1
|
Bandela M, Belvitch P, Garcia JGN, Dudek SM. Cortactin in Lung Cell Function and Disease. Int J Mol Sci 2022; 23:4606. [PMID: 35562995 PMCID: PMC9101201 DOI: 10.3390/ijms23094606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cortactin (CTTN) is an actin-binding and cytoskeletal protein that is found in abundance in the cell cortex and other peripheral structures of most cell types. It was initially described as a target for Src-mediated phosphorylation at several tyrosine sites within CTTN, and post-translational modifications at these tyrosine sites are a primary regulator of its function. CTTN participates in multiple cellular functions that require cytoskeletal rearrangement, including lamellipodia formation, cell migration, invasion, and various other processes dependent upon the cell type involved. The role of CTTN in vascular endothelial cells is particularly important for promoting barrier integrity and inhibiting vascular permeability and tissue edema. To mediate its functional effects, CTTN undergoes multiple post-translational modifications and interacts with numerous other proteins to alter cytoskeletal structures and signaling mechanisms. In the present review, we briefly describe CTTN structure, post-translational modifications, and protein binding partners and then focus on its role in regulating cellular processes and well-established functional mechanisms, primarily in vascular endothelial cells and disease models. We then provide insights into how CTTN function affects the pathophysiology of multiple lung disorders, including acute lung injury syndromes, COPD, and asthma.
Collapse
Affiliation(s)
- Mounica Bandela
- Department of Biomedical Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
2
|
Luttman JH, Colemon A, Mayro B, Pendergast AM. Role of the ABL tyrosine kinases in the epithelial-mesenchymal transition and the metastatic cascade. Cell Commun Signal 2021; 19:59. [PMID: 34022881 PMCID: PMC8140471 DOI: 10.1186/s12964-021-00739-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
The ABL kinases, ABL1 and ABL2, promote tumor progression and metastasis in various solid tumors. Recent reports have shown that ABL kinases have increased expression and/or activity in solid tumors and that ABL inactivation impairs metastasis. The therapeutic effects of ABL inactivation are due in part to ABL-dependent regulation of diverse cellular processes related to the epithelial to mesenchymal transition and subsequent steps in the metastatic cascade. ABL kinases target multiple signaling pathways required for promoting one or more steps in the metastatic cascade. These findings highlight the potential utility of specific ABL kinase inhibitors as a novel treatment paradigm for patients with advanced metastatic disease. Video abstract.
Collapse
Affiliation(s)
- Jillian Hattaway Luttman
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, C-233A LSRC Bldg., P.O. Box 3813, Durham, NC 27710 USA
| | - Ashley Colemon
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, C-233A LSRC Bldg., P.O. Box 3813, Durham, NC 27710 USA
| | - Benjamin Mayro
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, C-233A LSRC Bldg., P.O. Box 3813, Durham, NC 27710 USA
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, C-233A LSRC Bldg., P.O. Box 3813, Durham, NC 27710 USA
| |
Collapse
|
3
|
Abl2:Cortactin Interactions Regulate Dendritic Spine Stability via Control of a Stable Filamentous Actin Pool. J Neurosci 2021; 41:3068-3081. [PMID: 33622779 DOI: 10.1523/jneurosci.2472-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/15/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines act as the receptive contacts at most excitatory synapses. Spines are enriched in a network of actin filaments comprised of two kinetically distinct pools. The majority of spine actin is highly dynamic and regulates spine size, structural plasticity, and postsynaptic density organization. The remainder of the spine actin network is more stable, but the function of this minor actin population is not well understood, as tools to study it have not been available. Previous work has shown that disruption of the Abl2/Arg nonreceptor tyrosine kinase in mice compromises spine stability and size. Here, using cultured hippocampal neurons pooled from both sexes of mice, we provide evidence that binding to cortactin tethers Abl2 in spines, where Abl2 and cortactin maintain the small pool of stable actin required for dendritic spine stability. Using fluorescence recovery after photobleaching of GFP-actin, we find that disruption of Abl2:cortactin interactions eliminates stable actin filaments in dendritic spines, significantly reducing spine density. A subset of spines remaining after Abl2 depletion retain their stable actin pool and undergo activity-dependent spine enlargement, associated with increased cortactin and GluN2B levels. Finally, tonic increases in synaptic activity rescue spine loss following Abl2 depletion by promoting cortactin enrichment in vulnerable spines. Together, our findings strongly suggest that Abl2:cortactin interactions promote spine stability by maintaining pools of stable actin filaments in spines.SIGNIFICANCE STATEMENT Dendritic spines contain two kinetically distinct pools of actin. The more abundant, highly dynamic pool regulates spine shape, size, and plasticity. The function of the smaller, stable actin network is not well understood, as tools to study it have not been available. We demonstrate here that Abl2 and its substrate and interaction partner, cortactin, are essential to maintain the stable pool in spines. Depletion of the stable actin pool via disruption of Abl2 or cortactin, or interactions between the proteins, significantly reduces spine stability. We also provide evidence that tonic increases in synaptic activity promote spine stability via enrichment of cortactin in spines, suggesting that synaptic activity acts on the stable actin pool to stabilize dendritic spines.
Collapse
|
4
|
Tripathi R, Liu Z, Plattner R. EnABLing Tumor Growth and Progression: Recent progress in unraveling the functions of ABL kinases in solid tumor cells. CURRENT PHARMACOLOGY REPORTS 2018; 4:367-379. [PMID: 30746323 PMCID: PMC6368175 DOI: 10.1007/s40495-018-0149-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize our current knowledge regarding how ABL family kinases are activated in solid tumors and impact on solid tumor development/progression, with a focus on recent advances in the field. RECENT FINDINGS Although ABL kinases are known drivers of human leukemia, emerging data also implicates the kinases in a large number of solid tumor types where they promote diverse processes such as proliferation, survival, cytoskeletal reorganization, cellular polarity, EMT (epithelial-mesenchymal-transition), metabolic reprogramming, migration, invasion and metastasis via unique signaling pathways. ABL1 and ABL2 appear to have overlapping but also unique roles in driving these processes. In some tumor types, the kinases may act to integrate pro- and anti-proliferative and -invasive signals, and also may serve as a switch during EMT/MET (mesenchymal-epithelial) transitions. CONCLUSIONS Most data indicate that targeting ABL kinases may be effective for reducing tumor growth and preventing metastasis; however, ABL kinases also may have a tumor suppressive role in some tumor types and in some cellular contexts. Understanding the functions of ABL kinases in solid tumors is critical for developing successful clinical trials aimed at targeting ABL kinases for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rakshamani Tripathi
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, Kentucky 40536
| | - Zulong Liu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, Kentucky 40536
| | - Rina Plattner
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
5
|
Liang X, Kiru S, Gomez GA, Yap AS. Regulated recruitment of SRGAP1 modulates RhoA signaling for contractility during epithelial junction maturation. Cytoskeleton (Hoboken) 2017; 75:61-69. [PMID: 29160905 DOI: 10.1002/cm.21420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/06/2022]
Abstract
Adherens junctions in epithelia are contractile structures, where coupling of adhesion to the actomyosin cytoskeleton generates mechanical tension for morphogenesis and homeostasis. In established monolayers, junctional contractility is supported by the interplay between cell signals and scaffolding proteins. However, less is known about how contractile junctions develop, especially during the establishment of epithelial monolayers. Here, we show that junctional tension increases concomitant with accumulation of actomyosin networks as Caco-2 epithelia become confluent. This is associated with development of a zone of RhoA signaling at junctions. Further, we find that the low levels of RhoA signaling and contractility found in subconfluent cultures reflect a mechanism for their active suppression. Specifically, the RhoA antagonist, SRGAP1, is present at subconfluent junctions to a greater extent than in confluent cultures and SRGAP1 RNAi restores RhoA signaling and contractility in subconfluent cultures to levels seen in confluent cells. Overall, these observations suggest that regulated changes in junctional contractility mediated by modulation of RhoA signaling occur as epithelial monolayers mature.
Collapse
Affiliation(s)
- Xuan Liang
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Sajini Kiru
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Li X, Tao Y, Murphy JW, Scherer AN, Lam TT, Marshall AG, Koleske AJ, Boggon TJ. The repeat region of cortactin is intrinsically disordered in solution. Sci Rep 2017; 7:16696. [PMID: 29196701 PMCID: PMC5711941 DOI: 10.1038/s41598-017-16959-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/19/2017] [Indexed: 01/14/2023] Open
Abstract
The multi-domain protein, cortactin, contains a 37-residue repeating motif that binds to actin filaments. This cortactin repeat region comprises 6½ similar copies of the motif and binds actin filaments. To better understand this region of cortactin, and its fold, we conducted extensive biophysical analysis. Size exclusion chromatography with multi-angle light scattering (SEC-MALS) reveals that neither constructs of the cortactin repeats alone or together with the adjacent helical region homo-oligomerize. Using circular dichroism (CD) we find that in solution the cortactin repeats resemble a coil-like intrinsically disordered protein. Small-angle X-ray scattering (SAXS) also indicates that the cortactin repeats are intrinsically unfolded, and the experimentally observed radius of gyration (Rg) is coincidental to that calculated by the program Flexible-Meccano for an unfolded peptide of this length. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) indicates that the domain contains limited hydrophobic core regions. These experiments therefore provide evidence that in solution the cortactin repeat region of cortactin is intrinsically disordered.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yeqing Tao
- Department of Chemistry, Florida State University, 600 W., College Avenue, Tallahassee, FL, 32306, USA.,Biopharmaceutical Analytical Sciences, Biopharm R&D, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA, 19406, USA
| | - James W Murphy
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alexander N Scherer
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Yale MS & Proteomics Resource, Yale University, New Haven, CT, 06520, USA
| | - Alan G Marshall
- Department of Chemistry, Florida State University, 600 W., College Avenue, Tallahassee, FL, 32306, USA.,Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA. .,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
7
|
Rosenberg BJ, Gil-Henn H, Mader CC, Halo T, Yin T, Condeelis J, Machida K, Wu YI, Koleske AJ. Phosphorylated cortactin recruits Vav2 guanine nucleotide exchange factor to activate Rac3 and promote invadopodial function in invasive breast cancer cells. Mol Biol Cell 2017; 28:1347-1360. [PMID: 28356423 PMCID: PMC5426849 DOI: 10.1091/mbc.e16-12-0885] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022] Open
Abstract
Phosphorylation of cortactin downstream of the EGF receptor–Src-Arg kinase cascade triggers maturation of invadopodia, actin-rich protrusions that breast cancer cells use to invade the extracellular matrix. Phosphocortactin recruits Vav2 to invadopodia to activate Rac3 and support actin polymerization, matrix degradation, and invasion. Breast carcinoma cells use specialized, actin-rich protrusions called invadopodia to degrade and invade through the extracellular matrix. Phosphorylation of the actin nucleation–promoting factor and actin-stabilizing protein cortactin downstream of the epidermal growth factor receptor–Src-Arg kinase cascade is known to be a critical trigger for invadopodium maturation and subsequent cell invasion in breast cancer cells. The functions of cortactin phosphorylation in this process, however, are not completely understood. We identify the Rho-family guanine nucleotide exchange factor Vav2 in a comprehensive screen for human SH2 domains that bind selectively to phosphorylated cortactin. We demonstrate that the Vav2 SH2 domain binds selectively to phosphotyrosine-containing peptides corresponding to cortactin tyrosines Y421 and Y466 but not to Y482. Mutation of the Vav2 SH2 domain disrupts its recruitment to invadopodia, and an SH2-domain mutant form of Vav2 cannot support efficient matrix degradation in invasive MDA-MB-231 breast cancer cells. We show that Vav2 function is required for promoting invadopodium maturation and consequent actin polymerization, matrix degradation, and invasive migratory behavior. Using biochemical assays and a novel Rac3 biosensor, we show that Vav2 promotes Rac3 activation at invadopodia. Rac3 knockdown reduces matrix degradation by invadopodia, whereas a constitutively active Rac3 can rescue the deficits in invadopodium function in Vav2-knockdown cells. Together these data indicate that phosphorylated cortactin recruits Vav2 to activate Rac3 and promote invadopodial maturation in invasive breast cancer cells.
Collapse
Affiliation(s)
| | - Hava Gil-Henn
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311520, Israel
| | | | - Tiffany Halo
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - Taofei Yin
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences and Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - John Condeelis
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences and Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Yi I Wu
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences and Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 .,Department of Neuroscience, Yale University, New Haven, CT 06520
| |
Collapse
|
8
|
Simpson MA, Bradley WD, Harburger D, Parsons M, Calderwood DA, Koleske AJ. Direct interactions with the integrin β1 cytoplasmic tail activate the Abl2/Arg kinase. J Biol Chem 2015; 290:8360-72. [PMID: 25694433 DOI: 10.1074/jbc.m115.638874] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrins are heterodimeric α/β extracellular matrix adhesion receptors that couple physically to the actin cytoskeleton and regulate kinase signaling pathways to control cytoskeletal remodeling and adhesion complex formation and disassembly. β1 integrins signal through the Abl2/Arg (Abl-related gene) nonreceptor tyrosine kinase to control fibroblast cell motility, neuronal dendrite morphogenesis and stability, and cancer cell invasiveness, but the molecular mechanisms by which integrin β1 activates Arg are unknown. We report here that the Arg kinase domain interacts directly with a lysine-rich membrane-proximal segment in the integrin β1 cytoplasmic tail, that Arg phosphorylates the membrane-proximal Tyr-783 in the β1 tail, and that the Arg Src homology domain then engages this phosphorylated region in the tail. We show that these interactions mediate direct binding between integrin β1 and Arg in vitro and in cells and activate Arg kinase activity. These findings provide a model for understanding how β1-containing integrins interact with and activate Abl family kinases.
Collapse
Affiliation(s)
- Mark A Simpson
- From the Departments of Molecular Biophysics and Biochemistry
| | | | | | - Maddy Parsons
- the Randall Division of Cell and Molecular Biophysics, Kings College, London WC2R 2LS, United Kingdom
| | | | - Anthony J Koleske
- From the Departments of Molecular Biophysics and Biochemistry, Neurobiology, Yale University, New Haven, Connecticut 06510 and
| |
Collapse
|
9
|
Jin LL, Wybenga-Groot LE, Tong J, Taylor P, Minden MD, Trudel S, McGlade CJ, Moran MF. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity. Mol Cell Proteomics 2015; 14:695-706. [PMID: 25587033 DOI: 10.1074/mcp.m114.044404] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y(194) impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y(194) on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases.
Collapse
Affiliation(s)
- Lily L Jin
- From the ‡Molecular Structure and Function, The Hospital For Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada; ‡‡Departments of Molecular Genetics, Medical Science Building, Room 4386, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Leanne E Wybenga-Groot
- §Cell Biology, The Hospital For Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada; ¶The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Jiefei Tong
- From the ‡Molecular Structure and Function, The Hospital For Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Paul Taylor
- From the ‡Molecular Structure and Function, The Hospital For Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Mark D Minden
- ‖Medical Biophysics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; **The Princess Margaret Cancer Center, 610 University Avenue, M5G 2M9, Toronto, Canada
| | - Suzanne Trudel
- ‖Medical Biophysics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; **The Princess Margaret Cancer Center, 610 University Avenue, M5G 2M9, Toronto, Canada
| | - C Jane McGlade
- §Cell Biology, The Hospital For Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada; ¶The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada; ‖Medical Biophysics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Michael F Moran
- From the ‡Molecular Structure and Function, The Hospital For Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada; ‡‡Departments of Molecular Genetics, Medical Science Building, Room 4386, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; **The Princess Margaret Cancer Center, 610 University Avenue, M5G 2M9, Toronto, Canada
| |
Collapse
|
10
|
Courtemanche N, Gifford SM, Simpson MA, Pollard TD, Koleske AJ. Abl2/Abl-related gene stabilizes actin filaments, stimulates actin branching by actin-related protein 2/3 complex, and promotes actin filament severing by cofilin. J Biol Chem 2014; 290:4038-46. [PMID: 25540195 DOI: 10.1074/jbc.m114.608117] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both Arp2/3 complex and the Abl2/Arg nonreceptor tyrosine kinase are essential to form and maintain diverse actin-based structures in cells, including cell edge protrusions in fibroblasts and cancer cells and dendritic spines in neurons. The ability of Arg to promote cell edge protrusions in fibroblasts does not absolutely require kinase activity, raising the question of how Arg might modulate actin assembly and turnover in the absence of kinase function. Arg has two distinct actin-binding domains and interacts physically and functionally with cortactin, an activator of the Arp2/3 complex. However, it was not known whether and how Arg influences actin filament stability, actin branch formation, or cofilin-mediated actin severing or how cortactin influences these reactions of Arg with actin. Arg or cortactin bound to actin filaments stabilizes them from depolymerization. Low concentrations of Arg and cortactin cooperate to stabilize filaments by slowing depolymerization. Arg stimulates formation of actin filament branches by Arp2/3 complex and cortactin. An Arg mutant lacking the C-terminal calponin homology actin-binding domain stimulates actin branch formation by the Arp2/3 complex, indicative of autoinhibition. ArgΔCH can stimulate the Arp2/3 complex even in the absence of cortactin. Arg greatly potentiates cofilin severing of actin filaments, and cortactin attenuates this enhanced severing. The ability of Arg to stabilize filaments, promote branching, and increase severing requires the internal (I/L)WEQ actin-binding domain. These activities likely underlie important roles that Arg plays in the formation, dynamics, and stability of actin-based cellular structures.
Collapse
Affiliation(s)
- Naomi Courtemanche
- From the Departments of Molecular, Cellular and Developmental Biology and
| | | | - Mark A Simpson
- the Departments of Molecular Biophysics and Biochemistry and
| | - Thomas D Pollard
- From the Departments of Molecular, Cellular and Developmental Biology and the Departments of Molecular Biophysics and Biochemistry and Cell Biology, Yale University, New Haven, Connecticut 06511 and
| | - Anthony J Koleske
- the Departments of Molecular Biophysics and Biochemistry and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520 Neurobiology and
| |
Collapse
|