1
|
Li X, Liu C, Zhang R, Li Y, Ye D, Wang H, He M, Sun Y. Biosynthetic deficiency of docosahexaenoic acid causes nonalcoholic fatty liver disease and ferroptosis-mediated hepatocyte injury. J Biol Chem 2024; 300:107405. [PMID: 38788853 PMCID: PMC11231757 DOI: 10.1016/j.jbc.2024.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Exogenous omega-3 fatty acids, particularly docosahexaenoic acid (DHA), have shown to exert beneficial effects on nonalcoholic fatty liver disease (NAFLD), which is characterized by the excessive accumulation of lipids and chronic injury in the liver. However, the effect of endogenous DHA biosynthesis on the lipid homeostasis of liver is poorly understood. In this study, we used a DHA biosynthesis-deficient zebrafish model, elovl2 mutant, to explore the effect of endogenously biosynthesized DHA on hepatic lipid homeostasis. We found the pathways of lipogenesis and lipid uptake were strongly activated, while the pathways of lipid oxidation and lipid transport were inhibited in the liver of elovl2 mutants, leading to lipid droplet accumulation in the mutant hepatocytes and NAFLD. Furthermore, the elovl2 mutant hepatocytes exhibited disrupted mitochondrial structure and function, activated endoplasmic reticulum stress, and hepatic injury. We further unveiled that the hepatic cell death and injury was mainly mediated by ferroptosis, rather than apoptosis, in elovl2 mutants. Elevating DHA content in elovl2 mutants, either by the introduction of an omega-3 desaturase (fat1) transgene or by feeding with a DHA-rich diet, could strongly alleviate NAFLD features and ferroptosis-mediated hepatic injury. Together, our study elucidates the essential role of endogenous DHA biosynthesis in maintaining hepatic lipid homeostasis and liver health, highlighting that DHA deficiency can lead to NAFLD and ferroptosis-mediated hepatic injury.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengjie Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
2
|
Li Y, Li X, Ye D, Zhang R, Liu C, He M, Wang H, Hu W, Sun Y. Endogenous biosynthesis of docosahexaenoic acid (DHA) regulates fish oocyte maturation by promoting pregnenolone production. Zool Res 2024; 45:176-188. [PMID: 38199972 PMCID: PMC10839667 DOI: 10.24272/j.issn.2095-8137.2023.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/08/2023] [Indexed: 01/12/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (22:6n-3, DHA), play crucial roles in the reproductive health of vertebrates, including humans. Nevertheless, the underlying mechanism related to this phenomenon remains largely unknown. In this study, we employed two zebrafish genetic models, i.e., elovl2 -/- mutant as an endogenous DHA-deficient model and fat1 (omega-3 desaturase encoding gene) transgenic zebrafish as an endogenous DHA-rich model, to investigate the effects of DHA on oocyte maturation and quality. Results show that the elovl2 -/- mutants had much lower fecundity and poorer oocyte quality than the wild-type controls, while the fat1 zebrafish had higher fecundity and better oocyte quality than wild-type controls. DHA deficiency in elovl2 -/- embryos led to defects in egg activation, poor microtubule stability, and reduced pregnenolone levels. Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1, which encodes the cholesterol side-chain cleavage enzyme, thereby stabilizing microtubule assembly during oogenesis. In turn, the hypothalamic-pituitary-gonadal axis was enhanced by DHA. In conclusion, using two unique genetic models, our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehui Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjie Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China. E-mail:
| |
Collapse
|
3
|
Hu YX, Jing Q. Zebrafish: a convenient tool for myelopoiesis research. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:2. [PMID: 36595106 PMCID: PMC9810781 DOI: 10.1186/s13619-022-00139-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/29/2022] [Indexed: 04/18/2023]
Abstract
Myelopoiesis is the process in which the mature myeloid cells, including monocytes/macrophages and granulocytes, are developed. Irregular myelopoiesis may cause and deteriorate a variety of hematopoietic malignancies such as leukemia. Myeloid cells and their precursors are difficult to capture in circulation, let alone observe them in real time. For decades, researchers had to face these difficulties, particularly in in-vivo studies. As a unique animal model, zebrafish possesses numerous advantages like body transparency and convenient genetic manipulation, which is very suitable in myelopoiesis research. Here we review current knowledge on the origin and regulation of myeloid development and how zebrafish models were applied in these studies.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
He M, Jiao S, Zhang R, Ye D, Wang H, Sun Y. Translational control by maternal Nanog promotes oogenesis and early embryonic development. Development 2022; 149:286111. [PMID: 36533583 DOI: 10.1242/dev.201213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Many maternal mRNAs are translationally repressed during oocyte development and spatio-temporally activated during early embryogenesis, which is crucial for oocyte and early embryo development. By analyzing maternal mutants of nanog (Mnanog) in zebrafish, we demonstrated that Nanog tightly controls translation of maternal mRNA during oogenesis via transcriptional repression of eukaryotic translation elongation factor 1 alpha 1, like 2 (eef1a1l2). Loss of maternal Nanog led to defects of egg maturation, increased endoplasmic reticulum stress, and an activated unfold protein response, which was caused by elevated translational activity. We further demonstrated that Nanog, as a transcriptional repressor, represses the transcription of eefl1a1l2 by directly binding to the eef1a1l2 promoter in oocytes. More importantly, depletion of eef1a1l2 in nanog mutant females effectively rescued the elevated translational activity in oocytes, oogenesis defects and embryonic defects of Mnanog embryos. Thus, our study demonstrates that maternal Nanog regulates oogenesis and early embryogenesis through translational control of maternal mRNA via a mechanism whereby Nanog acts as a transcriptional repressor to suppress transcription of eef1a1l2.
Collapse
Affiliation(s)
- Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
5
|
Manikandan P, Sarmah S, Marrs JA. Ethanol Effects on Early Developmental Stages Studied Using the Zebrafish. Biomedicines 2022; 10:2555. [PMID: 36289818 PMCID: PMC9599251 DOI: 10.3390/biomedicines10102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) results from prenatal ethanol exposure. The zebrafish (Danio rerio) is an outstanding in vivo FASD model. Early development produced the three germ layers and embryonic axes patterning. A critical pluripotency transcriptional gene circuit of sox2, pou5f1 (oct4; recently renamed pou5f3), and nanog maintain potency and self-renewal. Ethanol affects sox2 expression, which functions with pou5f1 to control target gene transcription. Various genes, like elf3, may interact and regulate sox2, and elf3 knockdown affects early development. Downstream of the pluripotency transcriptional circuit, developmental signaling activities regulate morphogenetic cell movements and lineage specification. These activities are also affected by ethanol exposure. Hedgehog signaling is a critical developmental signaling pathway that controls numerous developmental events, including neural axis specification. Sonic hedgehog activities are affected by embryonic ethanol exposure. Activation of sonic hedgehog expression is controlled by TGF-ß family members, Nodal and Bmp, during dorsoventral (DV) embryonic axis establishment. Ethanol may perturb TGF-ß family receptors and signaling activities, including the sonic hedgehog pathway. Significantly, experiments show that activation of sonic hedgehog signaling rescues some embryonic ethanol exposure effects. More research is needed to understand how ethanol affects early developmental signaling and morphogenesis.
Collapse
Affiliation(s)
| | | | - James A. Marrs
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Min KD, Asakura M, Shirai M, Yamazaki S, Ito S, Fu HY, Asanuma H, Asano Y, Minamino T, Takashima S, Kitakaze M. ASB2 is a novel E3 ligase of SMAD9 required for cardiogenesis. Sci Rep 2021; 11:23056. [PMID: 34845242 PMCID: PMC8630118 DOI: 10.1038/s41598-021-02390-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiogenesis requires the orchestrated spatiotemporal tuning of BMP signalling upon the balance between induction and counter-acting suppression of the differentiation of the cardiac tissue. SMADs are key intracellular transducers and the selective degradation of SMADs by the ubiquitin-proteasome system is pivotal in the spatiotemporal tuning of BMP signalling. However, among three SMADs for BMP signalling, SMAD1/5/9, only the specific E3 ligase of SMAD9 remains poorly investigated. Here, we report for the first time that SMAD9, but not the other SMADs, is ubiquitylated by the E3 ligase ASB2 and targeted for proteasomal degradation. ASB2, as well as Smad9, is conserved among vertebrates. ASB2 expression was specific to the cardiac region from the very early stage of cardiac differentiation in embryogenesis of mouse. Knockdown of Asb2 in zebrafish resulted in a thinned ventricular wall and dilated ventricle, which were rescued by simultaneous knockdown of Smad9. Abundant Smad9 protein leads to dysregulated cardiac differentiation through a mechanism involving Tbx2, and the BMP signal conducted by Smad9 was downregulated under quantitative suppression of Smad9 by Asb2. Our findings demonstrate that ASB2 is the E3 ligase of SMAD9 and plays a pivotal role in cardiogenesis through regulating BMP signalling.
Collapse
Affiliation(s)
- Kyung-Duk Min
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masanori Asakura
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Manabu Shirai
- Department of Bioscience, National Cerebral and Cardiovascular Center, Osaka, Japan
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoru Yamazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Hai Ying Fu
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroshi Asanuma
- Department of Internal Medicine, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan.
- Hanwa Daini Senboku Hospital, Sakai, Osaka, Japan.
| |
Collapse
|
7
|
Zhang G, Lübke L, Chen F, Beil T, Takamiya M, Diotel N, Strähle U, Rastegar S. Neuron-Radial Glial Cell Communication via BMP/Id1 Signaling Is Key to Long-Term Maintenance of the Regenerative Capacity of the Adult Zebrafish Telencephalon. Cells 2021; 10:cells10102794. [PMID: 34685774 PMCID: PMC8534405 DOI: 10.3390/cells10102794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023] Open
Abstract
The central nervous system of adult zebrafish displays an extraordinary neurogenic and regenerative capacity. In the zebrafish adult brain, this regenerative capacity relies on neural stem cells (NSCs) and the careful management of the NSC pool. However, the mechanisms controlling NSC pool maintenance are not yet fully understood. Recently, Bone Morphogenetic Proteins (BMPs) and their downstream effector Id1 (Inhibitor of differentiation 1) were suggested to act as key players in NSC maintenance under constitutive and regenerative conditions. Here, we further investigated the role of BMP/Id1 signaling in these processes, using different genetic and pharmacological approaches. Our data show that BMPs are mainly expressed by neurons in the adult telencephalon, while id1 is expressed in NSCs, suggesting a neuron-NSC communication via the BMP/Id1 signaling axis. Furthermore, manipulation of BMP signaling by conditionally inducing or repressing BMP signaling via heat-shock, lead to an increase or a decrease of id1 expression in the NSCs, respectively. Induction of id1 was followed by an increase in the number of quiescent NSCs, while knocking down id1 expression caused an increase in NSC proliferation. In agreement, genetic ablation of id1 function lead to increased proliferation of NSCs, followed by depletion of the stem cell pool with concomitant failure to heal injuries in repeatedly injured mutant telencephala. Moreover, pharmacological inhibition of BMP and Notch signaling suggests that the two signaling systems cooperate and converge onto the transcriptional regulator her4.1. Interestingly, brain injury lead to a depletion of NSCs in animals lacking BMP/Id1 signaling despite an intact Notch pathway. Taken together, our data demonstrate how neurons feedback on NSC proliferation and that BMP1/Id1 signaling acts as a safeguard of the NSC pool under regenerative conditions.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Fushun Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Tanja Beil
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 97400 Saint-Denis de La Réunion, France;
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Centre of Organismal Studies, University Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Correspondence: (U.S.); (S.R.)
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Correspondence: (U.S.); (S.R.)
| |
Collapse
|
8
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Zhang Q, Ye D, Wang H, Wang Y, Hu W, Sun Y. Zebrafish cyp11c1 Knockout Reveals the Roles of 11-ketotestosterone and Cortisol in Sexual Development and Reproduction. Endocrinology 2020; 161:5813458. [PMID: 32222764 DOI: 10.1210/endocr/bqaa048] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/26/2020] [Indexed: 01/08/2023]
Abstract
Androgen is essential for male development and cortisol is involved in reproduction in fishes. However, the in vivo roles of cortisol and specific androgens such as 11-ketotestosterone (11-KT) in reproductive development need to be described with genetic models. Zebrafish cyp11c1 encodes 11β-hydroxylase, which is essential for the biosynthesis of 11-KT and cortisol. In this study, we generated a zebrafish mutant of cyp11c1 (cyp11c1-/-) and utilized it to clarify the roles of 11-KT and cortisol in sexual development and reproduction. The cyp11c1-/- fish had smaller genital papilla and exhibited defective natural mating but possessed mature gametes and were found at a sex ratio comparable to the wildtype control. The cyp11c1-/- males showed delayed and prolonged juvenile ovary-to-testis transition and displayed defective spermatogenesis at adult stage, which could be rescued by treatment with 11-ketoandrostenedione (11-KA) at certain stages. Specifically, during testis development of cyp11c1-/- males, the expression of insl3, cyp17a1, and amh was significantly decreased, suggesting that 11-KT is essential for the development and function of Leydig cells and Sertoli cells. Further, spermatogenesis-related dmrt1 was subsequently downregulated, leading to insufficient spermatogenesis. The cyp11c1-/- females showed a reduction in egg spawning and a failure of in vitro germinal vesicle breakdown, which could be partially rescued by cortisol treatment. Taken together, our study reveals that zebrafish Cyp11c1 is not required for definite sex differentiation but is essential for juvenile ovary-to-testis transition, Leydig cell development, and spermatogenesis in males through 11-KT, and it is also involved in oocyte maturation and ovulation in females through cortisol.
Collapse
Affiliation(s)
- Qifeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
| | - Yaqing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Takebayashi-Suzuki K, Suzuki A. Intracellular Communication among Morphogen Signaling Pathways during Vertebrate Body Plan Formation. Genes (Basel) 2020; 11:E341. [PMID: 32213808 PMCID: PMC7141137 DOI: 10.3390/genes11030341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
During embryonic development in vertebrates, morphogens play an important role in cell fate determination and morphogenesis. Bone morphogenetic proteins (BMPs) belonging to the transforming growth factor-β (TGF-β) family control the dorsal-ventral (DV) patterning of embryos, whereas other morphogens such as fibroblast growth factor (FGF), Wnt family members, and retinoic acid (RA) regulate the formation of the anterior-posterior (AP) axis. Activation of morphogen signaling results in changes in the expression of target genes including transcription factors that direct cell fate along the body axes. To ensure the correct establishment of the body plan, the processes of DV and AP axis formation must be linked and coordinately regulated by a fine-tuning of morphogen signaling. In this review, we focus on the interplay of various intracellular regulatory mechanisms and discuss how communication among morphogen signaling pathways modulates body axis formation in vertebrate embryos.
Collapse
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Atsushi Suzuki
- Graduate School of Integrated Sciences for Life, Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
11
|
Zhang F, Li X, He M, Ye D, Xiong F, Amin G, Zhu Z, Sun Y. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells. J Genet Genomics 2020; 47:37-47. [PMID: 32094061 DOI: 10.1016/j.jgg.2019.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology has been widely utilized for knocking out genes involved in various biological processes in zebrafish. Despite this technology is efficient for generating different mutations, one of the main drawbacks is low survival rate during embryogenesis when knocking out some embryonic lethal genes. To overcome this problem, we developed a novel strategy using a combination of CRISPR/Cas9 mediated gene knockout with primordial germ cell (PGC) transplantation (PGCT) to facilitate and speed up the process of zebrafish mutant generation, particularly for embryonic lethal genes. Firstly, we optimized the procedure for CRISPR/Cas9 targeted PGCT by increasing the efficiencies of genome mutation in PGCs and induction of PGC fates in donor embryos for PGCT. Secondly, the optimized CRISPR/Cas9 targeted PGCT was utilized for generation of maternal-zygotic (MZ) mutants of tcf7l1a (gene essential for head development), pou5f3 (gene essential for zygotic genome activation) and chd (gene essential for dorsal development) at F1 generation with relatively high efficiency. Finally, we revealed some novel phenotypes in MZ mutants of tcf7l1a and chd, as MZtcf7l1a showed elevated neural crest development while MZchd had much severer ventralization than its zygotic counterparts. Therefore, this study presents an efficient and powerful method for generating MZ mutants of embryonic lethal genes in zebrafish. It is also feasible to speed up the genome editing in commercial fishes by utilizing a similar approach by surrogate production of CRISPR/Cas9 targeted germ cells.
Collapse
Affiliation(s)
- Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Innovation Academy for Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianmei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Innovation Academy for Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Innovation Academy for Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Innovation Academy for Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Innovation Academy for Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Golpour Amin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Innovation Academy for Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Innovation Academy for Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Innovation Academy for Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Liang W, Gao R, Yang M, Wang X, Cheng K, Shi X, He C, Li Y, Wu Y, Shi L, Chen J, Yu X. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol Lett 2020; 19:2272-2280. [PMID: 32194726 PMCID: PMC7039154 DOI: 10.3892/ol.2020.11313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common cancer in males and females and ~40% of lung cancer cases are adenocarcinomas. Previous studies have demonstrated that myristoylated alanine rich protein kinase C substrate (MARCKS) is upregulated in several types of cancer and is associated with poor prognosis in patients with breast cancer. However, its expression level and role in lung adenocarcinoma remain unknown. Therefore, the aim of the present study was to investigate the expression level and biological functions of MARCKS like 1 (MARCKSL1), a member of the MARCKS family, in lung adenocarcinoma. The expression level of MARCKSL1 was examined in human lung adenocarcinoma tissues and cell lines. MARCKSL1-specific small interfering RNAs effectively suppressed its expression level and significantly inhibited the proliferation, migration and invasion of lung adenocarcinoma cells. Additionally, the role of MARCKSLI in the regulation of metastasis was examined. Silencing MARCKSL1 decreased the expression of the epithelial-mesenchymal transition (EMT)-associated proteins E-cadherin, N-cadherin, vimentin and snail family transcriptional repressor 2, and decreased the phosphorylation level of AKT. The results obtained in the current study suggested that MARCKSL1 promoted the progression of lung adenocarcinoma by regulating EMT. MARCKSLI may have prognostic value and serve as a novel therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Wenjun Liang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Ruichen Gao
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Mingxia Yang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xiaohua Wang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Kewei Cheng
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xuejun Shi
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Chen He
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yemei Li
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuying Wu
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Lei Shi
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Jingtao Chen
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xiaowei Yu
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
13
|
Ye D, Wang X, Wei C, He M, Wang H, Wang Y, Zhu Z, Sun Y. Marcksb plays a key role in the secretory pathway of zebrafish Bmp2b. PLoS Genet 2019; 15:e1008306. [PMID: 31545789 PMCID: PMC6776368 DOI: 10.1371/journal.pgen.1008306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/03/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022] Open
Abstract
During vertebrate early embryogenesis, the ventral development is directed by the ventral-to-dorsal activity gradient of the bone morphogenetic protein (BMP) signaling. As secreted ligands, the extracellular traffic of BMP has been extensively studied. However, it remains poorly understood that how BMP ligands are secreted from BMP-producing cells. In this work, we show the dominant role of Marcksb controlling the secretory process of Bmp2b via interaction with Hsp70 in vivo. We firstly carefully characterized the role of Marcksb in promoting BMP signaling during dorsoventral axis formation through knockdown approach. We then showed that Marcksb cell autonomously regulates the trafficking of Bmp2b from producing cell to the extracellular space and both the total and the extracellular Bmp2b was decreased in Marcksb-deficient embryos. However, neither the zygotic mutant of marcksb (Zmarcksb) nor the maternal zygotic mutant of marcksb (MZmarcksb) showed any defects of dorsalization. In contrast, the MZmarcksb embryos even showed increased BMP signaling activity as measured by expression of BMP targets, phosphorylated Smad1/5/9 levels and imaging of Bmp2b, suggesting that a phenomenon of “genetic over-compensation” arose. Finally, we revealed that the over-compensation effects of BMP signaling in MZmarcksb was achieved through a sequential up-regulation of MARCKS-family members Marcksa, Marcksl1a and Marcksl1b, and MARCKS-interacting protein Hsp70.3. We concluded that the Marcksb modulates BMP signaling through regulating the secretory pathway of Bmp2b. Bone morphogenetic proteins (BMPs) are extracellular proteins which belong to the transforming growth factor-β (TGF-β) superfamily. BMP signaling is essential for embryonic development, organogenesis, and tissue regeneration and homeostasis, and tightly linked to various diseases and tumorigenesis. However, as secreted proteins, how BMPs are transported and secreted from BMP-producing cells remains poorly understood. In this study, we showed that Marcksb interacts with a molecular chaperon–Hsp70.3 to mediate the secretory pathway of BMP ligands during early development of zebrafish. Moreover, we discovered a novel phenomenon of “genetic over-compensation” in the genetic knock-out mutants of marcksb. To our knowledge, this is the first report that reveals the molecules and their related trafficking system mediating the secretion of BMPs. Considering the wide distribution of BMP and MARCKS within the human body, our work may shed light on the studies of BMPs secretion in organogenesis and adult tissue homeostasis. The finding of MARCKS in controlling BMP secretion may provide potential therapeutic targets for modulating the activity of BMP signaling and thus will be of interest to clinical research.
Collapse
Affiliation(s)
- Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Xiaosi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Changyong Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yanwu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Xiao Y, Chen J, Wan Y, Gao Q, Jing N, Zheng Y, Zhu X. Regulation of zebrafish dorsoventral patterning by phase separation of RNA-binding protein Rbm14. Cell Discov 2019; 5:37. [PMID: 31636951 PMCID: PMC6796953 DOI: 10.1038/s41421-019-0106-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023] Open
Abstract
RNA-binding proteins with intrinsically disordered regions (IDRs) such as Rbm14 can phase separate in vitro. To what extent the phase separation contributes to their physiological functions is however unclear. Here we show that zebrafish Rbm14 regulates embryonic dorsoventral patterning through phase separation. Zebrafish rbm14 morphants displayed dorsalized phenotypes associated with attenuated BMP signaling. Consistently, depletion of mammalian Rbm14 downregulated BMP regulators and effectors Nanog, Smad4/5, and Id1/2, whereas overexpression of the BMP-related proteins in the morphants significantly restored the developmental defects. Importantly, the IDR of zebrafish Rbm14 demixed into liquid droplets in vitro despite poor sequence conservation with its mammalian counterpart. While its phase separation mutants or IDR failed to rescue the morphants, its chimeric proteins containing an IDR from divergent phase separation proteins were effective. Rbm14 complexed with proteins involved in RNA metabolism and phase separated into cellular ribonucleoprotein compartments. Consistently, RNA deep sequencing analysis on the morphant embryos revealed increased alternative splicing events as well as large-scale transcriptomic downregulations. Our results suggest that Rbm14 functions in ribonucleoprotein compartments through phase separation to modulate multiple aspects of RNA metabolism. Furthermore, IDRs conserve in phase separation ability but not primary sequence and can be functionally interchangeable.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Jiehui Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Yihan Wan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218 USA
| | - Qi Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218 USA
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| |
Collapse
|
15
|
Ye D, Zhu L, Zhang Q, Xiong F, Wang H, Wang X, He M, Zhu Z, Sun Y. Abundance of Early Embryonic Primordial Germ Cells Promotes Zebrafish Female Differentiation as Revealed by Lifetime Labeling of Germline. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:217-228. [PMID: 30671659 PMCID: PMC6441407 DOI: 10.1007/s10126-019-09874-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/07/2019] [Indexed: 05/30/2023]
Abstract
Teleost sex differentiation largely depends on the number of undifferentiated germ cells. Here, we describe the generation and characterization of a novel transgenic zebrafish line, Tg(piwil1:egfp-UTRnanos3)ihb327Tg, which specifically labels the whole lifetime of germ cells, i.e., from primordial germ cells (PGCs) at shield stage to the oogonia and early stage of oocytes in the ovary and to the early stage of spermatogonia, spermatocyte, and spermatid in the testis. By using this transgenic line, we carefully observed the numbers of PGCs from early embryonic stage to juvenile stage and the differentiation process of ovary and testis. The numbers of PGCs became variable at as early as 1 day post-fertilization (dpf). Interestingly, the embryos with a high amount of PGCs mainly developed into females and the ones with a low amount of PGCs mainly developed into males. By using transient overexpression and transgenic induction of PGC-specific bucky ball (buc), we further proved that induction of abundant PGCs at embryonic stage promoted later ovary differentiation and female development. Taken together, we generate an ideal transgenic line Tg(piwil1:egfp-UTRnanos3)ihb327Tg which can visualize zebrafish germline for a lifetime, and we have utilized this line to study germ cell development and gonad differentiation of teleost and to demonstrate that the increase of PGC number at embryonic stage promotes female differentiation.
Collapse
Affiliation(s)
- Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qifeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaosi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Chowdhury R, Laboissonniere LA, Wester AK, Muller M, Trimarchi JM. The Trim family of genes and the retina: Expression and functional characterization. PLoS One 2018; 13:e0202867. [PMID: 30208054 PMCID: PMC6135365 DOI: 10.1371/journal.pone.0202867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/10/2018] [Indexed: 11/19/2022] Open
Abstract
To better understand the mechanisms that govern the development of retinal neurons, it is critical to gain additional insight into the specific intrinsic factors that control cell fate decisions and neuronal maturation. In the developing mouse retina, Atoh7, a highly conserved transcription factor, is essential for retinal ganglion cell development. Moreover, Atoh7 expression in the developing retina occurs during a critical time period when progenitor cells are in the process of making cell fate decisions. We performed transcriptome profiling of Atoh7+ individual cells isolated from mouse retina. One of the genes that we found significantly correlated with Atoh7 in our transcriptomic data was the E3 ubiquitin ligase, Trim9. The correlation between Trim9 and Atoh7 coupled with the expression of Trim9 in the early mouse retina led us to hypothesize that this gene may play a role in the process of cell fate determination. To address the role of Trim9 in retinal development, we performed a functional analysis of Trim9 in the mouse and did not detect any morphological changes in the retina in the absence of Trim9. Thus, Trim9 alone does not appear to be involved in cell fate determination or early ganglion cell development in the mouse retina. We further hypothesize that the reason for this lack of phenotype may be compensation by one of the many additional TRIM family members we find expressed in the developing retina.
Collapse
Affiliation(s)
- Rebecca Chowdhury
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Lauren A. Laboissonniere
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Andrea K. Wester
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Madison Muller
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jeffrey M. Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
17
|
Walcott BP, Winkler EA, Zhou S, Birk H, Guo D, Koch MJ, Stapleton CJ, Spiegelman D, Dionne-Laporte A, Dion PA, Kahle KT, Rouleau GA, Lawton MT. Identification of a rare BMP pathway mutation in a non-syndromic human brain arteriovenous malformation via exome sequencing. Hum Genome Var 2018; 5:18001. [PMID: 29844917 PMCID: PMC5966745 DOI: 10.1038/hgv.2018.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/22/2017] [Accepted: 12/11/2017] [Indexed: 01/21/2023] Open
Abstract
Brain arteriovenous malformations (AVMs) are abnormal connections between arteries and veins that can result in hemorrhagic stroke. A genetic basis for AVMs is suspected, and we investigated potential mutations in a 14-year-old girl who developed a recurrent brain AVM. Whole-exome sequencing (WES) of AVM lesion tissue and blood was performed accompanied by in silico modeling, protein expression observation in lesion tissue and zebrafish modeling. A stop-gain mutation (c.C739T:p.R247X) in the gene SMAD family member 9 (SMAD9) was discovered. In the human brain tissue, immunofluorescent staining demonstrated a vascular predominance of SMAD9 at the protein level. Vascular SMAD9 was markedly reduced in AVM peri-nidal blood vessels, which was accompanied by a decrease in phosphorylated SMAD4, a downstream effector protein of the bone morphogenic protein signaling pathway. Zebrafish modeling (Tg kdrl:eGFP) of the morpholino splice site and translation-blocking knockdown of SMAD9 resulted in abnormal cerebral artery-to-vein connections with morphologic similarities to human AVMs. Orthogonal trajectories of evidence established a relationship between the candidate mutation discovered in SMAD9 via WES and the clinical phenotype. Replication in similar rare cases of recurrent AVM, or even more broadly sporadic AVM, may be informative in building a more comprehensive understanding of AVM pathogenesis.
Collapse
Affiliation(s)
- Brian P Walcott
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA
| | - Ethan A Winkler
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Sirui Zhou
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, Montreal, QC, Canada
| | - Harjus Birk
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Diana Guo
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Matthew J Koch
- Department of Neurological Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Christopher J Stapleton
- Department of Neurological Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Dan Spiegelman
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, Montreal, QC, Canada
| | - Alexandre Dionne-Laporte
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, Montreal, QC, Canada
| | - Patrick A Dion
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, Montreal, QC, Canada
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT USA
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, Montreal, QC, Canada
| | - Michael T Lawton
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
18
|
Genthe JR, Min J, Farmer DM, Shelat AA, Grenet JA, Lin W, Finkelstein D, Vrijens K, Chen T, Guy RK, Clements WK, Roussel MF. Ventromorphins: A New Class of Small Molecule Activators of the Canonical BMP Signaling Pathway. ACS Chem Biol 2017; 12:2436-2447. [PMID: 28787124 DOI: 10.1021/acschembio.7b00527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we describe three new small-molecule activators of BMP signaling found by high throughput screening of a library of ∼600 000 small molecules. Using a cell-based luciferase assay in the BMP4-responsive human cervical carcinoma clonal cell line, C33A-2D2, we identified three compounds with similar chemotypes that each ventralize zebrafish embryos and stimulate increased expression of the BMP target genes, bmp2b and szl. Because these compounds ventralize zebrafish embryos, we have termed them "ventromorphins." As expected for a BMP pathway activator, they induce the differentiation of C2C12 myoblasts to osteoblasts. Affymetrix RNA analysis confirmed the differentiation results and showed that ventromorphins treatment elicits a genetic response similar to BMP4 treatment. Unlike isoliquiritigenin (SJ000286237), a flavone that maximally activates the pathway after 24 h of treatment, all three ventromorphins induced SMAD1/5/8 phosphorylation within 30 min of treatment and achieved peak activity within 1 h, indicating that their responses are consistent with directly activating BMP signaling.
Collapse
Affiliation(s)
- Jamie R. Genthe
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jaeki Min
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Dana M. Farmer
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Anang A. Shelat
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jose A. Grenet
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wenwei Lin
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - David Finkelstein
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Karen Vrijens
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Taosheng Chen
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - R. Kiplin Guy
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wilson K. Clements
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Martine F. Roussel
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
19
|
IRS4, a novel modulator of BMP/Smad and Akt signalling during early muscle differentiation. Sci Rep 2017; 7:8778. [PMID: 28821740 PMCID: PMC5562708 DOI: 10.1038/s41598-017-08676-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
Elaborate regulatory networks of the Bone Morphogenetic Protein (BMP) pathways ensure precise signalling outcome during cell differentiation and tissue homeostasis. Here, we identified IRS4 as a novel regulator of BMP signal transduction and provide molecular insights how it integrates into the signalling pathway. We found that IRS4 interacts with the BMP receptor BMPRII and specifically targets Smad1 for proteasomal degradation consequently leading to repressed BMP/Smad signalling in C2C12 myoblasts while concomitantly activating the PI3K/Akt axis. IRS4 is present in human and primary mouse myoblasts, the expression increases during myogenic differentiation but is downregulated upon final commitment coinciding with Myogenin expression. Functionally, IRS4 promotes myogenesis in C2C12 cells, while IRS4 knockdown inhibits differentiation of myoblasts. We propose that IRS4 is particularly critical in the myoblast stage to serve as a molecular switch between BMP/Smad and Akt signalling and to thereby control cell commitment. These findings provide profound understanding of the role of BMP signalling in early myogenic differentiation and open new ways for targeting the BMP pathway in muscle regeneration.
Collapse
|
20
|
Smad1/5 is required for erythropoietin-mediated suppression of hepcidin in mice. Blood 2017; 130:73-83. [PMID: 28438754 DOI: 10.1182/blood-2016-12-759423] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Anemia suppresses liver hepcidin expression to supply adequate iron for erythropoiesis. Erythroferrone mediates hepcidin suppression by anemia, but its mechanism of action remains uncertain. The bone morphogenetic protein (BMP)-SMAD signaling pathway has a central role in hepcidin transcriptional regulation. Here, we explored the contribution of individual receptor-activated SMADs in hepcidin regulation and their involvement in erythroferrone suppression of hepcidin. In Hep3B cells, SMAD5 or SMAD1 but not SMAD8, knockdown inhibited hepcidin (HAMP) messenger RNA (mRNA) expression. Hepatocyte-specific double-knockout Smad1fl/fl;Smad5fl/fl;Cre+ mice exhibited ∼90% transferrin saturation and massive liver iron overload, whereas Smad1fl/fl;Smad5fl/wt;Cre+ mice or Smad1fl/wt;Smad5fl/fl;Cre+ female mice with 1 functional Smad5 or Smad1 allele had modestly increased serum and liver iron, and single-knockout Smad5fl/fl;Cre+ or Smad1fl/fl;Cre+ mice had minimal to no iron loading, suggesting a gene dosage effect. Hamp mRNA was reduced in all Cre+ mouse livers at 12 days and in all Cre+ primary hepatocytes. However, only double-knockout mice continued to exhibit low liver Hamp at 8 weeks and failed to induce Hamp in response to Bmp6 in primary hepatocyte cultures. Epoetin alfa (EPO) robustly induced bone marrow erythroferrone (Fam132b) mRNA in control and Smad1fl/fl;Smad5fl/fl;Cre+ mice but suppressed hepcidin only in control mice. Likewise, erythroferrone failed to decrease Hamp mRNA in Smad1fl/fl;Smad5fl/fl;Cre+ primary hepatocytes and SMAD1/SMAD5 knockdown Hep3B cells. EPO and erythroferrone reduced liver Smad1/5 phosphorylation in parallel with Hamp mRNA in control mice and Hep3B cells. Thus, Smad1 and Smad5 have overlapping functions to govern hepcidin transcription. Moreover, erythropoietin and erythroferrone target Smad1/5 signaling and require Smad1/5 to suppress hepcidin expression.
Collapse
|
21
|
Katakawa Y, Funaba M, Murakami M. Smad8/9 Is Regulated Through the BMP Pathway. J Cell Biochem 2016; 117:1788-96. [DOI: 10.1002/jcb.25478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Yuko Katakawa
- Laboratory of Molecular Biology; Azabu University School of Veterinary Medicine; Sagamihara 252-5201 Japan
| | - Masayuki Funaba
- Division of Applied Biosciences; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology; Azabu University School of Veterinary Medicine; Sagamihara 252-5201 Japan
| |
Collapse
|
22
|
Pang SC, Wang HP, Zhu ZY, Sun YH. Transcriptional Activity and DNA Methylation Dynamics of the Gal4/UAS System in Zebrafish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:593-603. [PMID: 25997914 DOI: 10.1007/s10126-015-9641-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/09/2015] [Indexed: 06/04/2023]
Abstract
The Gal4/upstream activating sequence (UAS) system is a powerful genetic tool for the temporal and spatial expression of target genes. In this study, the dynamic activity of the Gal4/UAS system was monitored in zebrafish throughout the entire lifespan and during germline transmission, using an optimized Gal4/UAS, KalTA4/4xUAS, which is driven by two muscle-specific regulatory sequences. We found that UAS-linked gene expression was transcriptionally amplified by Gal4/UAS during early developmental stages and that the amplification effects tended to weaken during later stages and even disappear in subsequent generations. In the F2 generation, the transcription of a UAS-linked enhanced green fluorescent protein (EGFP) reporter was transcriptionally silent from 16 days post-fertilization (dpf) into adulthood, yet offspring of this generation showed reactivation of the EGFP reporter in some strains. We further show that the transcriptional silencing and reactivation of UAS-driven EGFP correlated with the DNA methylation levels of the UAS regulatory sequences. Notably, asymmetric DNA methylation of the 4xUAS occurred in oocytes and sperm. Moreover, the paternal and maternal 4xUAS sequences underwent different DNA methylation dynamics after fertilization. Our study suggests that the Gal4/UAS system may represent a powerful tool for tracing the DNA methylation dynamics of paternal and maternal loci during zebrafish development and that UAS-specific DNA methylation should be seriously considered when the Gal4/UAS system is applied in zebrafish.
Collapse
Affiliation(s)
- Shao-Chen Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | |
Collapse
|
23
|
Chai N, Li WX, Wang J, Wang ZX, Yang SM, Wu JW. Structural basis for the Smad5 MH1 domain to recognize different DNA sequences. Nucleic Acids Res 2015; 43:9051-64. [PMID: 26304548 PMCID: PMC4605309 DOI: 10.1093/nar/gkv848] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022] Open
Abstract
Smad proteins are important intracellular mediators of TGF-β signalling, which transmit signals directly from cell surface receptors to the nucleus. The MH1 domain of Smad plays a key role in DNA recognition. Two types of DNA sequence were identified as Smad binding motifs: the Smad binding element (SBE) and the GC-rich sequence. Here we report the first crystal structure of the Smad5 MH1 domain in complex with the GC-rich sequence. Compared with the Smad5-MH1/SBE complex structure, the Smad5 MH1 domain contacts the GC-rich site with the same β-hairpin, but the detailed interaction modes are different. Conserved β-hairpin residues make base specific contacts with the minimal GC-rich site, 5′-GGC-3′. The assembly of Smad5-MH1 on the GC-rich DNA also results in distinct DNA conformational changes. Moreover, the crystal structure of Smad5-MH1 in complex with a composite DNA sequence demonstrates that the MH1 domain is targeted to each binding site (GC-rich or SBE) with modular binding modes, and the length of the DNA spacer affects the MH1 assembly. In conclusion, our work provides the structural basis for the recognition and binding specificity of the Smad MH1 domain with the DNA targets.
Collapse
Affiliation(s)
- Nan Chai
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wan-Xin Li
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jue Wang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi-Xin Wang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shi-Ming Yang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jia-Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
He MD, Zhang FH, Wang HL, Wang HP, Zhu ZY, Sun YH. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos. Mutat Res 2015; 780:86-96. [PMID: 26318124 DOI: 10.1016/j.mrfmmm.2015.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/21/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
DNA double-strand break (DSB) repair is of considerable importance for genomic integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are considered as two major mechanistically distinct pathways involved in repairing DSBs. In recent years, another DSB repair pathway, namely, microhomology-mediated end joining (MMEJ), has received increasing attention. MMEJ is generally believed to utilize an alternative mechanism to repair DSBs when NHEJ and other mechanisms fail. In this study, we utilized zebrafish as an in vivo model to study DSB repair and demonstrated that efficient MMEJ repair occurred in the zebrafish genome when DSBs were induced using TALEN (transcription activator-like effector nuclease) or CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 technologies. The wide existence of MMEJ repair events in zebrafish embryos was further demonstrated via the injection of several in vitro-designed exogenous MMEJ reporters. Interestingly, the inhibition of endogenous ligase 4 activity significantly increased MMEJ frequency, and the inhibition of ligase 3 activity severely decreased MMEJ activity. These results suggest that MMEJ in zebrafish is dependent on ligase 3 but independent of ligase 4. This study will enhance our understanding of the mechanisms of MMEJ in vivo and facilitate inducing desirable mutations via DSB-induced repair.
Collapse
Affiliation(s)
- Mu-Dan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Hua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Lin Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hou-Peng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuo-Yan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
25
|
Abstract
It is widely accepted that the crosstalk between naive nucleus and maternal factors deposited in the egg cytoplasm before zygotic genome activation is crucial for early development. This crosstalk may also exert some influence on later development. It is interesting to clarify the relative roles of the zygotic genome and the cytoplasmic factors in development. Cross-species nuclear transfer (NT) between two distantly related species provides a unique system to study the relative role and crosstalk between egg cytoplasm and zygotic nucleus in development. In this review, we will summarize the recent progress of cross-species NT, with emphasis on the cross-species NT in fish and the influence of cytoplasmic factors on development. Finally, we conclude that the developmental process and its evolution should be interpreted in a systemic way, rather than in a way that solely focuses on the role of the nuclear genome.
Collapse
Affiliation(s)
- Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuo-Yan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
26
|
Si Y, Cui X, Kim S, Wians R, Sorge R, Oh SJ, Kwan T, AlSharabati M, Lu L, Claussen G, Anderson T, Yu S, Morgan D, Kazamel M, King PH. Smads as muscle biomarkers in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2014; 1:778-87. [PMID: 25493269 PMCID: PMC4241805 DOI: 10.1002/acn3.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To identify molecular signatures in muscle from patients with amyotrophic lateral sclerosis (ALS) that could provide insight into the disease process and serve as biomarkers. METHODS RNA sequencing was performed on ALS and control muscle samples to identify Smad family members as potential markers of disease. Validation studies were performed in a cohort of 27 ALS patients and 33 controls. The markers were assessed in the G93A superoxide dismutase (SOD)1 mouse at different stages of disease and in a model of sciatic nerve injury. RESULTS Smad8, and to a lesser extent Smad1 and 5, mRNAs were significantly elevated in human ALS muscle samples. The markers displayed a remarkably similar pattern in the G93A SOD1 mouse model of ALS with increases detected at preclinical stages. Expression at the RNA and protein levels as well as protein activation (phosphorylation) significantly increased with disease progression in the mouse. The markers were also elevated to a lesser degree in gastrocnemius muscle following sciatic nerve injury, but then reverted to baseline during the muscle reinnervation phase. INTERPRETATION These data indicate that Smad1, 5, 8 mRNA and protein levels, as well as Smad phosphorylation, are elevated in ALS muscle and could potentially serve as markers of disease progression or regression.
Collapse
Affiliation(s)
- Ying Si
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL
| | - Xianqin Cui
- Department of Biostatistics, University of Alabama at Birmingham Birmingham, AL
| | - Soojin Kim
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL
| | - Robert Wians
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL
| | - Robert Sorge
- Department of Psychology, University of Alabama at Birmingham Birmingham, AL
| | - Shin J Oh
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL ; Birmingham VA Medical Center Birmingham, AL, 35294
| | - Thaddeus Kwan
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL
| | | | - Liang Lu
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL ; Birmingham VA Medical Center Birmingham, AL, 35294
| | - Gwen Claussen
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL
| | - Tina Anderson
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL
| | - Shaohua Yu
- Department of Biostatistics, University of Alabama at Birmingham Birmingham, AL
| | - Dylan Morgan
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL
| | - Peter H King
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL ; Birmingham VA Medical Center Birmingham, AL, 35294 ; Department of Genetics, University of Alabama at Birmingham Birmingham, AL ; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL
| |
Collapse
|
27
|
Pang SC, Wang HP, Li KY, Zhu ZY, Kang JX, Sun YH. Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in a zebrafish model. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:580-593. [PMID: 24832481 DOI: 10.1007/s10126-014-9577-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients for human health. However, vertebrates, including humans, have lost the abilities to synthesize EPA and DHA de novo, majorly due to the genetic absence of delta-12 desaturase and omega-3 desaturase genes. Fishes, especially those naturally growing marine fish, are major dietary source of EPA and DHA. Because of the severe decline of marine fishery and the decrease in n-3 LC-PUFA content of farmed fishes, it is highly necessary to develop alternative sources of n-3 LC-PUFA. In the present study, we utilized transgenic technology to generate n-3 LC-PUFA-rich fish by using zebrafish as an animal model. Firstly, fat1 was proved to function efficiently in fish culture cells, which showed an effective conversion of n-6 PUFA to n-3 PUFA with the n-6/n-3 ratio that decreased from 7.7 to 1.1. Secondly, expression of fat1 in transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.8- and 2.4-fold, respectively. Third, co-expression of fat2, a fish codon-optimized delta-12 desaturase gene, and fat1 in fish culture cell significantly promoted n-3 PUFA synthesis with the decreased n-6/n-3 ratio from 7.7 to 0.7. Finally, co-expression of fat1 and fat2 in double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.7- and 2.8-fold, respectively. Overall, we generated two types of transgenic zebrafish rich in endogenous n-3 LC-PUFA, fat1 transgenic zebrafish and fat1/fat2 double transgenic zebrafish. Our results demonstrate that application of transgenic technology of humanized fat1 and fat2 in farmed fishes can largely improve the n-3 LC-PUFA production.
Collapse
Affiliation(s)
- Shao-Chen Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | | | |
Collapse
|