1
|
Zuo W, Tian M, Qi J, Zhang G, Hu J, Wang S, Bao Y. The functions of EF-hand proteins from host and zoonotic pathogens. Microbes Infect 2025; 27:105276. [PMID: 38072184 DOI: 10.1016/j.micinf.2023.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
EF-hand proteins not only regulate biological processes, but also influence immunity and infection. In this review, we summarize EF-hand proteins' functions in host and zoonotic pathogens, with details in structures, Ca2+ affinity, downstream targets and functional mechanisms. Studies entitled as EF-hand-related but with less solid features were also discussed. We believe it could raise cautions and facilitate proper research strategy for researchers.
Collapse
Affiliation(s)
- Wei Zuo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China.
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China.
| |
Collapse
|
2
|
Perdomo D, Berdance E, Lallinger-Kube G, Sahin A, Dacheux D, Landrein N, Cayrel A, Ersfeld K, Bonhivers M, Kohl L, Robinson DR. TbKINX1B: a novel BILBO1 partner and an essential protein in bloodstream form Trypanosoma brucei. Parasite 2022; 29:14. [PMID: 35262485 PMCID: PMC8906236 DOI: 10.1051/parasite/2022015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/20/2022] [Indexed: 12/17/2022] Open
Abstract
The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the flagellar pocket collar (FPC). TbBILBO1 is the first-described FPC protein of Trypanosoma brucei. It is essential for parasite survival, FP and FPC biogenesis. In this work, we characterize TbKINX1B, a novel TbBILBO1 partner. We demonstrate that TbKINX1B is located on the basal bodies, the microtubule quartet (a set of four microtubules) and the FPC in T. brucei. Down-regulation of TbKINX1B by RNA interference in bloodstream forms is lethal, inducing an overall disturbance in the endomembrane network. In procyclic forms, the RNAi knockdown of TbKINX1B leads to a minor phenotype with a small number of cells displaying epimastigote-like morphologies, with a misplaced kinetoplast. Our results characterize TbKINX1B as the first putative kinesin to be localized both at the basal bodies and the FPC with a potential role in transporting cargo along with the microtubule quartet.
Collapse
Affiliation(s)
- Doranda Perdomo
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Elodie Berdance
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Gertrud Lallinger-Kube
- Department of Genetics, Bldg. NW1, University of Bayreuth, Universitätsstraße 30 95440 Bayreuth Germany
| | - Annelise Sahin
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Denis Dacheux
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
- Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Nicolas Landrein
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Anne Cayrel
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Klaus Ersfeld
- Department of Genetics, Bldg. NW1, University of Bayreuth, Universitätsstraße 30 95440 Bayreuth Germany
| | - Mélanie Bonhivers
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Linda Kohl
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, CP52 61 rue Buffon 75231 Paris Cedex 05 France
| | - Derrick R. Robinson
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| |
Collapse
|
3
|
Broster Reix CE, Florimond C, Cayrel A, Mailhé A, Agnero-Rigot C, Landrein N, Dacheux D, Havlicek K, Bonhivers M, Morriswood B, Robinson DR. Bhalin, an Essential Cytoskeleton-Associated Protein of Trypanosoma brucei Linking TbBILBO1 of the Flagellar Pocket Collar with the Hook Complex. Microorganisms 2021; 9:microorganisms9112334. [PMID: 34835460 PMCID: PMC8623173 DOI: 10.3390/microorganisms9112334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
Background: In most trypanosomes, endo and exocytosis only occur at a unique organelle called the flagellar pocket (FP) and the flagellum exits the cell via the FP. Investigations of essential cytoskeleton-associated structures located at this site have revealed a number of essential proteins. The protein TbBILBO1 is located at the neck of the FP in a structure called the flagellar pocket collar (FPC) and is essential for biogenesis of the FPC and parasite survival. TbMORN1 is a protein that is present on a closely linked structure called the hook complex (HC) and is located anterior to and overlapping the collar. TbMORN1 is essential in the bloodstream form of T. brucei. We now describe the location and function of BHALIN, an essential, new FPC-HC protein. Methodology/Principal Findings: Here, we show that a newly characterised protein, BHALIN (BILBO1 Hook Associated LINker protein), is localised to both the FPC and HC and has a TbBILBO1 binding domain, which was confirmed in vitro. Knockdown of BHALIN by RNAi in the bloodstream form parasites led to cell death, indicating an essential role in cell viability. Conclusions/Significance: Our results demonstrate the essential role of a newly characterised hook complex protein, BHALIN, that influences flagellar pocket organisation and function in bloodstream form T. brucei parasites.
Collapse
Affiliation(s)
- Christine E. Broster Reix
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Célia Florimond
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Laboratory of Parasitology, National Reference Center for Malaria, WHO Collaborative Center for Surveillance of Antimalarial Drug Resistance, Pasteur Institute of French Guiana, 97306 Cayenne, French Guiana
| | - Anne Cayrel
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Amélie Mailhé
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Société Fromagère de Saint Affrique, Camaras, 12400 Saint-Affrique, France
| | - Corentin Agnero-Rigot
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Nicolas Landrein
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Denis Dacheux
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Enstbb, École Nationale Supérieure de Technologie des Biomolécules de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Katharina Havlicek
- Max Perutz Labs, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria;
| | - Mélanie Bonhivers
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany;
| | - Derrick R. Robinson
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Correspondence:
| |
Collapse
|
4
|
Abstract
Trypanosoma brucei belongs to a genus of protists that cause life-threatening and economically important diseases of human and animal populations in Sub-Saharan Africa. T. brucei cells are covered in surface glycoproteins, some of which are used to escape the host immune system. Exo-/endocytotic trafficking of these and other molecules occurs via a single copy organelle called the flagellar pocket (FP). The FP is maintained and enclosed around the flagellum by the flagellar pocket collar (FPC). To date, the most important cytoskeletal component of the FPC is an essential calcium-binding, polymer-forming protein called TbBILBO1. In searching for novel tools to study this protein, we raised nanobodies (Nb) against purified, full-length TbBILBO1. Nanobodies were selected according to their binding properties to TbBILBO1, tested as immunofluorescence tools, and expressed as intrabodies (INb). One of them, Nb48, proved to be the most robust nanobody and intrabody. We further demonstrate that inducible, cytoplasmic expression of INb48 was lethal to these parasites, producing abnormal phenotypes resembling those of TbBILBO1 RNA interference (RNAi) knockdown. Our results validate the feasibility of generating functional single-domain antibody-derived intrabodies to target trypanosome cytoskeleton proteins. IMPORTANCETrypanosoma brucei belongs to a group of important zoonotic parasites. We investigated how these organisms develop their cytoskeleton (the internal skeleton that controls cell shape) and focused on an essential protein (BILBO1) first described in T. brucei. To develop our analysis, we used purified BILBO1 protein to immunize an alpaca to make nanobodies (Nb). Nanobodies are derived from the antigen-binding portion of a novel antibody type found only in the camel and shark families of animals. Anti-BILBO1 nanobodies were obtained, and their encoding genes were inducibly expressed within the cytoplasm of T. brucei as intrabodies (INb). Importantly, INb48 expression rapidly killed parasites producing phenotypes normally observed after RNA knockdown, providing clear proof of principle. The importance of this study is derived from this novel approach, which can be used to study neglected and emerging pathogens as well as new model organisms, especially those that do not have the RNAi system.
Collapse
|
5
|
Structural and functional studies of the first tripartite protein complex at the Trypanosoma brucei flagellar pocket collar. PLoS Pathog 2021; 17:e1009329. [PMID: 34339455 PMCID: PMC8360560 DOI: 10.1371/journal.ppat.1009329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/12/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022] Open
Abstract
The flagellar pocket (FP) is the only endo- and exocytic organelle in most trypanosomes and, as such, is essential throughout the life cycle of the parasite. The neck of the FP is maintained enclosed around the flagellum via the flagellar pocket collar (FPC). The FPC is a macromolecular cytoskeletal structure and is essential for the formation of the FP and cytokinesis. FPC biogenesis and structure are poorly understood, mainly due to the lack of information on FPC composition. To date, only two FPC proteins, BILBO1 and FPC4, have been characterized. BILBO1 forms a molecular skeleton upon which other FPC proteins can, theoretically, dock onto. We previously identified FPC4 as the first BILBO1 interacting partner and demonstrated that its C-terminal domain interacts with the BILBO1 N-terminal domain (NTD). Here, we report by yeast two-hybrid, bioinformatics, functional and structural studies the characterization of a new FPC component and BILBO1 partner protein, BILBO2 (Tb927.6.3240). Further, we demonstrate that BILBO1 and BILBO2 share a homologous NTD and that both domains interact with FPC4. We have determined a 1.9 Å resolution crystal structure of the BILBO2 NTD in complex with the FPC4 BILBO1-binding domain. Together with mutational analyses, our studies reveal key residues for the function of the BILBO2 NTD and its interaction with FPC4 and evidenced a tripartite interaction between BILBO1, BILBO2, and FPC4. Our work sheds light on the first atomic structure of an FPC protein complex and represents a significant step in deciphering the FPC function in Trypanosoma brucei and other pathogenic kinetoplastids. Trypanosomes belong to a group of zoonotic, protist, parasites that are found in Africa, Asia, South America, and Europe and are responsible for severe human and animal diseases. They all have a common structure called the flagellar pocket (FP). In most trypanosomes, all macromolecular exchanges between the trypanosome and the environment occur via the FP. The FP is thus essential for cell viability and evading the host immune response. We have been studying the flagellar pocket collar (FPC), an enigmatic macromolecular structure at the neck of the FP, and demonstrated its essentiality for the biogenesis of the FP. We demonstrated that BILBO1 is an essential protein of the FPC that interacts with other proteins including a microtubule-binding protein FPC4. Here we identify another bona fide FPC protein, BILBO2, so named because of close similarity with BILBO1 in protein localization and functional domains. We demonstrate that BILBO1 and BILBO2 share a common N-terminal domain involved in the interaction with FPC4, and illustrate a tripartite interaction between BILBO1, BILBO2, and FPC4. Our study also provides the first atomic view of two FPC components. These data represent an additional step in deciphering the FPC structure and function in T. brucei.
Collapse
|
6
|
Vidilaseris K, Landrein N, Pivovarova Y, Lesigang J, Aeksiri N, Robinson DR, Bonhivers M, Dong G. Crystal structure of the N-terminal domain of the trypanosome flagellar protein BILBO1 reveals a ubiquitin fold with a long structured loop for protein binding. J Biol Chem 2020; 295:1489-1499. [PMID: 31882537 PMCID: PMC7008359 DOI: 10.1074/jbc.ra119.010768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/19/2019] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei is a protist parasite causing sleeping sickness and nagana in sub-Saharan Africa. T. brucei has a single flagellum whose base contains a bulblike invagination of the plasma membrane called the flagellar pocket (FP). Around the neck of the FP on its cytoplasmic face is a structure called the flagellar pocket collar (FPC), which is essential for FP biogenesis. BILBO1 was the first characterized component of the FPC in trypanosomes. BILBO1's N-terminal domain (NTD) plays an essential role in T. brucei FPC biogenesis and is thus vital for the parasite's survival. Here, we report a 1.6-Å resolution crystal structure of TbBILBO1-NTD, which revealed a conserved horseshoe-like hydrophobic pocket formed by an unusually long loop. Results from mutagenesis experiments suggested that another FPC protein, FPC4, interacts with TbBILBO1 by mainly contacting its three conserved aromatic residues Trp-71, Tyr-87, and Phe-89 at the center of this pocket. Our findings disclose the binding site of TbFPC4 on TbBILBO1-NTD, which may provide a basis for rational drug design targeting BILBO1 to combat T. brucei infections.
Collapse
Affiliation(s)
- Keni Vidilaseris
- Max Perutz Labs, Vienna Bio-Center, Medical University of Vienna, 1030 Vienna, Austria
| | - Nicolas Landrein
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, 33 076 Bordeaux, France
| | - Yulia Pivovarova
- Max Perutz Labs, Vienna Bio-Center, Medical University of Vienna, 1030 Vienna, Austria
| | - Johannes Lesigang
- Max Perutz Labs, Vienna Bio-Center, Medical University of Vienna, 1030 Vienna, Austria
| | - Niran Aeksiri
- Max Perutz Labs, Vienna Bio-Center, Medical University of Vienna, 1030 Vienna, Austria; Department of Agricultural Sciences, Naresuan University, Phitsanlolok 65000, Thailand
| | - Derrick R Robinson
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, 33 076 Bordeaux, France
| | - Melanie Bonhivers
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, 33 076 Bordeaux, France
| | - Gang Dong
- Max Perutz Labs, Vienna Bio-Center, Medical University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
7
|
Albisetti A, Florimond C, Landrein N, Vidilaseris K, Eggenspieler M, Lesigang J, Dong G, Robinson DR, Bonhivers M. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006710. [PMID: 29091964 PMCID: PMC5683654 DOI: 10.1371/journal.ppat.1006710] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/13/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma brucei belongs to a group of unicellular, flagellated parasites that are responsible for human African trypanosomiasis. An essential aspect of parasite pathogenicity is cytoskeleton remodelling, which occurs during the life cycle of the parasite and is accompanied by major changes in morphology and organelle positioning. The flagellum originates from the basal bodies and exits the cell body through the flagellar pocket (FP) but remains attached to the cell body via the flagellum attachment zone (FAZ). The FP is an invagination of the pellicular membrane and is the sole site for endo- and exocytosis. The FAZ is a large complex of cytoskeletal proteins, plus an intracellular set of four specialised microtubules (MtQ) that elongate from the basal bodies to the anterior end of the cell. At the distal end of the FP, an essential, intracellular, cytoskeletal structure called the flagellar pocket collar (FPC) circumvents the flagellum. Overlapping the FPC is the hook complex (HC) (a sub-structure of the previously named bilobe) that is also essential and is thought to be involved in protein FP entry. BILBO1 is the only functionally characterised FPC protein and is necessary for FPC and FP biogenesis. Here, we used a combination of in vitro and in vivo approaches to identify and characterize a new BILBO1 partner protein-FPC4. We demonstrate that FPC4 localises to the FPC, the HC, and possibly to a proximal portion of the MtQ. We found that the C-terminal domain of FPC4 interacts with the BILBO1 N-terminal domain, and we identified the key amino acids required for this interaction. Interestingly, the FPC4 N-terminal domain was found to bind microtubules. Over-expression studies highlight the role of FPC4 in its association with the FPC, HC and FPC segregation. Our data suggest a tripartite association between the FPC, the HC and the MtQ.
Collapse
Affiliation(s)
- Anna Albisetti
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Célia Florimond
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Nicolas Landrein
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Keni Vidilaseris
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Marie Eggenspieler
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Johannes Lesigang
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Derrick Roy Robinson
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Mélanie Bonhivers
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|
8
|
Perdomo D, Bonhivers M, Robinson DR. The Trypanosome Flagellar Pocket Collar and Its Ring Forming Protein-TbBILBO1. Cells 2016; 5:cells5010009. [PMID: 26950156 PMCID: PMC4810094 DOI: 10.3390/cells5010009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022] Open
Abstract
Sub-species of Trypanosoma brucei are the causal agents of human African sleeping sickness and Nagana in domesticated livestock. These pathogens have developed an organelle-like compartment called the flagellar pocket (FP). The FP carries out endo- and exocytosis and is the only structure this parasite has evolved to do so. The FP is essential for parasite viability, making it an interesting structure to evaluate as a drug target, especially since it has an indispensible cytoskeleton component called the flagellar pocket collar (FPC). The FPC is located at the neck of the FP where the flagellum exits the cell. The FPC has a complex architecture and division cycle, but little is known concerning its organization. Recent work has focused on understanding how the FP and the FPC are formed and as a result of these studies an important calcium-binding, polymer-forming protein named TbBILBO1 was identified. Cellular biology analysis of TbBILBO1 has demonstrated its uniqueness as a FPC component and until recently, it was unknown what structural role it played in forming the FPC. This review summarizes the recent data on the polymer forming properties of TbBILBO1 and how these are correlated to the FP cytoskeleton.
Collapse
Affiliation(s)
- Doranda Perdomo
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Mélanie Bonhivers
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Derrick R Robinson
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| |
Collapse
|
9
|
Morriswood B. Form, Fabric, and Function of a Flagellum-Associated Cytoskeletal Structure. Cells 2015; 4:726-47. [PMID: 26540076 PMCID: PMC4695855 DOI: 10.3390/cells4040726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma brucei is a uniflagellated protist and the causative agent of African trypanosomiasis, a neglected tropical disease. The single flagellum of T. brucei is essential to a number of cellular processes such as motility, and has been a longstanding focus of scientific enquiry. A number of cytoskeletal structures are associated with the flagellum in T. brucei, and one such structure—a multiprotein complex containing the repeat motif protein TbMORN1—is the focus of this review. The TbMORN1-containing complex, which was discovered less than ten years ago, is essential for the viability of the mammalian-infective form of T. brucei. The complex has an unusual asymmetric morphology, and is coiled around the flagellum to form a hook shape. Proteomic analysis using the proximity-dependent biotin identification (BioID) technique has elucidated a number of its components. Recent work has uncovered a role for TbMORN1 in facilitating protein entry into the cell, thus providing a link between the cytoskeleton and the endomembrane system. This review summarises the extant data on the complex, highlights the outstanding questions for future enquiry, and provides speculation as to its possible role in a size-exclusion mechanism for regulating protein entry. The review additionally clarifies the nomenclature associated with this topic, and proposes the adoption of the term “hook complex” to replace the former name “bilobe” to describe the complex.
Collapse
Affiliation(s)
- Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
10
|
A MORN Repeat Protein Facilitates Protein Entry into the Flagellar Pocket of Trypanosoma brucei. EUKARYOTIC CELL 2015; 14:1081-93. [PMID: 26318396 DOI: 10.1128/ec.00094-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/23/2015] [Indexed: 01/03/2023]
Abstract
The parasite Trypanosoma brucei lives in the bloodstream of infected mammalian hosts, fully exposed to the adaptive immune system. It relies on a very high rate of endocytosis to clear bound antibodies from its cell surface. All endo- and exocytosis occurs at a single site on its plasma membrane, an intracellular invagination termed the flagellar pocket. Coiled around the neck of the flagellar pocket is a multiprotein complex containing the repeat motif protein T. brucei MORN1 (TbMORN1). In this study, the phenotypic effects of TbMORN1 depletion in the mammalian-infective form of T. brucei were analyzed. Depletion of TbMORN1 resulted in a rapid enlargement of the flagellar pocket. Dextran, a polysaccharide marker for fluid phase endocytosis, accumulated inside the enlarged flagellar pocket. Unexpectedly, however, the proteins concanavalin A and bovine serum albumin did not do so, and concanavalin A was instead found to concentrate outside it. This suggests that TbMORN1 may have a role in facilitating the entry of proteins into the flagellar pocket.
Collapse
|
11
|
Florimond C, Sahin A, Vidilaseris K, Dong G, Landrein N, Dacheux D, Albisetti A, Byard EH, Bonhivers M, Robinson DR. BILBO1 is a scaffold protein of the flagellar pocket collar in the pathogen Trypanosoma brucei. PLoS Pathog 2015; 11:e1004654. [PMID: 25822645 PMCID: PMC4379179 DOI: 10.1371/journal.ppat.1004654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/04/2015] [Indexed: 01/23/2023] Open
Abstract
The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the annulus/horseshoe shaped flagellar pocket collar (FPC). To date the only known component of the FPC is the protein BILBO1, a cytoskeleton protein that has a N-terminus that contains an ubiquitin-like fold, two EF-hand domains, plus a large C-terminal coiled-coil domain. BILBO1 has been shown to bind calcium, but in this work we demonstrate that mutating either or both calcium-binding domains prevents calcium binding. The expression of deletion or mutated forms of BILBO1 in trypanosomes and mammalian cells demonstrate that the coiled-coil domain is necessary and sufficient for the formation of BILBO1 polymers. This is supported by Yeast two-hybrid analysis. Expression of full-length BILBO1 in mammalian cells induces the formation of linear polymers with comma and globular shaped termini, whereas mutation of the canonical calcium-binding domain resulted in the formation of helical polymers and mutation in both EF-hand domains prevented the formation of linear polymers. We also demonstrate that in T. brucei the coiled-coil domain is able to target BILBO1 to the FPC and to form polymers whilst the EF-hand domains influence polymers shape. This data indicates that BILBO1 has intrinsic polymer forming properties and that binding calcium can modulate the form of these polymers. We discuss whether these properties can influence the formation of the FPC. Trypanosoma brucei avoids destruction by, in part, changing its surface glycoprotein coat, which is trafficked onto the cell surface via an invagination of the cell surface called the flagellar pocket. The pocket is essential for pathogenicity. The distal membrane of the pocket is anchored to a cytoskeleton structure called the flagellar pocket collar (FPC). The FPC is a ring/horseshoe shaped structure, which itself is attached to the single copy flagellum of the parasite. How the “ring” shape of the collar is formed is not understood. Moreover, the only known protein component of the FPC is the protein BILBO1. BILBO1 is modular and has a distinct N-terminal domain, two EF-hand calcium-binding domains and a large C-terminal coiled-coil domain. Here we demonstrate that mutating the EF hand domains prevent calcium binding and that the coiled-coil domain is not only sufficient to target to the collar, but can also form polymers in mammalian cells. Mutating either or both calcium-binding domains of BILBO1 influences polymer formation and type when expressed in mammalian and trypanosome cells. Our premise is that BILBO1 has intrinsic polymer forming properties that are essential for the flagellar pocket collar making the pocket a target for intervention.
Collapse
Affiliation(s)
- Célia Florimond
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Annelise Sahin
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Keni Vidilaseris
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Gang Dong
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Nicolas Landrein
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Denis Dacheux
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Bordeaux, France
| | - Anna Albisetti
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Edward H Byard
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Mélanie Bonhivers
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Derrick R Robinson
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|
12
|
Vidilaseris K, Lesigang J, Morriswood B, Dong G. Assembly mechanism of Trypanosoma brucei BILBO1 at the flagellar pocket collar. Commun Integr Biol 2015; 8:e992739. [PMID: 26844754 PMCID: PMC4594465 DOI: 10.4161/19420889.2014.992739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/01/2014] [Accepted: 09/17/2014] [Indexed: 11/19/2022] Open
Abstract
The flagellar pocket is a bulb-like invagination of the plasma membrane that encloses the base of the single flagellum in trypanosomes. It is the site of all endo- and exocytic activity in the parasite and has thus been proposed to be a therapeutic target. At the neck of the flagellar pocket is an electron-dense cytoskeletal structure named the flagellar pocket collar. The protein BILBO1 was the first characterized and remains the only known component of the flagellar pocket collar, with essential functions in the biogenesis of both the flagellar pocket and flagellar pocket collar. We recently reported that the filamentous assembly of Trypanosoma brucei BILBO1 (TbBILBO1) is mediated by its central coiled coil domain and C-terminal leucine zipper. Here, we discuss how TbBILBO1 might assemble at the flagellar pocket collar in T. brucei.
Collapse
Affiliation(s)
- Keni Vidilaseris
- Max F. Perutz Laboratories; University of Vienna and Medical University of Vienna ; Vienna, Austria
| | - Johannes Lesigang
- Max F. Perutz Laboratories; University of Vienna and Medical University of Vienna ; Vienna, Austria
| | - Brooke Morriswood
- Max F. Perutz Laboratories; University of Vienna and Medical University of Vienna ; Vienna, Austria
| | - Gang Dong
- Max F. Perutz Laboratories; University of Vienna and Medical University of Vienna ; Vienna, Austria
| |
Collapse
|