoverin nor the Ca2+-sensitivity of GCAP2. Intrinsic fluorescence, circular dichroism, biochemical studies and hydrophobic dye probing revealed Ca2+-dependent conformational transition of the C-terminal segment of GCAP2 occurring in the molecular environment of both proteins. In Ca2+-GCAP2, the C-terminal segment was constrained and its replacement provided the protein with approximately two-fold inhibitory activity towards RK, suggesting that the segment contributes to specific target recognition by interfering with RK-binding. Upon Ca2+-release, it became less constrained and more available for phosphorylation by cyclic nucleotide-dependent protein kinase. The transition from the Ca2+-bound to the apo-state exposed hydrophobic sites in GCAP2, and was associated with its activating function without affecting its dimerization. The released C-terminal segment participated further in photoreceptor membrane binding making it sensitive to phosphorylation. Thus, the C-terminal segment in GCAP2 confers target selectivity, facilitates membrane binding and provides sensitivity of the membrane localization of the protein to phosphorylation by signaling kinases.
Collapse
Affiliation(s)
- Evgeni Yu Zernii
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Ilya I Grigoriev
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Aliya A Nazipova
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia
| | - Alexander Scholten
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, 26111 Germany
| | - Tatiana V Kolpakova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Dmitry V Zinchenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia
| | - Alexey S Kazakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia
| | - Ivan I Senin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Sergei E Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia
| | - Daniele Dell'Orco
- Department of Life Sciences and Reproduction, Section of Biological Chemistry and Center for BioMedical Computing, University of Verona, Verona, 37134 Italy
| | - Pavel P Philippov
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Karl-W Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, 26111 Germany.
| |
Collapse
|
28
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. Evaluating the role of retinal membrane guanylyl cyclase 1 (RetGC1) domains in binding guanylyl cyclase-activating proteins (GCAPs). J Biol Chem 2015; 290:6913-24. [PMID: 25616661 PMCID: PMC4358116 DOI: 10.1074/jbc.m114.629642] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/21/2015] [Indexed: 12/17/2022] Open
Abstract
Retinal membrane guanylyl cyclase 1 (RetGC1) regulated by guanylyl cyclase-activating proteins (GCAPs) controls photoreceptor recovery and when mutated causes blinding disorders. We evaluated the principal models of how GCAP1 and GCAP2 bind RetGC1: through a shared docking interface versus independent binding sites formed by distant portions of the cyclase intracellular domain. At near-saturating concentrations, GCAP1 and GCAP2 activated RetGC1 from HEK293 cells and RetGC2(-/-)GCAPs1,2(-/-) mouse retinas in a non-additive fashion. The M26R GCAP1, which binds but does not activate RetGC1, suppressed activation of recombinant and native RetGC1 by competing with both GCAP1 and GCAP2. Untagged GCAP1 displaced both GCAP1-GFP and GCAP2-GFP from the complex with RetGC1 in HEK293 cells. The intracellular segment of a natriuretic peptide receptor A guanylyl cyclase failed to bind GCAPs, but replacing its kinase homology and dimerization domains with those from RetGC1 restored GCAP1 and GCAP2 binding by the hybrid cyclase and its GCAP-dependent regulation. Deletion of the Tyr(1016)-Ser(1103) fragment in RetGC1 did not block GCAP2 binding to the cyclase. In contrast, substitutions in the kinase homology domain, W708R and I734T, linked to Leber congenital amaurosis prevented binding of both GCAP1-GFP and GCAP2-GFP. Our results demonstrate that GCAPs cannot regulate RetGC1 using independent primary binding sites. Instead, GCAP1 and GCAP2 bind with the cyclase molecule in a mutually exclusive manner using a common or overlapping binding site(s) in the Arg(488)-Arg(851) portion of RetGC1, and mutations in that region causing Leber congenital amaurosis blindness disrupt activation of the cyclase by both GCAP1 and GCAP2.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Elena V Olshevskaya
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander M Dizhoor
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
29
|
Lim S, Dizhoor AM, Ames JB. Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1. Front Mol Neurosci 2014; 7:19. [PMID: 24672427 PMCID: PMC3956117 DOI: 10.3389/fnmol.2014.00019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/27/2014] [Indexed: 01/08/2023] Open
Abstract
Neuronal calcium sensor (NCS) proteins, a sub-branch of the calmodulin superfamily, are expressed in the brain and retina where they transduce calcium signals and are genetically linked to degenerative diseases. The amino acid sequences of NCS proteins are highly conserved but their physiological functions are quite different. Retinal recoverin controls Ca2+-dependent inactivation of light-excited rhodopsin during phototransduction, guanylyl cyclase activating proteins 1 and 2 (GCAP1 and GCAP2) promote Ca2+-dependent activation of retinal guanylyl cyclases, and neuronal frequenin (NCS-1) modulates synaptic activity and neuronal secretion. Here we review the molecular structures of myristoylated forms of NCS-1, recoverin, and GCAP1 that all look very different, suggesting that the attached myristoyl group helps to refold these highly homologous proteins into different three-dimensional folds. Ca2+-binding to both recoverin and NCS-1 cause large protein conformational changes that ejects the covalently attached myristoyl group into the solvent exterior and promotes membrane targeting (Ca2+-myristoyl switch). The GCAP proteins undergo much smaller Ca2+-induced conformational changes and do not possess a Ca2+-myristoyl switch. Recent structures of GCAP1 in both its activator and Ca2+-bound inhibitory states will be discussed to understand structural determinants that control their Ca2+-dependent activation of retinal guanylyl cyclases.
Collapse
Affiliation(s)
- Sunghyuk Lim
- Department of Chemistry, University of California at Davis Davis, CA, USA
| | - Alexander M Dizhoor
- Basic Sciences, Pennsylvania College of Optometry, Salus University Elkins Park, PA, USA
| | - James B Ames
- Department of Chemistry, University of California at Davis Davis, CA, USA
| |
Collapse
|