1
|
Matsueda S, Yamada S, Torisu K, Kitamura H, Ninomiya T, Nakano T, Kitazono T. Vascular Calcification Is Accelerated by Hyponatremia and Low Osmolality. Arterioscler Thromb Vasc Biol 2024; 44:1925-1943. [PMID: 38989577 DOI: 10.1161/atvbaha.123.320069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Hyponatremia, frequently observed in patients with chronic kidney disease, is associated with increased cardiovascular morbidity and mortality. Hyponatremia or low osmolality induces oxidative stress and cell death, both of which accelerate vascular calcification (VC), a critical phenotype in patients with chronic kidney disease. Whether hyponatremia or low osmolality plays a role in the pathogenesis of VC is unknown. METHODS Human vascular smooth muscle cells (VSMCs) and mouse aortic rings were cultured in various osmotic conditions and calcifying medium supplemented with high calcium and phosphate. The effects of low osmolality on phenotypic change and oxidative stress in the cultured VSMCs were examined. Microarray analysis was conducted to determine the main signaling pathway of osmolality-related VC. The transcellular sodium and calcium ions flux across the VSMCs were visualized by live imaging. Furthermore, the effect of osmolality on calciprotein particles (CPPs) was investigated. Associations between arterial intimal calcification and hyponatremia or low osmolality were examined by a cross-sectional study using human autopsy specimens obtained in the Hisayama Study. RESULTS Low osmolality exacerbated calcification of the ECM (extracellular matrix) of cultured VSMCs and mouse aortic rings. Oxidative stress and osteogenic differentiation of VSMCs were identified as the underlying mechanisms responsible for low osmolality-induced VC. Microarray analysis showed that low osmolality activated the Rac1 (Ras-related C3 botulinum toxin substrate 1)-Akt (protein kinase B) pathway and reduced NCX1 (Na-Ca exchanger 1) expression. Live imaging showed synchronic calcium ion efflux and sodium ion influx via NCX1 when extracellular sodium ion concentrations were increased. An NCX1 inhibitor promoted calcifying media-induced VC by reducing calcium ion efflux. Furthermore, low osmolality accelerated the generation and maturation steps of CPPs. The cross-sectional study of human autopsy specimens showed that hyponatremia and low osmolality were associated with a greater area of arterial intimal calcification. CONCLUSIONS Hyponatremia and low osmolality promote VC through multiple cellular processes, including the Rac1-Akt pathway activation.
Collapse
Affiliation(s)
- Shumei Matsueda
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Toshiharu Ninomiya
- Epidemiology and Public Health (T. Ninomiya), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kidney Care Unit, Kyushu University Hospital, Fukuoka, Japan (T. Nakano)
| | - Takanari Kitazono
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|
3
|
Brancaccio P, Anzilotti S, Cuomo O, Vinciguerra A, Campanile M, Herchuelz A, Amoroso S, Annunziato L, Pignataro G. Preconditioning in hypoxic-ischemic neonate mice triggers Na +-Ca 2+ exchanger-dependent neurogenesis. Cell Death Dis 2022; 8:318. [PMID: 35831286 PMCID: PMC9279453 DOI: 10.1038/s41420-022-01089-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
To identify alternative interventions in neonatal hypoxic-ischemic encephalopathy, researchers’ attention has been focused to the study of endogenous neuroprotective strategies. Based on the preconditioning concept that a subthreshold insult may protect from a subsequent harmful event, we aimed at identifying a new preconditioning protocol able to enhance Ca2+-dependent neurogenesis in a mouse model of neonatal hypoxia ischemia (HI). To this purpose, we also investigated the role of the preconditioning-linked protein controlling ionic homeostasis, Na+/Ca2+ exchanger (NCX). Hypoxic Preconditioning (HPC) was reproduced by exposing P7 mice to 20’ hypoxia. HI was induced by isolating and cutting the right common carotid artery. A significant reduction in ischemic damage was observed in mice subjected to 20’ hypoxia followed,3 days later, by 60’ HI, thus suggesting that 20’ hypoxia functions as preconditioning stimulus. HPC promoted neuroblasts proliferation in the dentate gyrus mirrored by an increase of NCX1 and NCX3-positive cells and an improvement of behavioral motor performances in HI mice. An attenuation of HPC neuroprotection as well as a reduction in the expression of neurogenesis markers, including p57 and NeuroD1, was observed in preconditioned mice lacking NCX1 or NCX3. In summary, PC in neonatal mice triggers a neurogenic process linked to ionic homeostasis maintenance, regulated by NCX1 and NCX3.
Collapse
Affiliation(s)
- P Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - S Anzilotti
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - O Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - A Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", 60126, Ancona, Italy
| | - M Campanile
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - A Herchuelz
- Laboratoire de Pharmacodynamie et de Therapeutique-Faculté de Médecine Université Libre de Bruxelles, Bruxelles, Belgium
| | - S Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", 60126, Ancona, Italy
| | - L Annunziato
- IRCCS Synlab SDN S.p.A, via Gianturco 113, 80143, Naples, Italy
| | - G Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
4
|
Identification and characterization of the promoter and transcription factors regulating the expression of cerebral sodium/calcium exchanger 2 (NCX2) gene. Cell Calcium 2022; 102:102542. [DOI: 10.1016/j.ceca.2022.102542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/30/2021] [Accepted: 01/22/2022] [Indexed: 11/22/2022]
|
5
|
Piccialli I, Ciccone R, Secondo A, Boscia F, Tedeschi V, de Rosa V, Cepparulo P, Annunziato L, Pannaccione A. The Na +/Ca 2+ Exchanger 3 Is Functionally Coupled With the Na V1.6 Voltage-Gated Channel and Promotes an Endoplasmic Reticulum Ca 2+ Refilling in a Transgenic Model of Alzheimer's Disease. Front Pharmacol 2021; 12:775271. [PMID: 34955845 PMCID: PMC8692738 DOI: 10.3389/fphar.2021.775271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 01/15/2023] Open
Abstract
The remodelling of neuronal ionic homeostasis by altered channels and transporters is a critical feature of the Alzheimer's disease (AD) pathogenesis. Different reports converge on the concept that the Na+/Ca2+ exchanger (NCX), as one of the main regulators of Na+ and Ca2+ concentrations and signalling, could exert a neuroprotective role in AD. The activity of NCX has been found to be increased in AD brains, where it seemed to correlate with an increased neuronal survival. Moreover, the enhancement of the NCX3 currents (INCX) in primary neurons treated with the neurotoxic amyloid β 1-42 (Aβ1-42) oligomers prevented the endoplasmic reticulum (ER) stress and neuronal death. The present study has been designed to investigate any possible modulation of the INCX, the functional interaction between NCX and the NaV1.6 channel, and their impact on the Ca2+ homeostasis in a transgenic in vitro model of AD, the primary hippocampal neurons from the Tg2576 mouse, which overproduce the Aβ1-42 peptide. Electrophysiological studies, carried in the presence of siRNA and the isoform-selective NCX inhibitor KB-R7943, showed that the activity of a specific NCX isoform, NCX3, was upregulated in its reverse, Ca2+ influx mode of operation in the Tg2576 neurons. The enhanced NCX activity contributed, in turn, to increase the ER Ca2+ content, without affecting the cytosolic Ca2+ concentrations of the Tg2576 neurons. Interestingly, our experiments have also uncovered a functional coupling between NCX3 and the voltage-gated NaV1.6 channels. In particular, the increased NaV1.6 currents appeared to be responsible for the upregulation of the reverse mode of NCX3, since both TTX and the Streptomyces griseolus antibiotic anisomycin, by reducing the NaV1.6 currents, counteracted the increase of the INCX in the Tg2576 neurons. In agreement, our immunofluorescence analyses revealed that the NCX3/NaV1.6 co-expression was increased in the Tg2576 hippocampal neurons in comparison with the WT neurons. Collectively, these findings indicate that NCX3 might intervene in the Ca2+ remodelling occurring in the Tg2576 primary neurons thus emerging as a molecular target with a neuroprotective potential, and provide a new outcome of the NaV1.6 upregulation related to the modulation of the intracellular Ca2+ concentrations in AD neurons.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
6
|
Kopach O, Pavlov AM, Sindeeva OA, Sukhorukov GB, Rusakov DA. Biodegradable Microcapsules Loaded with Nerve Growth Factor Enable Neurite Guidance and Synapse Formation. Pharmaceutics 2020; 13:E25. [PMID: 33375672 PMCID: PMC7823884 DOI: 10.3390/pharmaceutics13010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders and traumas often involve loss of specific neuronal connections, which would require intervention with high spatial precision. We have previously demonstrated the biocompatibility and therapeutic potential of the layer-by-layer (LbL)-fabricated microcapsules aimed at the localized delivery of specific channel blockers to peripheral nerves. Here, we explore the potential of LbL-microcapsules to enable site-specific, directional action of neurotrophins to stimulate neuronal morphogenesis and synaptic circuit formation. We find that nanoengineered biodegradable microcapsules loaded with nerve growth factor (NGF) can guide the morphological development of hippocampal neurons in vitro. The presence of NGF-loaded microcapsules or their clusters increases the neurite outgrowth rate while boosting neurite branching. Microcapsule clusters appear to guide the trajectory of developing individual axons leading to the formation of functional synapses. Our observations highlight the potential of NGF-loaded, biodegradable LbL-microcapsules to help guide axonal development and possibly circuit regeneration in neuropathology.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anton M. Pavlov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Remote Controlled Theranostic Systems Laboratory, Saratov State University, 83 Astrakhanskaya Street, 410012 Saratov, Russia
| | - Olga A. Sindeeva
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143005 Moscow, Russia
| | - Gleb B. Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143005 Moscow, Russia
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
7
|
Moreira NCDS, Lima JEBDF, Chierrito TPC, Carvalho I, Sakamoto-Hojo ET. Novel Hybrid Acetylcholinesterase Inhibitors Induce Differentiation and Neuritogenesis in Neuronal Cells in vitro Through Activation of the AKT Pathway. J Alzheimers Dis 2020; 78:353-370. [PMID: 32986667 DOI: 10.3233/jad-200425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a progressive loss of episodic memory associated with amyloid-β peptide aggregation and the abnormal phosphorylation of the tau protein, leading to the loss of cholinergic function. Acetylcholinesterase (AChE) inhibitors are the main class of drugs used in AD therapy. OBJECTIVE The aim of the current study was to evaluate the potential of two tacrine-donepezil hybrid molecules (TA8Amino and TAHB3), which are AChE inhibitors, to induce neurodifferentiation and neuritogenesis in SH-SY5Y cells. METHODS The experiments were carried out to characterize neurodifferentiation, cellular changes related to responses to oxidative stress and pathways of cell survival in response to drug treatments. RESULTS The results indicated that the compounds did not present cytotoxic effects in SH-SY5Y or HepG2 cells. TA8Amino and TAHB3 induced neurodifferentiation and neuritogenesis in SH-SY5Y cells. These cells showed increased levels of intracellular and mitochondrial reactive oxygen species; the induction of oxidative stress was also demonstrated by an increase in SOD1 expression in TA8Amino and TAHB3-treated cells. Cells treated with the compounds showed an increase in PTEN(Ser380/Thr382/383) and AKT(Ser473) expression, suggesting the involvement of the AKT pathway. CONCLUSION Our results demonstrated that TA8Amino and TAHB3 present advantages as potential drugs for AD therapy and that they are capable of inducing neurodifferentiation and neuritogenesis.
Collapse
Affiliation(s)
| | | | | | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Multicoding in neural information transfer suggested by mathematical analysis of the frequency-dependent synaptic plasticity in vivo. Sci Rep 2020; 10:13974. [PMID: 32811844 PMCID: PMC7435278 DOI: 10.1038/s41598-020-70876-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022] Open
Abstract
Two elements of neural information processing have primarily been proposed: firing rate and spike timing of neurons. In the case of synaptic plasticity, although spike-timing-dependent plasticity (STDP) depending on presynaptic and postsynaptic spike times had been considered the most common rule, recent studies have shown the inhibitory nature of the brain in vivo for precise spike timing, which is key to the STDP. Thus, the importance of the firing frequency in synaptic plasticity in vivo has been recognized again. However, little is understood about how the frequency-dependent synaptic plasticity (FDP) is regulated in vivo. Here, we focused on the presynaptic input pattern, the intracellular calcium decay time constants, and the background synaptic activity, which vary depending on neuron types and the anatomical and physiological environment in the brain. By analyzing a calcium-based model, we found that the synaptic weight differs depending on these factors characteristic in vivo, even if neurons receive the same input rate. This finding suggests the involvement of multifaceted factors other than input frequency in FDP and even neural coding in vivo.
Collapse
|
9
|
Sindeeva OA, Kopach O, Kurochkin MA, Sapelkin A, Gould DJ, Rusakov DA, Sukhorukov GB. Polylactic Acid-Based Patterned Matrixes for Site-Specific Delivery of Neuropeptides On-Demand: Functional NGF Effects on Human Neuronal Cells. Front Bioeng Biotechnol 2020; 8:497. [PMID: 32596218 PMCID: PMC7304324 DOI: 10.3389/fbioe.2020.00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
The patterned microchamber arrays based on biocompatible polymers are a versatile cargo delivery system for drug storage and site-/time-specific drug release on demand. However, functional evidence of their action on nerve cells, in particular their potential for enabling patterned neuronal morphogenesis, remains unclear. Recently, we have established that the polylactic acid (PLA)-based microchamber arrays are biocompatible with human cells of neuronal phenotype and provide safe loading for hydrophilic substances of low molecular weight, with successive site-specific cargo release on-demand to trigger local cell responses. Here, we load the nerve growth factor (NGF) inside microchambers and grow N2A cells on the surface of patterned microchamber arrays. We find that the neurite outgrowth in local N2A cells can be preferentially directed towards opened microchambers (upon-specific NGF release). These observations suggest the PLA-microchambers can be an efficient drug delivery system for the site-specific delivery of neuropeptides on-demand, potentially suitable for the migratory or axonal guidance of human nerve cells.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- Remote Controlled Theranostic Systems Lab, Department of Nanotechnology, Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Maxim A. Kurochkin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andrei Sapelkin
- School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
| | - David J. Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Dmitri A. Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gleb B. Sukhorukov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
- Center of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Molinaro P, Natale S, Serani A, Calabrese L, Secondo A, Tedeschi V, Valsecchi V, Pannaccione A, Scorziello A, Annunziato L. Genetically modified mice to unravel physiological and pathophysiological roles played by NCX isoforms. Cell Calcium 2020; 87:102189. [PMID: 32199207 DOI: 10.1016/j.ceca.2020.102189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 11/30/2022]
Abstract
Since the discovery of the three isoforms of the Na+/Ca2+ exchanger, NCX1, NCX2 and NCX3 in 1990s, many studies have been devoted to identifying their specific roles in different tissues under several physiological or pathophysiological conditions. In particular, several seminal experimental works laid the foundation for better understanding gene and protein structures, tissue distribution, and regulatory functions of each antiporter isoform. On the other hand, despite the efforts in the development of specific compounds selectively targeting NCX1, NCX2 or NCX3 to test their physiological or pathophysiological roles, several drawbacks hampered the achievement of these goals. In fact, at present no isoform-specific compounds have been yet identified. Moreover, these compounds, despite their potency, possess some nonspecific actions against other ion antiporters, ion channels, and channel receptors. As a result, it is difficult to discriminate direct effects of inhibition/activation of NCX isoforms from the inhibitory or stimulatory effects exerted on other antiporters, channels, receptors, or enzymes. To overcome these difficulties, some research groups used transgenic, knock-out and knock-in mice for NCX isoforms as the most straightforward and fruitful strategy to characterize the biological role exerted by each antiporter isoform. The present review will survey the techniques used to study the roles of NCXs and the current knowledge obtained from these genetic modified mice focusing on the advantages obtained with these strategies in understanding the contribution exerted by each isoform.
Collapse
Affiliation(s)
- Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy.
| | - Silvia Natale
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Lucrezia Calabrese
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | | |
Collapse
|
11
|
Pignataro G, Brancaccio P, Laudati G, Valsecchi V, Anzilotti S, Casamassa A, Cuomo O, Vinciguerra A. Sodium/calcium exchanger as main effector of endogenous neuroprotection elicited by ischemic tolerance. Cell Calcium 2020; 87:102183. [PMID: 32120196 DOI: 10.1016/j.ceca.2020.102183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
The ischemic tolerance (IT) paradigm represents a fundamental cell response to certain types or injury able to render an organ more "tolerant" to a subsequent, stronger, insult. During the 16th century, the toxicologist Paracelsus described for the first time the possibility that a noxious event might determine a state of tolerance. This finding was summarized in one of his most important mentions: "The dose makes the poison". In more recent years, ischemic tolerance in the brain was first described in 1991, when it was demonstrated by Kirino and collaborators that two minutes of subthreshold brain ischemia in gerbils produced tolerance against global brain ischemia. Based on the time in which the conditioning stimulus is applied, it is possible to define preconditioning, perconditioning and postconditioning, when the subthreshold insult is applied before, during or after the ischemic event, respectively. Furthermore, depending on the temporal delay from the ischemic event, two different modalities are distinguished: rapid or delayed preconditioning and postconditioning. Finally, the circumstance in which the conditioning stimulus is applied on an organ distant from the brain is referred as remote conditioning. Over the years the "conditioning" paradigm has been applied to several brain disorders and a number of molecular mechanisms taking part to these protective processes have been described. The mechanisms are usually classified in three distinct categories identified as triggers, mediators and effectors. As concerns the putative effectors, it has been hypothesized that brain cells appear to have the ability to adapt to hypoxia by reducing their energy demand through modulation of ion channels and transporters, which delays anoxic depolarization. The purpose of the present review is to summarize the role played by plasmamembrane proteins able to control ionic homeostasis in mediating protection elicited by brain conditioning, particular attention will be deserved to the role played by Na+/Ca2+ exchanger.
Collapse
Affiliation(s)
- G Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy.
| | - P Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - G Laudati
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - V Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | | | - A Casamassa
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - O Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - A Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
12
|
Natale S, Anzilotti S, Petrozziello T, Ciccone R, Serani A, Calabrese L, Severino B, Frecentese F, Secondo A, Pannaccione A, Fiorino F, Cuomo O, Vinciguerra A, D'Esposito L, Sadile AG, Cabib S, Di Renzo G, Annunziato L, Molinaro P. Genetic Up-Regulation or Pharmacological Activation of the Na +/Ca 2+ Exchanger 1 (NCX1) Enhances Hippocampal-Dependent Contextual and Spatial Learning and Memory. Mol Neurobiol 2020; 57:2358-2376. [PMID: 32048166 DOI: 10.1007/s12035-020-01888-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 01/23/2023]
Abstract
The Na+/Ca2+ exchanger 1 (NCX1) participates in the maintenance of neuronal Na+ and Ca2+ homeostasis, and it is highly expressed at synapse level of some brain areas involved in learning and memory processes, including the hippocampus, cortex, and amygdala. Furthermore, NCX1 increases Akt1 phosphorylation and enhances glutamate-mediated Ca2+ influx during depolarization in hippocampal and cortical neurons, two processes involved in learning and memory mechanisms. We investigated whether the modulation of NCX1 expression/activity might influence learning and memory processes. To this aim, we used a knock-in mouse overexpressing NCX1 in hippocampal, cortical, and amygdala neurons (ncx1.4over) and a newly synthesized selective NCX1 stimulating compound, named CN-PYB2. Both ncx1.4over and CN-PYB2-treated mice showed an amelioration in spatial learning performance in Barnes maze task, and in context-dependent memory consolidation after trace fear conditioning. On the other hand, these mice showed no improvement in novel object recognition task which is mainly dependent on non-spatial memory and displayed an increase in the active phosphorylated CaMKIIα levels in the hippocampus. Interestingly, both of these mice showed an increased level of context-dependent anxiety.Altogether, these results demonstrate that neuronal NCX1 participates in spatial-dependent hippocampal learning and memory processes.
Collapse
Affiliation(s)
- Silvia Natale
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Lucrezia Calabrese
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Lucia D'Esposito
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Simona Cabib
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, 00185, Rome, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
13
|
Annunziato L, Secondo A, Pignataro G, Scorziello A, Molinaro P. New perspectives for selective NCX activators in neurodegenerative diseases. Cell Calcium 2020; 87:102170. [PMID: 32106022 DOI: 10.1016/j.ceca.2020.102170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022]
Abstract
The Na+/Ca2+ exchanger plays a relevant role in several neurological disorders, thus the pharmacological modulation of its isoforms might represent a promising strategy to ameliorate the course of some neurological pathologies including stroke, neonatal hypoxia, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer Disease (AD), and spinal muscular atrophy (SMA). This review will summarize heterocyclic, peptidergic, genetic and epigenetic compounds activating or inhibiting the expression/activity of each NCX isoform. In addition, we will focus our attention on the development of new strategies aimed to ameliorate the pathophysiological conditions in which NCX isoform changes are found.
Collapse
Affiliation(s)
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.
| |
Collapse
|
14
|
Secondo A, Petrozziello T, Tedeschi V, Boscia F, Pannaccione A, Molinaro P, Annunziato L. Nuclear localization of NCX: Role in Ca 2+ handling and pathophysiological implications. Cell Calcium 2019; 86:102143. [PMID: 31865040 DOI: 10.1016/j.ceca.2019.102143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023]
Abstract
Numerous lines of evidence indicate that nuclear calcium concentration ([Ca2+]n) may be controlled independently from cytosolic events by a local machinery. In particular, the perinuclear space between the inner nuclear membrane (INM) and the outer nuclear membrane (ONM) of the nuclear envelope (NE) likely serves as an intracellular store for Ca2+ ions. Since ONM is contiguous with the endoplasmic reticulum (ER), the perinuclear space is adjacent to the lumen of ER thus allowing a direct exchange of ions and factors between the two organelles. Moreover, INM and ONM are fused at the nuclear pore complex (NPC), which provides the only direct passageway between the nucleoplasm and cytoplasm. However, due to the presence of ion channels, exchangers and transporters, it has been generally accepted that nuclear ion fluxes may occur across ONM and INM. Within the INM, the Na+/Ca2+ exchanger (NCX) isoform 1 seems to play an important role in handling Ca2+ through the different nuclear compartments. Particularly, nuclear NCX preferentially allows local Ca2+ flowing from nucleoplasm into NE lumen thanks to the Na+ gradient created by the juxtaposed Na+/K+-ATPase. Such transfer reduces abnormal elevation of [Ca2+]n within the nucleoplasm thus modulating specific transductional pathways and providing a protective mechanism against cell death. Despite very few studies on this issue, here we discuss those making major contribution to the field, also addressing the pathophysiological implication of nuclear NCX malfunction.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy.
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | | |
Collapse
|
15
|
Dong H, Tang B, Jiang Y, Mittal RK. Na + /Ca 2+ exchanger 1 is a key mechanosensitive molecule of the esophageal myenteric neurons. Acta Physiol (Oxf) 2019; 225:e13223. [PMID: 30466198 DOI: 10.1111/apha.13223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022]
Abstract
AIM Our earlier studies showed that mechanical stretch activates inhibitory motor neurons of the oesophagus; however, the underlying molecular mechanisms are unclear. Here, we sought to examine if Na+ /Ca2+ exchanger 1 (NCX1) is responsible for the mechanosensitivity in the esophageal myenteric neurons (EMN) of rats and humans. METHODS The function of NCX1 in primary culture of neurons was determined using calcium imaging, and mechanosensitivity was tested using osmotic stretch and direct mechanical stretch. Axial stretch-induced relaxation of the lower esophageal sphincter (LES) was also studied in vivo in rats. RESULTS The expression and co-localization of NCX1 with nNOS were identified in the EMN from both rats and humans. The extracellular Ca2+ entry caused by ATP through purinergic signalling in the rat EMN was significantly inhibited by selective NCX blockers. Removal of extracellular Na+ to activate the Ca2+ entry mode of NCX1 induced an increase in the cytoplasmic calcium ([Ca2+ ]cyt ), which was attenuated by NCX blockers. Osmotic stretch and mechanical stretch-induced [Ca2+ ]cyt signalling in the rat and human EMN were attenuated by NCX blockers as well as specific NCX1 knockdown. Osmotic stretch and mechanical stretch also induced [Ca2+ ]cyt signalling in the Chinese hamster ovary (CHO) cells with NCX1 over-expression, which was attenuated by NCX blockers. Finally, NCX blockade inhibited axial stretch-activated LES relaxation in vivo experiments in the rats. CONCLUSIONS We demonstrate a novel NCX1/Ca2+ pathway in the mechanosensitive neurons of rat and human oesophagus, which may provide a potential therapeutic target for the treatment of oesophageal motility disorders.
Collapse
Affiliation(s)
- Hui Dong
- Department of Gastroenterology, Xinqiao Hospital Third Military Meical University Chongqing China
- Department of Medicine University of California San Diego California
- San Diego VA Healthcare System San Diego California
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital Third Military Meical University Chongqing China
- Department of Medicine University of California San Diego California
- San Diego VA Healthcare System San Diego California
| | - Yanfen Jiang
- Department of Medicine University of California San Diego California
- San Diego VA Healthcare System San Diego California
| | - Ravinder K. Mittal
- Department of Medicine University of California San Diego California
- San Diego VA Healthcare System San Diego California
| |
Collapse
|
16
|
Glatiramer Acetate modulates ion channels expression and calcium homeostasis in B cell of patients with relapsing-remitting multiple sclerosis. Sci Rep 2019; 9:4208. [PMID: 30862866 PMCID: PMC6414512 DOI: 10.1038/s41598-018-38152-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022] Open
Abstract
To investigate the effects of Glatiramer Acetate (GA) on B cells by an integrated computational and experimental approach. GA is an immunomodulatory drug approved for the treatment of multiple sclerosis (MS). GA effect on B cells is yet to be fully elucidated. We compared transcriptional profiles of B cells from treatment-naïve relapsing remitting MS patients, treated or not with GA for 6 hours in vitro, and of B cells before and after six months of GA administration in vivo. Microarrays were analyzed with two different computational approaches, one for functional analysis of pathways (Gene Set Enrichment Analysis) and one for the identification of new drug targets (Mode-of-action by Network Analysis). GA modulates the expression of genes involved in immune response and apoptosis. A differential expression of genes encoding ion channels, mostly regulating Ca2+ homeostasis in endoplasmic reticulum (ER) was also observed. Microfluorimetric analysis confirmed this finding, showing a specific GA effect on ER Ca2+ concentration. Our findings unveils a GA regulatory effect on the immune response by influencing B cell phenotype and function. In particular, our results highlight a new functional role for GA in modulating Ca2+ homeostasis in these cells.
Collapse
|
17
|
Di Benedetto G, Valerio O, Lariccia V, Burgaletto C, Lempereur L, Parenti C, Zanghì GN, Matteucci A, Amoroso S, Bernardini R, Cantarella G. Tumor necrosis factor-related apoptosis-inducing ligand reduces the expression of the neuroprotective Na + /Ca 2+ exchanger isoform NCX3 in human neuroblastoma SH-SY5Y cells. FEBS J 2019; 286:737-749. [PMID: 30552797 DOI: 10.1111/febs.14732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/04/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a cytokine belonging to the TNF superfamily, is regarded as a mediator of neurotoxicity. The constitutively expressed ion exchanger Na+ /Ca2+ exchanger isoform-3 (NCX3) has been shown to protect neurons from injury. Its expression is induced by nerve growth factor (NGF) through activation of its tyrosine kinase receptor trkA. The latter, in turn, activates downstream kinases, such as extracellular signal-regulated kinase (ERK) and the survival-related kinase protein kinase B (AKT). Here, we verified whether TRAIL could influence the expression of NCX3 via modulation of the NGF/trkA system. Differentiated human neuroblastoma SH-SY5Y cells were incubated with TRAIL and, subsequently, the expression of the NCX3 protein was studied at different times by means of western blot analysis. Then, the expression of the phosphorylated forms of either trkA, ERK or AKT was analyzed at identical intervals. Western blot analysis revealed that the expression of NCX3 protein decreased in a time-dependent fashion in SH-SY5Y cells treated with TRAIL, to reach its minimum at 48 h. On the other hand, p-trkA, p-ERK, and p-AKT expression was increased in cells treated with TRAIL after 6 and 16 h; then it declined to nearly undetectable levels after 48 h. Results indicate that the increase in TRAIL expression occurring during neuronal damage may be responsible of NCX3 down-regulation and weakens its neuroprotective effects. The TRAIL system could thus represent a potential target for treatment of neuronal damage characterized by NCX3 function impairment.
Collapse
Affiliation(s)
- Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania School of Medicine, Italy
| | - Oriana Valerio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania School of Medicine, Italy
| | - Vincenzo Lariccia
- Department of Neurosciences, Section of Pharmacology, University "Politecnica delle Marche" School of Medicine, Ancona, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania School of Medicine, Italy
| | - Laurence Lempereur
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania School of Medicine, Italy
| | - Carmela Parenti
- Department of Drug Sciences, University of Catania School of Pharmacy, Italy
| | | | - Alessandra Matteucci
- Department of Neurosciences, Section of Pharmacology, University "Politecnica delle Marche" School of Medicine, Ancona, Italy
| | - Salvatore Amoroso
- Department of Neurosciences, Section of Pharmacology, University "Politecnica delle Marche" School of Medicine, Ancona, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania School of Medicine, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania School of Medicine, Italy
| |
Collapse
|
18
|
Duan L, Hope JM, Guo S, Ong Q, François A, Kaplan L, Scherrer G, Cui B. Optical Activation of TrkA Signaling. ACS Synth Biol 2018; 7:1685-1693. [PMID: 29975841 DOI: 10.1021/acssynbio.8b00126] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nerve growth factor/tropomyosin receptor kinase A (NGF/TrkA) signaling plays a key role in neuronal development, function, survival, and growth. The pathway is implicated in neurodegenerative disorders including Alzheimer's disease, chronic pain, inflammation, and cancer. NGF binds the extracellular domain of TrkA, leading to the activation of the receptor's intracellular kinase domain. As TrkA signaling is highly dynamic, mechanistic studies would benefit from a tool with high spatial and temporal resolution. Here we present the design and evaluation of four strategies for light-inducible activation of TrkA in the absence of NGF. Our strategies involve the light-sensitive protein Arabidopsis cryptochrome 2 and its binding partner CIB1. We demonstrate successful recapitulation of native NGF/TrkA functions by optical induction of plasma membrane recruitment and homo-interaction of the intracellular domain of TrkA. This approach activates PI3K/AKT and Raf/ERK signaling pathways, promotes neurite growth in PC12 cells, and supports survival of dorsal root ganglion neurons in the absence of NGF. This ability to activate TrkA using light bestows high spatial and temporal resolution for investigating NGF/TrkA signaling.
Collapse
Affiliation(s)
- Liting Duan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jen M. Hope
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Shunling Guo
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qunxiang Ong
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Palo Alto, California 94304, United States
| | - Luke Kaplan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Palo Alto, California 94304, United States
- Robertson Investigator, New York Stem Cell Foundation, New York, New York 10019, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Bode K, O'Halloran DM. NCX-DB: a unified resource for integrative analysis of the sodium calcium exchanger super-family. BMC Neurosci 2018; 19:19. [PMID: 29649983 PMCID: PMC5898058 DOI: 10.1186/s12868-018-0423-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Na+/Ca2+ exchangers are low-affinity high-capacity transporters that mediate Ca2+ extrusion by coupling Ca2+ efflux to the influx of Na+ ions. The Na+/Ca2+ exchangers form a super-family comprised of three branches each differing in ion-substrate selectivity: Na+/Ca2+ exchangers (NCX), Na+/Ca2+/K+ exchangers, and Ca2+/cation exchangers. Their primary function is to maintain Ca2+ homeostasis and play a particularly important role in excitable cells that experience transient Ca2+ fluxes. Research into the role and activity of Na+/Ca2+ exchangers has focused extensively on the cardio-vascular system, however, growing evidence suggests that Na+/Ca2+ exchangers play a key role in neuronal processes such as memory formation, learning, oligodendrocyte differentiation, neuroprotection during brain ischemia and axon guidance. They have also been implicated in pathologies such as Alzheimer’s disease, Parkinson’s disease, Multiple Sclerosis and Epilepsy, however, a clear understanding of their mechanism during disease is lacking. To date, there has never been a central resource or database for Na+/Ca2+ exchangers. With clear disease relevance and ever-increasing research on Na+/Ca2+ exchangers from both model and non-model species, a database that unifies the data on Na+/Ca2+ exchangers is needed for future research. NCX-DB is a publicly available database with a web interface that enables users to explore various Na+/Ca2+ exchangers, perform cross-species sequence comparison, identify new exchangers, and stay-up to date with recent literature. NCX-DB is available on the web via an interactive user interface with an intuitive design, which is applicable for the identification and comparison of Na+/Ca2+ exchanger proteins across diverse species.
Collapse
Affiliation(s)
- Katrin Bode
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall 6000, 800 22nd St. N.W., Washington, DC, 20052, USA.,Institute for Neuroscience, The George Washington University, 636A Ross Hall, 2300 I St. N.W., Washington, DC, 20052, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall 6000, 800 22nd St. N.W., Washington, DC, 20052, USA. .,Institute for Neuroscience, The George Washington University, 636A Ross Hall, 2300 I St. N.W., Washington, DC, 20052, USA.
| |
Collapse
|
20
|
Martorana F, Gaglio D, Bianco MR, Aprea F, Virtuoso A, Bonanomi M, Alberghina L, Papa M, Colangelo AM. Differentiation by nerve growth factor (NGF) involves mechanisms of crosstalk between energy homeostasis and mitochondrial remodeling. Cell Death Dis 2018. [PMID: 29523844 PMCID: PMC5844953 DOI: 10.1038/s41419-018-0429-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuronal differentiation involves extensive modification of biochemical and morphological properties to meet novel functional requirements. Reorganization of the mitochondrial network to match the higher energy demand plays a pivotal role in this process. Mechanisms of neuronal differentiation in response to nerve growth factor (NGF) have been largely characterized in terms of signaling, however, little is known about its impact on mitochondrial remodeling and metabolic function. In this work, we show that NGF-induced differentiation requires the activation of autophagy mediated by Atg9b and Ambra1, as it is disrupted by their genetic knockdown and by autophagy blockers. NGF differentiation involves the induction of P-AMPK and P-CaMK, and is prevented by their pharmacological inhibition. These molecular events correlate with modifications of energy and redox homeostasis, as determined by ATP and NADPH changes, higher oxygen consumption (OCR) and ROS production. Our data indicate that autophagy aims to clear out exhausted mitochondria, as determined by enhanced localization of p62 and Lysotracker-red to mitochondria. In addition, we newly demonstrate that NGF differentiation is accompanied by increased mitochondrial remodeling involving higher levels of fission (P-Drp1) and fusion proteins (Opa1 and Mfn2), as well as induction of Sirt3 and the transcription factors mtTFA and PPARγ, which regulate mitochondria biogenesis and metabolism to sustain increased mitochondrial mass, potential, and bioenergetics. Overall, our data indicate a new NGF-dependent mechanism involving mitophagy and extensive mitochondrial remodeling, which plays a key role in both neurogenesis and nerve regeneration.
Collapse
Affiliation(s)
- Francesca Martorana
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy.,SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Daniela Gaglio
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, MI, Italy
| | - Maria Rosaria Bianco
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Federica Aprea
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy.,SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Assunta Virtuoso
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Marcella Bonanomi
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy.,SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy.,NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Michele Papa
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy.,Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy. .,SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy. .,NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
21
|
Na +/Ca 2+ exchanger 1 on nuclear envelope controls PTEN/Akt pathway via nucleoplasmic Ca 2+ regulation during neuronal differentiation. Cell Death Discov 2018. [PMID: 29531809 PMCID: PMC5841316 DOI: 10.1038/s41420-017-0018-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nuclear envelope (NE) is a Ca2+-storing organelle controlling neuronal differentiation through nuclear Ca2+ concentrations ([Ca2+]n). However, how [Ca2+]n regulates this important function remains unknown. Here, we investigated the role of the nuclear form of the Na+/Ca2+ exchanger 1(nuNCX1) during the different stages of neuronal differentiation and the involvement of PTEN/PI3'K/Akt pathway. In neuronal cells, nuNCX1 was detected on the inner membrane of the NE where protein expression and activity of the exchanger increased during NGF-induced differentiation. nuNCX1 activation by Na+-free perfusion induced a time-dependent activation of nuclear-resident PI3K/Akt pathway in isolated nuclei. To discriminate the contribution of nuNCX1 from those of plasma membrane NCX, we generated a chimeric protein composed of the fluorophore EYFP, the exchanger inhibitory peptide, and the nuclear localization signal, named XIP-NLS. Fura-2 measurements on single nuclei and patch-clamp experiments in whole-cell configuration showed that XIP-NLS selectively inhibited nuNCX1. Once it reached the nuclear compartment, XIP-NLS increased the nucleoplasmic Ca2+ peak elicited by ATP and reduced Akt phosphorylation, GAP-43 and MAP-2 expression through nuclear-resident PTEN induction. Furthermore, in accordance with the prevention of the neuronal phenotype, XIP-NLS significantly reduced TTX-sensitive Na+ currents and membrane potential during neuronal differentiation. The selective inhibition of nuNCX1 by XIP-NLS increased the percentage of β III tubulin-positive immature neurons in mature cultures of MAP-2-positive cortical neurons, thus unraveling a new function for nuNCX1 in regulating neuronal differentiation through [Ca2+]n-dependent PTEN/PI3K/Akt pathway.
Collapse
|
22
|
Long Z, Chen B, Liu Q, Zhao J, Yang Z, Dong X, Xia L, Huang S, Hu X, Song B, Li L. The reverse-mode NCX1 activity inhibitor KB-R7943 promotes prostate cancer cell death by activating the JNK pathway and blocking autophagic flux. Oncotarget 2018; 7:42059-42070. [PMID: 27275542 PMCID: PMC5173116 DOI: 10.18632/oncotarget.9806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/05/2016] [Indexed: 01/07/2023] Open
Abstract
We explored the effects of KB-R7943, an inhibitor of reverse-mode NCX1 activity, in prostate cancer (PCa). NCX1 was overexpressed in PCa tissues and cell lines, and higher NCX1 levels were associated higher PCa grades. At concentrations greater than 10 μM, KB-R7943 dose-dependently decreased PC3 and LNCaP cell viability. KB-R7943 also increased cell cycle G1/S phase arrest and induced apoptosis in PC3 cells. KB-R7943 increased autophagosome accumulation in PCa cells as indicated by increases in LC3-II levels and eGFP-LC3 puncta. Combined treatment with chloroquine (CQ) and KB-R7943 decreased P62 and increased LC3-II protein levels in PC3 cells, indicating that KB-R7943 blocked autophagic flux. KB-R7943 induced autophagosome accumulation mainly by downregulating the PI3K/AKT/m-TOR pathway and upregulating the JNK pathway. In xenograft experiments, KB-R7943 inhibited tumor growth. Combined treatment with KB-R7943 and an autophagy inhibitor inhibited growth and increased apoptosis. These results indicate that KB-R7943 promotes cell death in PCa by activating the JNK signaling pathway and blocking autophagic flux.
Collapse
Affiliation(s)
- Zhou Long
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - BaiJun Chen
- Department of Gastroenterology, First Affiliated Hospital, Medical College of Chengdu, Chengdu, 610500, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - ZhenXing Yang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - XingYou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - LiuBin Xia
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - ShengQuan Huang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - XiaoYan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Bo Song
- Department of Urology, First Affiliated Hospital, Third Military Medical University, Chongqing, 400038, China
| | - LongKun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| |
Collapse
|
23
|
Zhang B, Liu B, Roos CM, Thompson MA, Prakash YS, Miller JD, Guo RW. TRPC6 and TRPC4 Heteromultimerization Mediates Store Depletion-Activated NCX1 Reversal in Proliferative Vascular Smooth Muscle Cells. Channels (Austin) 2018; 12:119-125. [PMID: 29560783 PMCID: PMC5972809 DOI: 10.1080/19336950.2018.1451696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Store depletion has been shown to induce Ca2+ entry by Na+/Ca+ exchange (NCX) 1 reversal in proliferative vascular smooth muscle cells (VSMCs). The study objective was to investigate the role of transient receptor potential canonical (TRPC) channels in store depletion and NCX1 reversal in proliferative VSMCs. In cultured VSMCs, expressing TRPC1, TRPC4, and TRPC6, the removal of extracellular Na+ was followed by a significant increase of cytosolic Ca2+ concentration that was inhibited by KBR, a selective NCX1 inhibitor. TRPC1 knockdown significantly suppressed store-operated, channel-mediated Ca2+ entry, but TRPC4 knockdown and TRPC6 knockdown had no effect. Separate knockdown of TRPC1, TRPC4, or TRPC6 did not have a significant effect on thapsigargin-initiated Na+ increase in the peripheral regions with KBR treatment, but knockdown of both TRPC4 and TRPC6 did. Stromal interaction molecule (STIM)1 knockdown significantly reduced TRPC4 and TRPC6 binding. The results demonstrated that TRPC4–TRPC6 heteromultimerization linked Ca2+ store depletion and STIM1 accumulation with NCX reversal in proliferative VSMCs.
Collapse
Affiliation(s)
- Bin Zhang
- a Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA; and Department of Physiology , Mayo Clinic , Rochester , MN , USA
| | - Bei Liu
- b Department of Obstetrics and Gynecology , Kunming General Hospital of Chengdu Military Command , Kunming , Yunnan , China
| | - Carolyn M Roos
- a Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA; and Department of Physiology , Mayo Clinic , Rochester , MN , USA
| | - Michael A Thompson
- c Department of Anesthesiology , Mayo Clinic , Rochester , Minnesota , USA
| | - Y S Prakash
- c Department of Anesthesiology , Mayo Clinic , Rochester , Minnesota , USA
| | - Jordan D Miller
- a Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA; and Department of Physiology , Mayo Clinic , Rochester , MN , USA
| | - Rui-Wei Guo
- d Department of Cardiology , Kunming General Hospital of Chengdu Military Command , Kunming , Yunnan , China
| |
Collapse
|
24
|
Rybachuk O, Kopach O, Krotov V, Voitenko N, Pivneva T. Optimized Model of Cerebral Ischemia In situ for the Long-Lasting Assessment of Hippocampal Cell Death. Front Neurosci 2017; 11:388. [PMID: 28729821 PMCID: PMC5498507 DOI: 10.3389/fnins.2017.00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022] Open
Abstract
Among all the brain, the hippocampus is the most susceptible region to ischemic lesion, with the highest vulnerability of CA1 pyramidal neurons to ischemic damage. This damage may cause either prompt neuronal death (within hours) or with a delayed appearance (over days), providing a window for applying potential therapies to reduce or prevent ischemic impairments. However, the time course when ischemic damage turns to neuronal death strictly depends on experimental modeling of cerebral ischemia and, up to now, studies were predominantly focused on a short time-window—from hours to up to a few days post-lesion. Using different schemes of oxygen-glucose deprivation (OGD), the conditions taking place upon cerebral ischemia, we optimized a model of mimicking ischemic conditions in organotypical hippocampal slices for the long-lasting assessment of CA1 neuronal death (at least 3 weeks). By combining morphology and electrophysiology, we show that prolonged (30-min duration) OGD results in a massive neuronal death and overwhelmed astrogliosis within a week post-OGD whereas OGD of a shorter duration (10-min) triggered programmed CA1 neuronal death with a significant delay—within 2 weeks—accompanied with drastically impaired CA1 neuron functions. Our results provide a rationale toward optimized modeling of cerebral ischemia for reliable examination of potential treatments for brain neuroprotection, neuro-regeneration, or testing neuroprotective compounds in situ.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Olga Kopach
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Volodymyr Krotov
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Nana Voitenko
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Tatyana Pivneva
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| |
Collapse
|
25
|
Formyl peptide receptors promotes neural differentiation in mouse neural stem cells by ROS generation and regulation of PI3K-AKT signaling. Sci Rep 2017; 7:206. [PMID: 28303030 PMCID: PMC5428260 DOI: 10.1038/s41598-017-00314-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/20/2017] [Indexed: 01/12/2023] Open
Abstract
This study aimed to determine whether formyl peptide receptors (FPRs) regulated the differentiation of neural stem cells (NSCs). FPRs promote the migration of NSCs both in vitro and in vivo. However, the role of FPRs during differentiation of NSCs is unknown. Analysis by Western blot showed significantly increased expression of FPR1 and FPR2 during differentiation of NSCs. The activation of FPRs promotes NSCs to differentiate into neurons with more primary neurites and branch points and longer neurites per cell. Meanwhile, this activation also inhibits the differentiation of NSC into astrocytes. This bidirectional effect can be inhibited by the FPRs-specific inhibitor. Moreover, it was found that the activation of FPRs increased the generation of reactive oxygen species (ROS) and phosphorylation of AKT in the NSCs, while N-acetylcysteine and LY294002 inhibited the FPRs-stimulated increase in ROS generation and AKT phosphorylation, and blocked the FPRs-stimulated neural differentiation into neurons. Therefore, FPRs-stimulated neural differentiation was mediated via ROS and PI3K-AKT signaling pathways. Collectively, the present findings provided a novel insight into the functional role of FPRs in neurogenesis, with important implications for its potential use as a candidate for treating brain or spinal cord injury.
Collapse
|
26
|
Molinaro P, Sirabella R, Pignataro G, Petrozziello T, Secondo A, Boscia F, Vinciguerra A, Cuomo O, Philipson KD, De Felice M, Di Lauro R, Di Renzo G, Annunziato L. Neuronal NCX1 overexpression induces stroke resistance while knockout induces vulnerability via Akt. J Cereb Blood Flow Metab 2016; 36:1790-1803. [PMID: 26661211 PMCID: PMC5076784 DOI: 10.1177/0271678x15611913] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
Three different Na+/Ca2+ exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, are expressed in brain where they play a relevant role in maintaining Na+ and Ca2+ homeostasis. Although the neuroprotective roles of NCX2 and NCX3 in stroke have been elucidated, the relevance of NCX1 is still unknown because of embryonic lethality of its knocking-out, heart dysfunctions when it is overexpressed, and the lack of selectivity in currently available drugs. To overcome these limitations we generated two conditional genetically modified mice that upon tamoxifen administration showed a selective decrease or increase of NCX1 in cortical and hippocampal neurons. Interestingly, in cortex and hippocampus NCX1 overexpression increased, where NCX1 knock-out reduced, both exchanger activity and Akt1 phosphorylation, a neuronal survival signaling. More important, mice overexpressing NCX1 showed a reduced ischemic volume and an amelioration of focal and general deficits when subjected to transient middle cerebral artery occlusion. Conversely, NCX1-knock-out mice displayed a worsening of brain damage, focal and neurological deficits with a decrease in Akt phosphorylation. These results support the idea that NCX1 overexpression/activation may represent a feasible therapeutic opportunity in stroke intervention.
Collapse
Affiliation(s)
- Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Rossana Sirabella
- Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Kenneth D Philipson
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechology, "Federico II" University of Naples, Naples, Italy IRGS, Biogem S.C.A.R.L., Ariano Irpino (AV), Italy
| | - Roberto Di Lauro
- Department of Molecular Medicine and Medical Biotechology, "Federico II" University of Naples, Naples, Italy IRGS, Biogem S.C.A.R.L., Ariano Irpino (AV), Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| |
Collapse
|
27
|
Liu J, Han P, Li M, Yan W, Liu J, He J, Gong J, Wang Y, Tian D. Histidine-rich calcium binding protein promotes growth of hepatocellular carcinoma in vitro and in vivo. Cancer Sci 2015; 106:1288-95. [PMID: 26176291 PMCID: PMC4638025 DOI: 10.1111/cas.12743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
We have recently shown that the histidine-rich calcium binding protein (HRC) promotes the invasion and metastasis of hepatocellular carcinoma (HCC). In the current study, we evaluated whether HRC may also affect the growth of HCC. We found that ectopic expression of HRC obviously enhanced proliferation and colony formation, while suppression of HRC exhibited inhibitory effects. Furthermore, we demonstrated that HRC promoted tumor growth in nude mice. These effects may result from the ability of HRC to upregulate cyclinD1 and cyclin-dependent kinase 2 (CDK2) expressions and promote G1/S transition. Further study showed that MEK/ERK signaling pathway was involved in HRC-induced cell proliferation. Interestingly, overexpression or depletion of HRC revealed its regulation on endoplasmic reticulum stress (ERS) and apoptosis, which was partially dependent on PERK/ATF4/CHOP signaling pathway. In addition, blocking ERS using 4-phenylbutyric acid (4-PBA) not only downregulated the expression of PERK, ATF4 and CHOP, but also significantly decreased apoptosis induced by HRC silence, whereas ERS inducer thapsigargin (TG) exerted the opposite effects. Our study thus demonstrates a role of HRC in promoting HCC growth, besides its role in inducing HCC metastasis, and highlights HRC as a promising intervention target for HCC.
Collapse
Affiliation(s)
- Jingmei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiqiao Liu
- Department of Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Gong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunwu Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|