1
|
Wang L, O'Mara ML. Effect of the Force Field on Molecular Dynamics Simulations of the Multidrug Efflux Protein P-Glycoprotein. J Chem Theory Comput 2021; 17:6491-6508. [PMID: 34506133 DOI: 10.1021/acs.jctc.1c00414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular dynamics (MD) simulations have been used extensively to study P-glycoprotein (P-gp), a flexible multidrug transporter that is a key player in the development of multidrug resistance to chemotherapeutics. A substantial body of literature has grown from simulation studies that have employed various simulation conditions and parameters, including AMBER, CHARMM, OPLS, GROMOS, and coarse-grained force fields, drawing conclusions from simulations spanning hundreds of nanoseconds. Each force field is typically parametrized and validated on different data and observables, usually of small molecules and peptides; there have been few comparisons of force field performance on large protein-membrane systems. Here we compare the conformational ensembles of P-gp embedded in a POPC/cholesterol bilayer generated over 500 ns of replicate simulation with five force fields from popular biomolecular families: AMBER 99SB-ILDN, CHARMM 36, OPLS-AA/L, GROMOS 54A7, and MARTINI. We find considerable differences among the ensembles with little conformational overlap, although they correspond to similar extents to structural data obtained from electron paramagnetic resonance and cross-linking studies. Moreover, each trajectory was still sampling new conformations at a high rate after 500 ns of simulation, suggesting the need for more sampling. This work highlights the need to consider known limitations of the force field used (e.g., biases toward certain secondary structures) and the simulation itself (e.g., whether sufficient sampling has been achieved) when interpreting accumulated results of simulation studies of P-gp and other transport proteins.
Collapse
Affiliation(s)
- Lily Wang
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Yang R, Chen Z, Xie F, Xie M, Liu N, Su Z, Gu J, Zhao R. (+/-)-Borneol Reverses Mitoxantrone Resistance against P-Glycoprotein. J Chem Inf Model 2020; 61:252-262. [PMID: 33378196 DOI: 10.1021/acs.jcim.0c00892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
P-Glycoprotein (Pgp) is a main factor contributing to multidrug resistance and the consequent failure of chemotherapy. Overcoming Pgp efflux is a strategy to improve the efficacy of drugs. (+)-Borneol (BNL1) and (-)-borneol (BNL2) interfere and inhibit Pgp, and thus, the accumulation of drugs increases in cells. However, it is not clear yet how they play the inhibitory effect against Pgp. In this work, the effect and molecular mechanism of borneol enantiomers in reversing mitoxantrone (MTO) resistance against Pgp were explored by in vitro and in silico approaches. Chemosensitizing potential tests showed that BNLs could enhance the efficacy of MTO in MES-SA/MX2 cells, and BNL2 exhibited a stronger potential. The protein expression of Pgp was decreased to some extent by the administration of BNLs. Molecular docking revealed that BNLs could reduce the binding affinity between MTO and Pgp. The results were consistent with the chemosensitizing potential test and were supported by molecular dynamics (MD) simulations. Molecular docking also suggested that BNLs preferred to bind in the drug-binding pocket rather than the nucleotide-binding domain of inward-facing Pgp. The occupied space of BNLs had an evident distance from that of MTO, which was further verified by the conformational analysis after MD simulations. The decomposition of binding free energies revealed the key amino acid residues (GLN195, SER196, TRP232, PHE343, SER344, GLY346, and GLN347) for BNLs to reverse MTO resistance. The results provide an insight into the mechanism through which BNLs reduce the MTO resistance against inward-facing Pgp in the drug-binding pocket through noncompetitive inhibition.
Collapse
Affiliation(s)
- Rong Yang
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhenxing Chen
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fuda Xie
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Mingxiang Xie
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Na Liu
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziren Su
- Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiangyong Gu
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruizhi Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
3
|
Bonito CA, Ferreira RJ, Ferreira MJU, Gillet JP, Cordeiro MNDS, Dos Santos DJVA. Theoretical insights on helix repacking as the origin of P-glycoprotein promiscuity. Sci Rep 2020; 10:9823. [PMID: 32555203 PMCID: PMC7300024 DOI: 10.1038/s41598-020-66587-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (P-gp, ABCB1) overexpression is, currently, one of the most important multidrug resistance (MDR) mechanisms in tumor cells. Thus, modulating drug efflux by P-gp has become one of the most promising approaches to overcome MDR in cancer. Yet, more insights on the molecular basis of drug specificity and efflux-related signal transmission mechanism between the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) are needed to develop molecules with higher selectivity and efficacy. Starting from a murine P-gp crystallographic structure at the inward-facing conformation (PDB ID: 4Q9H), we evaluated the structural quality of the herein generated human P-gp homology model. This initial human P-gp model, in the presence of the “linker” and inserted in a suitable lipid bilayer, was refined through molecular dynamics simulations and thoroughly validated. The best human P-gp model was further used to study the effect of four single-point mutations located at the TMDs, experimentally related with changes in substrate specificity and drug-stimulated ATPase activity. Remarkably, each P-gp mutation is able to induce transmembrane α-helices (TMHs) repacking, affecting the drug-binding pocket volume and the drug-binding sites properties (e.g. volume, shape and polarity) finally compromising drug binding at the substrate binding sites. Furthermore, intracellular coupling helices (ICH) also play an important role since changes in the TMHs rearrangement are shown to have an impact in residue interactions at the ICH-NBD interfaces, suggesting that identified TMHs repacking affect TMD-NBD contacts and interfere with signal transmission from the TMDs to the NBDs.
Collapse
Affiliation(s)
- Cátia A Bonito
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Ricardo J Ferreira
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, B-5000, Namur, Belgium
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Daniel J V A Dos Santos
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal. .,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
4
|
Carey Hulyer AR, Briggs DA, O'Mara ML, Kerr ID, Harmer JR, Callaghan R. Cross-linking, DEER-spectroscopy and molecular dynamics confirm the inward facing state of P-glycoprotein in a lipid membrane. J Struct Biol 2020; 211:107513. [PMID: 32339763 DOI: 10.1016/j.jsb.2020.107513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
The drug efflux pump P-glycoprotein (P-gp) displays a complex transport mechanism involving multiple drug binding sites and two centres for nucleotide hydrolysis. Elucidating the molecular mechanism of transport remains elusive and the availability of P-gp structures in distinct natural and ligand trapped conformations will accelerate our understanding. The present investigation sought to provide biochemical data to validate specific features of these structures; with particular focus on the transmembrane domain that provides the transport conduit. Hence our focus was on transmembrane helices six and twelve (TM6/TM12), which are believed to participate in drug binding, as they line the central transport conduit and provide a direct link to the catalytic centres. A series of P-gp mutants were generated with a single cysteine in both TM6 and TM12 to facilitate measurement of inter-helical distances using cross-linking and DEER strategies. Experimental results were compared to published structures per se and those refined by MD simulations. This analysis revealed that the refined inward-facing murine structure (4M1M) of P-gp provides a good representation of the proximity, topography and relative motions of TM6 and TM12 in reconstituted human P-gp.
Collapse
Affiliation(s)
- Alex R Carey Hulyer
- Research School of Biology, and the Medical School, Australian National University, Canberra, ACT 2601, Australia
| | - Deborah A Briggs
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Megan L O'Mara
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Ian D Kerr
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Jeffrey R Harmer
- The Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard Callaghan
- Research School of Biology, and the Medical School, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
5
|
Replacing the eleven native tryptophans by directed evolution produces an active P-glycoprotein with site-specific, non-conservative substitutions. Sci Rep 2020; 10:3224. [PMID: 32081894 PMCID: PMC7035247 DOI: 10.1038/s41598-020-59802-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
P-glycoprotein (Pgp) pumps an array of hydrophobic compounds out of cells, and has major roles in drug pharmacokinetics and cancer multidrug resistance. Yet, polyspecific drug binding and ATP hydrolysis-driven drug export in Pgp are poorly understood. Fluorescence spectroscopy using tryptophans (Trp) inserted at strategic positions is an important tool to study ligand binding. In Pgp, this method will require removal of 11 endogenous Trps, including highly conserved Trps that may be important for function, protein-lipid interactions, and/or protein stability. Here, we developed a directed evolutionary approach to first replace all eight transmembrane Trps and select for transport-active mutants in Saccharomyces cerevisiae. Surprisingly, many Trp positions contained non-conservative substitutions that supported in vivo activity, and were preferred over aromatic amino acids. The most active construct, W(3Cyto), served for directed evolution of the three cytoplasmic Trps, where two positions revealed strong functional bias towards tyrosine. W(3Cyto) and Trp-less Pgp retained wild-type-like protein expression, localization and transport function, and purified proteins retained drug stimulation of ATP hydrolysis and drug binding affinities. The data indicate preferred Trp substitutions specific to the local context, often dictated by protein structural requirements and/or membrane lipid interactions, and these new insights will offer guidance for membrane protein engineering.
Collapse
|
6
|
Zoghbi ME, Mok L, Swartz DJ, Singh A, Fendley GA, Urbatsch IL, Altenberg GA. Substrate-induced conformational changes in the nucleotide-binding domains of lipid bilayer-associated P-glycoprotein during ATP hydrolysis. J Biol Chem 2017; 292:20412-20424. [PMID: 29018094 DOI: 10.1074/jbc.m117.814186] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/25/2017] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp) is an efflux pump important in multidrug resistance of cancer cells and in determining drug pharmacokinetics. Pgp is a prototype ATP-binding cassette transporter with two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP. Conformational changes at the NBDs (the Pgp engines) lead to changes across Pgp transmembrane domains that result in substrate translocation. According to current alternating access models (substrate-binding pocket accessible only to one side of the membrane at a time), binding of ATP promotes NBD dimerization, resulting in external accessibility of the drug-binding site (outward-facing, closed NBD conformation), and ATP hydrolysis leads to dissociation of the NBDs with the subsequent return of the accessibility of the binding site to the cytoplasmic side (inward-facing, open NBD conformation). However, previous work has not investigated these events under near-physiological conditions in a lipid bilayer and in the presence of transport substrate. Here, we used luminescence resonance energy transfer (LRET) to measure the distances between the two Pgp NBDs. Pgp was labeled with LRET probes, reconstituted in lipid nanodiscs, and the distance between the NBDs was measured at 37 °C. In the presence of verapamil, a substrate that activates ATP hydrolysis, the NBDs of Pgp reconstituted in nanodiscs were never far apart during the hydrolysis cycle, and we never observed the NBD-NBD distances of tens of Å that have previously been reported. However, we found two main conformations that coexist in a dynamic equilibrium under all conditions studied. Our observations highlight the importance of performing studies of efflux pumps under near-physiological conditions, in a lipid bilayer, at 37 °C, and during substrate-stimulated hydrolysis.
Collapse
Affiliation(s)
- Maria E Zoghbi
- From the Department of Cell Physiology and Molecular Biophysics
| | - Leo Mok
- Department of Cell Biology and Biochemistry, and
| | | | | | | | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, and .,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Guillermo A Altenberg
- From the Department of Cell Physiology and Molecular Biophysics, .,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
7
|
Loo TW, Clarke DM. A short cross-linker activates human P-glycoprotein missing a catalytic carboxylate. Biochem Pharmacol 2017; 145:27-33. [PMID: 28837794 DOI: 10.1016/j.bcp.2017.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/18/2017] [Indexed: 11/17/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent drug pump that protects us from toxic agents and confers multidrug resistance. It has a tweezer-like structure with each arm consisting of a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates bind to sites within the TMDs to activate ATPase activity by promoting a tweezer-like closing of the gap between the NBDs. The catalytic carboxylates may be critical for NBD movements because the E556Q(NBD1) or E1201Q(NBD2) mutation inhibited drug-stimulated ATPase activity. If the catalytic carboxylates were components of the mechanism to bring the NBDs together, then we predicted that insertion of a flexible cross-linker between the arms would increase ATPase activity of the mutants. We found that cross-linking (between L175C(TMD1) and N820C(TMD2)) with a short flexible cross-linker (7.8Å maximum) restored high levels of drug-stimulated ATPase activity of the E556Q or E1201Q mutants. Cross-linking with a longer cross-linker (22Å maximum) however, did not restore activity. Cross-linking could not rescue all ATPase deficient mutants. For example, cross-linking L175C/N820C with short or long cross-linkers did not activate the H-loop mutants H587A or H1232A or the Walker A K433M or K1076M mutants. The results suggest that the E556 and E1201 catalytic carboxylates are part of a spring-like mechanism that is required to facilitate movements between the open and closed conformations of P-gp during ATP hydrolysis.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
8
|
Loo TW, Clarke DM. Corrector VX-809 promotes interactions between cytoplasmic loop one and the first nucleotide-binding domain of CFTR. Biochem Pharmacol 2017; 136:24-31. [PMID: 28366727 DOI: 10.1016/j.bcp.2017.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
A large number of correctors have been identified that can partially repair defects in folding, stability and trafficking of CFTR processing mutants that cause cystic fibrosis (CF). The best corrector, VX-809 (Lumacaftor), has shown some promise when used in combination with a potentiator (Ivacaftor). Understanding the mechanism of VX-809 is essential for development of better correctors. Here, we tested our prediction that VX-809 repairs folding and processing defects of CFTR by promoting interactions between the first cytoplasmic loop (CL1) of transmembrane domain 1 (TMD1) and the first nucleotide-binding domain (NBD1). To investigate whether VX-809 promoted CL1/NBD1 interactions, we performed cysteine mutagenesis and disulfide cross-linking analysis of Cys-less TMD1 (residues 1-436) and ΔTMD1 (residues 437-1480; NBD1-R-TMD2-NBD2) truncation mutants. It was found that VX-809, but not bithiazole correctors, promoted maturation (exited endoplasmic reticulum for addition of complex carbohydrate in the Golgi) of the ΔTMD1 truncation mutant only when it was co-expressed in the presence of TMD1. Expression in the presence of VX-809 also promoted cross-linking between R170C (in CL1 of TMD1 protein) and L475C (in NBD1 of the ΔTMD1 truncation protein). Expression of the ΔTMD1 truncation mutant in the presence of TMD1 and VX-809 also increased the half-life of the mature protein in cells. The results suggest that the mechanism by which VX-809 promotes maturation and stability of CFTR is by promoting CL1/NBD1 interactions.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
9
|
Loo TW, Clarke DM. Attachment of a 'molecular spring' restores drug-stimulated ATPase activity to P-glycoprotein lacking both Q loop glutamines. Biochem Biophys Res Commun 2016; 483:366-370. [PMID: 28025146 DOI: 10.1016/j.bbrc.2016.12.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 01/28/2023]
Abstract
P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump that is clinically important because it confers multidrug resistance. Drugs bind at the interface between the transmembrane domains to activate ATPase activity at the two nucleotide-binding domains (NBDs). Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. Recently, it was reported that the conserved glutamines residues (Gln475 in NBD1 and Gln1118 in NBD2) in the Q loops of P-gp when mutated to alanine completely inhibited the drug-stimulated ATPase activity. It is unknown why the glutamine residues (Gln475 and Gln1118) in the Q loops of the NBDs of P-gp are required for drug-stimulated ATPase activity. Here we show that introduction of these mutations into the L175C/N820C mutant (L175C/N820C/Q475A/Q1118A) also abolished drug-stimulated ATPase activity. The ATPase activity was restored however, when the L175C/N820C/Q475A/Q1118A mutant was cross-linked with a flexible disulfide cross-linker. These results suggest that both Q-loop glutamines are not required for ATP hydrolysis and they might function as part of a spring-like mechanism in facilitating the open (inactive) to closed (active) conformational change during ATP hydrolysis. The molecular spring-like action of the Q-loop glutamines during drug-stimulated ATPase activity is likely mimicked by the attachment of the flexible cross-linker.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - David M Clarke
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
10
|
Esser L, Zhou F, Pluchino KM, Shiloach J, Ma J, Tang WK, Gutierrez C, Zhang A, Shukla S, Madigan JP, Zhou T, Kwong PD, Ambudkar SV, Gottesman MM, Xia D. Structures of the Multidrug Transporter P-glycoprotein Reveal Asymmetric ATP Binding and the Mechanism of Polyspecificity. J Biol Chem 2016; 292:446-461. [PMID: 27864369 DOI: 10.1074/jbc.m116.755884] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/15/2016] [Indexed: 12/25/2022] Open
Abstract
P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancer; it plays important roles in determining the pharmacokinetics of many drugs. Understanding the structural basis of P-gp, substrate polyspecificity has been hampered by its intrinsic flexibility, which is facilitated by a 75-residue linker that connects the two halves of P-gp. Here we constructed a mutant murine P-gp with a shortened linker to facilitate structural determination. Despite dramatic reduction in rhodamine 123 and calcein-AM transport, the linker-shortened mutant P-gp possesses basal ATPase activity and binds ATP only in its N-terminal nucleotide-binding domain. Nine independently determined structures of wild type, the linker mutant, and a methylated P-gp at up to 3.3 Å resolution display significant movements of individual transmembrane domain helices, which correlated with the opening and closing motion of the two halves of P-gp. The open-and-close motion alters the surface topology of P-gp within the drug-binding pocket, providing a mechanistic explanation for the polyspecificity of P-gp in substrate interactions.
Collapse
Affiliation(s)
- Lothar Esser
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Fei Zhou
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | | | | | - Jichun Ma
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Wai-Kwan Tang
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Camilo Gutierrez
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Alex Zhang
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Suneet Shukla
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - James P Madigan
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | - Tongqing Zhou
- the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter D Kwong
- the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Suresh V Ambudkar
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI
| | | | - Di Xia
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI,
| |
Collapse
|
11
|
Loo TW, Clarke DM. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface. Biochem Biophys Res Commun 2016; 472:379-83. [PMID: 26944019 DOI: 10.1016/j.bbrc.2016.02.124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 01/31/2023]
Abstract
P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump. A common feature of ABC proteins is that they are organized into two wings. Each wing contains a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates and ATP bind at the interface between the TMDs and NBDs, respectively. Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. P-gps crystallized in the presence of detergent show an open structure. Human P-gp is inactive in detergent but basal ATPase activity is restored upon addition of lipids. The lipids might cause closure of the wings to bring the NBDs close together to allow ATP hydrolysis. We show however, that cross-linking the wings together did not activate ATPase activity when lipids were absent suggesting that lipids may induce other structural changes required for ATPase activity. We then tested the effect of lipids on disulfide cross-linking of mutants at the first transmission interface between intracellular loop 4 (TMD2) and NBD1. Mutants L443C/S909C and L443C/R905C but not G471C/S909C and V472C/S909C were cross-linked with oxidant when in membranes. The mutants were then purified and cross-linked with or without lipids. Mutants G471C/S909C and V472C/S909C cross-linked only in the absence of lipids whereas mutants L443C/S909C and L443C/R905C were cross-linked only in the presence of lipids. The results suggest that lipids activate a switch at the first transmission interface and that the structure of P-gp is different in detergents and lipids.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - David M Clarke
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
12
|
Moeller A, Lee SC, Tao H, Speir JA, Chang G, Urbatsch IL, Potter CS, Carragher B, Zhang Q. Distinct conformational spectrum of homologous multidrug ABC transporters. Structure 2015; 23:450-460. [PMID: 25661651 DOI: 10.1016/j.str.2014.12.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/25/2014] [Accepted: 12/12/2014] [Indexed: 01/10/2023]
Abstract
ATP-binding cassette (ABC) exporters are ubiquitously found in all kingdoms of life and their members play significant roles in mediating drug pharmacokinetics and multidrug resistance in the clinic. Significant questions and controversies remain regarding the relevance of their conformations observed in X-ray structures, their structural dynamics, and mechanism of transport. Here, we used single particle electron microscopy (EM) to delineate the entire conformational spectrum of two homologous ABC exporters (bacterial MsbA and mammalian P-glycoprotein) and the influence of nucleotide and substrate binding. Newly developed amphiphiles in complex with lipids that support high protein stability and activity enabled EM visualization of individual complexes in a membrane-mimicking environment. The data provide a comprehensive view of the conformational flexibility of these ABC exporters under various states and demonstrate not only similarities but striking differences between their mechanistic and energetic regulation of conformational changes.
Collapse
Affiliation(s)
- Arne Moeller
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sung Chang Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Houchao Tao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey A Speir
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geoffrey Chang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Clinton S Potter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bridget Carragher
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Equilibrated atomic models of outward-facing P-glycoprotein and effect of ATP binding on structural dynamics. Sci Rep 2015; 5:7880. [PMID: 25600711 PMCID: PMC4389535 DOI: 10.1038/srep07880] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2014] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that alternates between inward- and outward-facing conformations to capture and force substrates out of cells like a peristaltic pump. The high degree of similarity in outward-facing structures across evolution of ABC transporters allowed construction of a high-confidence outward-facing Pgp atomic model based on crystal structures of outward-facing Sav1866 and inward-facing Pgp. The model adhered to previous experimentally determined secondary- and tertiary- configurations during all-atom molecular dynamics simulations in the presence or absence of MgATP. Three long lasting (>100 ns) meta-stable states were apparent in the presence of MgATP revealing new insights into alternating access. The two ATP-binding pockets are highly asymmetric resulting in differential control of overall structural dynamics and allosteric regulation of the drug-binding pocket. Equilibrated Pgp has a considerably different electrostatic profile compared to Sav1866 that implicates significant kinetic and thermodynamic differences in transport mechanisms.
Collapse
|
14
|
Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking. J Nutr Biochem 2015; 26:44-56. [DOI: 10.1016/j.jnutbio.2014.09.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/23/2014] [Accepted: 09/10/2014] [Indexed: 12/29/2022]
|
15
|
Prajapati R, Sangamwar AT. Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2882-98. [DOI: 10.1016/j.bbamem.2014.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
|
16
|
Loo TW, Clarke DM. Tariquidar inhibits P-glycoprotein drug efflux but activates ATPase activity by blocking transition to an open conformation. Biochem Pharmacol 2014; 92:558-66. [PMID: 25456855 DOI: 10.1016/j.bcp.2014.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022]
Abstract
P-glycoprotein (P-gp, ABCB1) is a drug pump that confers multidrug resistance. Inhibition of P-gp would improve chemotherapy. Tariquidar is a potent P-gp inhibitor but its mechanism is unknown. Here, we tested our prediction that tariquidar inhibits P-gp cycling between the open and closed states during the catalytic cycle. Transition of P-gp to an open state can be monitored in intact cells using reporter cysteines introduced into extracellular loops 1 (A80C) and 4 (R741C). Residues A80C/R741C come close enough (<7Å) to spontaneously cross-link in the open conformation (<7Å) but are widely separated (>30Å) in the closed conformation. Cross-linking of A80C/R741C can be readily detected because it causes the mutant protein to migrate slower on SDS-PAGE gels. We tested whether drug substrates or inhibitors could inhibit cross-linking of the mutant. It was found that only tariquidar blocked A80C/R741C cross-linking. Tariquidar was also a more potent pharmacological chaperone than other P-gp substrates/modulators such as cyclosporine A. Only tariquidar promoted maturation of misprocessed mutant F804D to yield mature P-gp. Tariquidar interacted with the transmembrane domains because it could rescue a misprocessed truncation mutant lacking the nucleotide-binding domains. These results show that tariquidar is a potent pharmacological chaperone and inhibits P-gp drug efflux by blocking transition to the open state during the catalytic cycle.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
17
|
Loo TW, Clarke DM. Cysteines introduced into extracellular loops 1 and 4 of human P-glycoprotein that are close only in the open conformation spontaneously form a disulfide bond that inhibits drug efflux and ATPase activity. J Biol Chem 2014; 289:24749-58. [PMID: 25053414 DOI: 10.1074/jbc.m114.583021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette drug pump that protects us from toxic compounds and confers multidrug resistance. The protein is organized into two halves. The halves contain a transmembrane domain (TMD) with six transmembrane segments and a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the TMD1/TMD2 and NBD1/NBD2 interfaces, respectively. ATP-dependent drug efflux involves changes between the open inward-facing (NBDs apart, extracellular loops (ECLs) close together) and the closed outward-facing (NBDs close together, ECLs apart) conformations. It is controversial, however, whether the open conformation only exists transiently in intact cells because of the presence of high levels of ATP. To test for the presence of an open conformation in intact cells, reporter cysteines were placed in extracellular loops 1 (A80C, N half) and 4 (R741C, C half). The rationale was that cysteines A80C/R741C would only come close enough to form a disulfide bond in an open conformation (6.9 Å apart) because they are separated widely (30.4 Å apart) in the closed conformation. It was observed that the mutant A80C/R741C cross-linked spontaneously (>90%) when expressed in cells. In contrast to previous reports showing that trapping P-gp in a closed conformation highly activated ATPase activity, here we show that A80C/R741C cross-linking inhibited ATPase activity and drug efflux. Both activities were restored when the cross-linked mutant was treated with a thiol-reducing agent. The results show that an open conformation can be readily detected in cells and that cross-linking of cysteines placed in ECLs 1 and 4 inhibits activity.
Collapse
Affiliation(s)
- Tip W Loo
- From the Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- From the Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|