1
|
Gardner CC, James PF. Na +/H + Exchangers (NHEs) in Mammalian Sperm: Essential Contributors to Male Fertility. Int J Mol Sci 2023; 24:14981. [PMID: 37834431 PMCID: PMC10573352 DOI: 10.3390/ijms241914981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are known to be important regulators of pH in multiple intracellular compartments of eukaryotic cells. Sperm function is especially dependent on changes in pH and thus it has been postulated that NHEs play important roles in regulating the intracellular pH of these cells. For example, in order to achieve fertilization, mature sperm must maintain a basal pH in the male reproductive tract and then alkalize in response to specific signals in the female reproductive tract during the capacitation process. Eight NHE isoforms are expressed in mammalian testis/sperm: NHE1, NHE3, NHE5, NHE8, NHA1, NHA2, NHE10, and NHE11. These NHE isoforms are expressed at varying times during spermatogenesis and localize to different subcellular structures in developing and mature sperm where they contribute to multiple aspects of sperm physiology and male fertility including proper sperm development/morphogenesis, motility, capacitation, and the acrosome reaction. Previous work has provided evidence for NHE3, NHE8, NHA1, NHA2, and NHE10 being critical for male fertility in mice and NHE10 has recently been shown to be essential for male fertility in humans. In this article we review what is known about each NHE isoform expressed in mammalian sperm and discuss the physiological significance of each NHE isoform with respect to male fertility.
Collapse
Affiliation(s)
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
2
|
Pieróg M, Socała K, Nieoczym D, Wyska E, Samorek-Pieróg M, Wlaź P. Anticonvulsant Profile of Selected Medium-Chain Fatty Acids (MCFAs) Co-Administered with Metformin in Mice in Acute and Chronic Treatment. Molecules 2023; 28:molecules28093810. [PMID: 37175220 PMCID: PMC10179922 DOI: 10.3390/molecules28093810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
In contrast to the other components of the medium-chain triglycerides ketogenic diet (MCT KD), i.e., caprylic acid (CA8), a comprehensive evaluation of caproic (CA6) and lauric acids' (CA12) properties in standard chemical and electrical seizure tests in mice has not yet been performed. We investigated their effects in maximal electroshock seizure threshold (MEST), 6 Hz seizure threshold and intravenous (i.v.) pentylenetetrazole (PTZ) seizure tests. Since ketone body production can be regulated by the activation of 5'AMP-activated protein kinase (AMPK), we hypothesized that metformin (an AMPK activator) enhance ketogenesis and would act synergistically with the fatty acids to inhibit convulsions. We assessed the effects of acute and chronic co-treatment with metformin and CA6/CA8 on seizures. CA6 and CA12 (p.o.) increased seizure threshold in the 6 Hz seizure test. CA6 at the highest tested dose (30 mmol/kg) developed toxicity in several mice, impaired motor performance and induced ketoacidosis. Acute and chronic co-treatment with metformin and CA6/CA8 did not affect seizure thresholds. Moreover, we observed the pro-convulsive effect of the acute co-administration of CA8 (5 mmol/kg) and metformin (100 mg/kg). Since this co-treatment was pro-convulsive, the safety profile and risk/benefit ratio of MCT KD and metformin concomitant therapy in epileptic patients should be further evaluated.
Collapse
Affiliation(s)
- Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Samorek-Pieróg
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
3
|
Kanda S, Moulton E, Butchbach MER. Effects of Inhibitors of SLC9A-Type Sodium-Proton Exchangers on Survival Motor Neuron 2 ( SMN2) mRNA Splicing and Expression. Mol Pharmacol 2022; 102:92-105. [PMID: 35667685 PMCID: PMC9341265 DOI: 10.1124/molpharm.122.000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive, pediatric-onset disorder caused by the loss of spinal motor neurons, thereby leading to muscle atrophy. SMA is caused by the loss of or mutations in the survival motor neuron 1 (SMN1) gene. SMN1 is duplicated in humans to give rise to the paralogous survival motor neuron 2 (SMN2) gene. This paralog is nearly identical except for a cytosine to thymine transition within an exonic splicing enhancer element within exon 7. As a result, the majority of SMN2 transcripts lack exon 7 (SMNΔ7), which produces a truncated and unstable SMN protein. Since SMN2 copy number is inversely related to disease severity, it is a well established target for SMA therapeutics development. 5-(N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of sodium/proton exchangers (NHEs), has previously been shown to increase exon 7 inclusion and SMN protein levels in SMA cells. In this study, NHE inhibitors were evaluated for their ability to modulate SMN2 expression. EIPA as well as 5-(N,N-hexamethylene)amiloride (HMA) increase exon 7 inclusion in SMN2 splicing reporter lines as well as in SMA fibroblasts. The EIPA-induced exon 7 inclusion occurs via a unique mechanism that does not involve previously identified splicing factors. Transcriptome analysis identified novel targets, including TIA1 and FABP3, for further characterization. EIPA and HMA are more selective at inhibiting the NHE5 isoform, which is expressed in fibroblasts as well as in neuronal cells. These results show that NHE5 inhibition increases SMN2 expression and may be a novel target for therapeutics development. SIGNIFICANCE STATEMENT: This study demonstrates a molecular mechanism by which inhibitors of the sodium-protein exchanger increase the alternative splicing of SMN2 in spinal muscular atrophy cells. NHE5 selective inhibitors increase the inclusion of full-length SMN2 mRNAs by targeting TIA1 and FABP3 expression, which is distinct from other small molecule regulators of SMN2 alternative splicing. This study provides a novel means to increase full-length SMN2 expression and a novel target for therapeutics development.
Collapse
Affiliation(s)
- Sambee Kanda
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, Delaware (S.K., E.M., M.E.R.B.); Department of Biological Sciences, University of Delaware, Newark, Delaware (S.K., M.E.R.B.); Center for Pediatric Research, Nemours Biomedical Research, Nemours Children's Hospital Delaware, Wilmington, Delaware (M.E.R.B.); and Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania (M.E.R.B.)
| | - Emily Moulton
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, Delaware (S.K., E.M., M.E.R.B.); Department of Biological Sciences, University of Delaware, Newark, Delaware (S.K., M.E.R.B.); Center for Pediatric Research, Nemours Biomedical Research, Nemours Children's Hospital Delaware, Wilmington, Delaware (M.E.R.B.); and Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania (M.E.R.B.)
| | - Matthew E R Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, Delaware (S.K., E.M., M.E.R.B.); Department of Biological Sciences, University of Delaware, Newark, Delaware (S.K., M.E.R.B.); Center for Pediatric Research, Nemours Biomedical Research, Nemours Children's Hospital Delaware, Wilmington, Delaware (M.E.R.B.); and Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania (M.E.R.B.)
| |
Collapse
|
4
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Bonnet U, Wiemann M. Topiramate Decelerates Bicarbonate-Driven Acid-Elimination of Human Neocortical Neurons: Strategic Significance for its Antiepileptic, Antimigraine and Neuroprotective Properties. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:264-275. [PMID: 32496992 DOI: 10.2174/1871527319666200604173208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mammalian central neurons regulate their intracellular pH (pHi) strongly and even slight pHi-fluctuations can influence inter-/intracellular signaling, synaptic plasticity and excitability. OBJECTIVE For the first time, we investigated topiramate´s (TPM) influence on pHi-behavior of human central neurons representing a promising target for anticonvulsants and antimigraine drugs. METHODS In slice-preparations of tissue resected from the middle temporal gyrus of five adults with intractable temporal lobe epilepsy, BCECF-AM-loaded neocortical pyramidal-cells were investigated by fluorometry. The pHi-regulation was estimated by using the recovery-slope from intracellular acidification after an Ammonium-Prepulse (APP). RESULTS Among 17 pyramidal neurons exposed to 50 μM TPM, seven (41.24%) responded with an altered resting-pHi (7.02±0.12), i.e., acidification of 0.01-0.03 pH-units. The more alkaline the neurons, the greater the TPM-related acidifications (r=0.7, p=0.001, n=17). The recovery from APPacidification was significantly slowed under TPM (p<0.001, n=5). Further experiments using nominal bicarbonate-free (n=2) and chloride-free (n=2) conditions pointed to a modulation of the HCO3 -- driven pHi-regulation by TPM, favoring a stimulation of the passive Cl-/HCO3 --antiporter (CBT) - an acid-loader predominantly in more alkaline neurons. CONCLUSION TPM modulated the bicarbonate-driven pHi-regulation, just as previously described in adult guinea-pig hippocampal neurons. We discussed the significance of the resulting subtle acidifications for beneficial antiepileptic, antimigraine and neuroprotective effects as well as for unwanted cognitive deficits.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University Duisburg-Essen, Castrop-Rauxel, Germany.,Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Wiemann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany.,IBE R&D gGmbH, Institute for Lung Health, D-48149 Munster, Germany
| |
Collapse
|
6
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
7
|
Zhang J, Kong X, Wang Z, Gao X, Ge Z, Gu Y, Ye P, Chao Y, Zhu L, Li X, Chen S. AMP-activated protein kinase regulates glycocalyx impairment and macrophage recruitment in response to low shear stress. FASEB J 2019; 33:7202-7212. [PMID: 30860864 DOI: 10.1096/fj.201801869rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Low shear stress (LSS) increases degradation of the endothelial glycocalyx, leading to production of endothelial inflammation and atherosclerosis. However, the underlying mechanisms of how LSS diminishes the endothelial glycocalyx remain unclear. We showed that LSS inactivated AMPK, enhanced Na+-H+ exchanger (NHE)1 activity, and induced glycocalyx degradation. Activation of AMPK prevented LSS-induced NHE1 activity and endothelial glycocalyx impairment. We further identified hyaluronidase 2 (HYAL2) as a mediator of endothelial glycocalyx impairment in HUVECs exposed to LSS. Inactivation of AMPK by LSS up-regulates the activity of HYAL2, which acts downstream of NHE1. We characterized a left common carotid artery partial ligation (PL) model of LSS in C57BL/6 mice. The results showed decreased expression of hyaluronan (HA) in the endothelial glycocalyx and decreased thickness of the endothelial glycocalyx in PL mice. Pharmacological activation of AMPK by ampkinone not only attenuated glycocalyx impairment due to HA degradation but also blocked vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression increase and macrophage recruitment in the endothelia of PL mice. Our results revealed that AMPK dephosphorylation induced by LSS activates NHE1 and HYAL2 to promote HA degradation and glycocalyx injury, which may contribute to endothelial inflammatory reaction and macrophage recruitment.-Zhang, J., Kong, X., Wang, Z., Gao, X., Ge, Z., Gu, Y., Ye, P., Chao, Y., Zhu, L., Li, X., Chen, S. AMP-activated protein kinase regulates glycocalyx impairment and macrophage recruitment in response to low shear stress.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhimei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaobo Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Intracellular signaling of the AMP-activated protein kinase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:171-207. [DOI: 10.1016/bs.apcsb.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Zhou H, Tao P. REDAN: Relative Entropy-Based Dynamical Allosteric Network Model. Mol Phys 2018; 117:1334-1343. [PMID: 31354173 PMCID: PMC6660174 DOI: 10.1080/00268976.2018.1543904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Protein allostery is ubiquitous phenomena that are important for cellular signaling processes. Despite extensive methodology development, a quantitative model is still needed to accurately measure protein allosteric response upon external perturbation. Here, we introduced the relative entropy concept from information theory as a quantitative metric to develop a method for measurement of the population shift with regard to protein structure during allosteric transition. This method is referred to as relative entropy-based dynamical allosteric network (REDAN) model. Using this method, protein allostery could be evaluated at three mutually dependent structural levels: allosteric residues, allosteric pathways, and allosteric communities. All three levels are carried out using rigorous searching algorithms based on relative entropy. Application of the REDAN model on the second PDZ domain (PDZ2) in the human PTP1E protein provided metric-based insight into its allostery upon peptide binding.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Peng Tao
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
10
|
Jiang S, Li T, Ji T, Yi W, Yang Z, Wang S, Yang Y, Gu C. AMPK: Potential Therapeutic Target for Ischemic Stroke. Theranostics 2018; 8:4535-4551. [PMID: 30214637 PMCID: PMC6134933 DOI: 10.7150/thno.25674] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
5'-AMP-activated protein kinase (AMPK), a member of the serine/threonine (Ser/Thr) kinase group, is universally distributed in various cells and organs. It is a significant endogenous defensive molecule that responds to harmful stimuli, such as cerebral ischemia, cerebral hemorrhage, and, neurodegenerative diseases (NDD). Cerebral ischemia, which results from insufficient blood flow or the blockage of blood vessels, is a major cause of ischemic stroke. Ischemic stroke has received increased attention due to its '3H' effects, namely high mortality, high morbidity, and high disability. Numerous studies have revealed that activation of AMPK plays a protective role in the brain, whereas its action in ischemic stroke remains elusive and poorly understood. Based on existing evidence, we introduce the basic structure, upstream regulators, and biological roles of AMPK. Second, we analyze the relationship between AMPK and the neurovascular unit (NVU). Third, the actions of AMPK in different phases of ischemia and current therapeutic methods are discussed. Finally, we evaluate existing controversy and provide a detailed analysis, followed by ethical issues, potential directions, and further prospects of AMPK. The information complied here may aid in clinical and basic research of AMPK, which may be a potent drug candidate for ischemic stroke treatment in the future.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Simeng Wang
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
11
|
Muzzachi S, Guerra L, Martino NA, Favia M, Punzi G, Silvestre F, Guaricci AC, Roscino MT, Pierri CL, Dell'Aquila ME, Casavola V, Lacalandra GM, Ciani E. Effect of cariporide on ram sperm pH regulation and motility: possible role of NHE1. Reproduction 2018; 155:433-445. [PMID: 29491124 DOI: 10.1530/rep-17-0456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/27/2018] [Indexed: 01/05/2023]
Abstract
Sperm motility, a feature essential for in vivo fertilization, is influenced by intracellular pH (pHi) homeostasis. Several mechanisms are involved in pHi regulation, among which sodium-hydrogen exchangers (NHEs), a family of integral transmembrane proteins that catalyze the exchange of Na+ for H+ across lipid bilayers. A preliminary characterization of NHE activity and kinetic parameters, followed by analysis of the expression and localization of the protein in ram spermatozoa was performed. NHE activity showed an apparent Km for external Na+ of 17.61 mM. Immunoblotting revealed a molecular mass of 85 kDa. Immunolocalization pattern showed some species-specific aspects, such as positive labeling at the equatorial region of the sperm head. Cariporide, a selective NHE1 inhibitor, significantly reduced pHi recovery (85%). Similarly, exposure to cariporide significantly inhibited different motility parameters, including those related to sperm capacitation. In vitro fertilization (IVF) was not affected by cariporide, possibly due to the non-dramatic, although significant, drop in motility and velocity parameters or due to prolonged exposure during IVF, which may have caused progressive loss of its inhibitory effect. In conclusion, this is the first study documenting, in a large animal model (sheep) of well-known translational relevance, a direct functional role of NHE on sperm pHi and motility. The postulated specificity of cariporide toward isoform 1 of the Na+/H+ exchanger seems to suggest that NHE1 may contribute to the observed effects on sperm cell functionality.
Collapse
Affiliation(s)
- Stefania Muzzachi
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Lorenzo Guerra
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Nicola Antonio Martino
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy.,Istituto Zooprofilattico Sperimentale della Puglia e della BasilicataFoggia, Italy
| | - Maria Favia
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Giuseppe Punzi
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Fabio Silvestre
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Antonio Ciro Guaricci
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Maria Teresa Roscino
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Ciro Leonardo Pierri
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Maria Elena Dell'Aquila
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Valeria Casavola
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Giovanni Michele Lacalandra
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Elena Ciani
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
12
|
Cao M, Fang J, Wang X, Wang Y, Duan K, Ye F, Ouyang W, Tong J. Activation of AMP-activated protein kinase (AMPK) aggravated postoperative cognitive dysfunction and pathogenesis in aged rats. Brain Res 2018; 1684:21-29. [PMID: 29408499 DOI: 10.1016/j.brainres.2018.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 11/17/2022]
Abstract
The upstream signal molecule modulating neuro-inflammation and synaptic changes during the pathogenesis of postoperative cognitive dysfunction (POCD) is still elusive. Here, we examined the effects and mechanisms of energy sensor AMP-activated protein kinase (AMPK) in the pathogenesis of POCD. Our data showed that surgery significantly increased the expression of p-AMPK in aged rats (p < 0.05), but not in adult rats (p > 0.05). Moreover, inhibiting AMPK activation via compound C during operation significantly improved surgery-induced impairment of the learning and memory of aged rats in water maze (p < 0.05). Further mechanism studies showed that corresponding to the impairment of learning and memory after surgery, surgery significantly increased the activation of microglia, decreased the expressions of NR2B and p-NR2B, and increased the expressions of Tau and p-Tau, which also were obviously restored by inhibiting AMPK during operation. In contrast, Inhibiting AMPK activation during operation didn't change ATP level in the hippocampus of aged rats after surgery. These data suggest that surgery induced activation of AMPK in hippocampus in an age-dependent manner. AMPK plays important roles in POCD of aged rats via multiple mechanisms, and is a possible molecular target for the prevention and treatment of POCD.
Collapse
Affiliation(s)
- Mengya Cao
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jiakai Fang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xueqin Wang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yi Wang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Kaiming Duan
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Feng Ye
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jianbin Tong
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
13
|
Lee BK, Jung YS. Sustained Intracellular Acidosis Triggers the Na⁺/H⁺ Exchager-1 Activation in Glutamate Excitotoxicity. Biomol Ther (Seoul) 2017; 25:593-598. [PMID: 28605830 PMCID: PMC5685428 DOI: 10.4062/biomolther.2017.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/08/2017] [Accepted: 03/18/2017] [Indexed: 11/18/2022] Open
Abstract
The Na+/H+ exchanger-1 (NHE-1) is a ubiquitously expressed pH-regulatory membrane protein that functions in the brain, heart, and other organs. It is increased by intracellular acidosis through the interaction of intracellular H+ with an allosteric modifier site in the transport domain. In the previous study, we reported that glutamate-induced NHE-1 phosphorylation mediated by activation of protein kinase C-β (PKC-β) in cultured neuron cells via extracellular signal-regulated kinases (ERK)/p90 ribosomal s6 kinases (p90RSK) pathway results in NHE-1 activation. However, whether glutamate stimulates NHE-1 activity solely by the allosteric mechanism remains elusive. Cultured primary cortical neuronal cells were subjected to intracellular acidosis by exposure to 100 μM glutamate or 20 mM NH4Cl. After the desired duration of intracellular acidosis, the phosphorylation and activation of PKC-β, ERK1/2 and p90RSK were determined by Western blotting. We investigated whether the duration of intracellular acidosis is controlled by glutamate exposure time. The NHE-1 activation increased while intracellular acidosis sustained for >3 min. To determine if sustained intracellular acidosis induced NHE-1 phosphorylation, we examined phosphorylation of NHE-1 induced by intracellular acidosis by transient exposure to NH4Cl. Sustained intracellular acidosis led to activation and phosphorylation of NHE-1. In addition, sustained intracellular acidosis also activated the PKC-β, ERK1/2, and p90RSK in neuronal cells. We conclude that glutamate stimulates NHE-1 activity through sustained intracellular acidosis, which mediates NHE-1 phosphorylation regulated by PKC-β/ERK1/2/p90RSK pathway in neuronal cells.
Collapse
Affiliation(s)
- Bo Kyung Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.,Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
14
|
Chronic metformin treatment facilitates seizure termination. Biochem Biophys Res Commun 2017; 484:450-455. [PMID: 28137587 DOI: 10.1016/j.bbrc.2017.01.157] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/08/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a key energy sensor. Its activator metformin could suppress epileptogenesis in the pentylenetetrazol (PTZ) kindling model. However, the effect of metformin on the acute and chronic seizures has not been studied. We first detected the expression of AMPK in the brain tissue of human and mice with chronic seizures, as well as in mice with acute seizures. Second, using behavioral assay and local filed potentials (LFPs) recording, we investigated the effect of chronic metformin treatment on seizures in a acute seizure model and a chronic seizure model. Our results showed that AMPK was expressed in neurons in the epileptic brain. The expression level was decreased in the brain tissue that experienced chronic and acute seizures. In PTZ-induced acute seizures model, behavioral assay showed that chronic metformin treatment decreased the mortality, and LFPs recording showed that chronic metformin treatment shortened the duration of generalized tonic-clonic seizures and prolonged the duration of postictal depression. Moreover, in kainic acid-induced chronic seizures model, LFPs recording showed that chronic metformin treatment shortened the duration of epileptic activity. Our study suggests that chronic metformin treatment could facilitate seizure termination.
Collapse
|
15
|
Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Met Ions Life Sci 2016; 16:391-458. [DOI: 10.1007/978-3-319-21756-7_12] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Ran QQ, Chen HL, Liu YL, Yu HX, Shi F, Wang MS. Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway. Neural Regen Res 2015; 10:1069-75. [PMID: 26330828 PMCID: PMC4541236 DOI: 10.4103/1673-5374.160095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 01/16/2023] Open
Abstract
Electroacupuncture has therapeutic effects on ischemic brain injury, but its mechanism is still poorly understood. In this study, mice were stimulated by electroacupuncture at the Baihui (GV20) acupoint for 30 minutes at 1 mA and 2/15 Hz for 5 consecutive days. A cerebral ischemia model was established by ligating the bilateral common carotid artery for 15 minutes. At 72 hours after injury, neuronal injury in the mouse hippocampus had lessened, and the number of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-positive cells reduced after electroacupuncture treatment. Moreover, expression of adenosine monophosphate-activated protein kinase α (AMPKα) and phosphorylated AMPKα was up-regulated. Intraperitoneal injection of the AMPK antagonist, compound C, suppressed this phenomenon. Our findings suggest that electroacupuncture preconditioning alleviates ischemic brain injury via AMPK activation.
Collapse
Affiliation(s)
- Qiang-Qiang Ran
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Huai-Long Chen
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan-Li Liu
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Hai-Xia Yu
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Fei Shi
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Shan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
17
|
Ross E, Ata R, Thavarajah T, Medvedev S, Bowden P, Marshall JG, Antonescu CN. AMP-Activated Protein Kinase Regulates the Cell Surface Proteome and Integrin Membrane Traffic. PLoS One 2015; 10:e0128013. [PMID: 26010094 PMCID: PMC4444004 DOI: 10.1371/journal.pone.0128013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/21/2015] [Indexed: 12/11/2022] Open
Abstract
The cell surface proteome controls numerous cellular functions including cell migration and adhesion, intercellular communication and nutrient uptake. Cell surface proteins are controlled by acute changes in protein abundance at the plasma membrane through regulation of endocytosis and recycling (endomembrane traffic). Many cellular signals regulate endomembrane traffic, including metabolic signaling; however, the extent to which the cell surface proteome is controlled by acute regulation of endomembrane traffic under various conditions remains incompletely understood. AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated upon reduced cellular energy availability. AMPK activation alters the endomembrane traffic of a few specific proteins, as part of an adaptive response to increase energy intake and reduce energy expenditure. How increased AMPK activity during energy stress may globally regulate the cell surface proteome is not well understood. To study how AMPK may regulate the cell surface proteome, we used cell-impermeable biotinylation to selectively purify cell surface proteins under various conditions. Using ESI-MS/MS, we found that acute (90 min) treatment with the AMPK activator A-769662 elicits broad control of the cell surface abundance of diverse proteins. In particular, A-769662 treatment depleted from the cell surface proteins with functions in cell migration and adhesion. To complement our mass spectrometry results, we used other methods to show that A-769662 treatment results in impaired cell migration. Further, A-769662 treatment reduced the cell surface abundance of β1-integrin, a key cell migration protein, and AMPK gene silencing prevented this effect. While the control of the cell surface abundance of various proteins by A-769662 treatment was broad, it was also selective, as this treatment did not change the cell surface abundance of the transferrin receptor. Hence, the cell surface proteome is subject to acute regulation by treatment with A-769662, at least some of which is mediated by the metabolic sensor AMPK.
Collapse
Affiliation(s)
- Eden Ross
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Rehman Ata
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Thanusi Thavarajah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Sergei Medvedev
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Peter Bowden
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - John G Marshall
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| |
Collapse
|