1
|
He ZX, Gao G, Qiao H, Dong GJ, Dan Z, Li YL, Qi YR, Zhang Q, Yuan S, Liu HM, Dong J, Zhao W, Ma LY. Discovery of 1,2,4-Triazole-3-thione Derivatives as Potent and Selective DCN1 Inhibitors for Pathological Cardiac Fibrosis and Remodeling. J Med Chem 2024; 67:18699-18723. [PMID: 39158077 DOI: 10.1021/acs.jmedchem.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DCN1, a critical co-E3 ligase during the neddylation process, is overactivated in many diseases, such as cancers, heart failure as well as fibrotic diseases, and has been regarded as a new target for drug development. Herein, we designed and synthesized a new class of 1,2,4-triazole-3-thione-based DCN1 inhibitors based the hit HD1 identified from high-throughput screening and optimized through numerous structure-activity-relationship (SAR) explorations. HD2 (IC50= 2.96 nM) was finally identified and represented a highly potent and selective DCN1 inhibitor with favorable PK properties and low toxicity. Amazingly, HD2 effectively relieved Ang II/TGFβ-induced cardiac fibroblast activation in vitro, and reduced ISO-induced cardiac fibrosis as well as remodeling in vivo, which was linked to the inhibition of cullin 3 neddylation and its substrate Nrf2 accumulation. Our findings unveil a novel 1,2,4-triazole-3-thione-based derivative HD2, which can be recognized as a promising lead compound targeting DCN1 for cardiac fibrosis and remodeling.
Collapse
Affiliation(s)
- Zhang-Xu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Qiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guan-Jun Dong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zengyangzong Dan
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ya-Lan Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Ruo Qi
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuo Yuan
- Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
- Key Laboratory of Cardiocerebrovascular Drugs, Zhumadian 463000, Henan Province, China
| |
Collapse
|
2
|
He Z, Yuan Z, Yang F, Zhang J, Zhao W, Qin T, Zheng X, Ma L. A comprehensive review on DCN1 protein, inhibitors and their therapeutic applications. Int J Biol Macromol 2024; 277:134541. [PMID: 39111501 DOI: 10.1016/j.ijbiomac.2024.134541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
DCN1, a critical co-E3 ligase in the neddylation process, mediates the activation of Cullin-RING Ligases (CRLs) by selectively catalyzing cullin neddylation, further regulating the activity of substrate proteins. It has been identified as an important target for human diseases, including cancers, fibrotic diseases, and cardiovascular disorders. This work aims to provide a perspective for the discovery of novel DCN1 inhibitors by the analysis of biological roles, protein structures, structure-activity relationships and design strategy disclosed in recent years. Additionally, we will discuss the current status, challenges and opportunities in hope of offering insights into the development of DCN1 inhibitors for human diseases.
Collapse
Affiliation(s)
- Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Ziqiao Yuan
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Feifei Yang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Xiaoke Zheng
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China.
| |
Collapse
|
3
|
3q26 Amplifications in Cervical Squamous Carcinomas. ACTA ACUST UNITED AC 2021; 28:2868-2880. [PMID: 34436017 PMCID: PMC8395483 DOI: 10.3390/curroncol28040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Background: Squamous carcinomas of the uterine cervix often carry mutations of the gene encoding for the catalytic sub-unit of kinase PI3K, PIK3CA. The locus of this gene at chromosome 3q26 and neighboring loci are also commonly amplified. The landscape of 3q26-amplified cases have not been previously characterized in detail in cervical cancer. Methods: Published genomic data and associated clinical data from TCGA cervical cancer cohort were analyzed at cBioportal for amplifications in genes at 3q26. The clinical and molecular characteristics of the group of patients with 3q26 amplifications was compared with the group without 3q26 amplifications. Comparative prevalence of amplification and expression of genes at 3q26 in amplified squamous cervical cancer cases were surveyed as well as 3q26 amplifications in cervical cancer cell line databases. Results: Amplification of 3q26 locus is a prevalent molecular lesion in cervical squamous cell carcinomas encountered in about 15% of cases in TCGA cohort of 247 patients. Cancer-related genes commonly amplified from 3q26 include PIK3CA, TBL1XR1, DCUN1D1, SOX2, MECOM, PRKCI, and TERC. Amplified cases do not completely overlap with PIK3CA mutant cases. Differences exist between 3q26-amplified and non-amplified carcinomas in the frequency of mutations and frequency of other amplifications. Most commonly over-expressed genes in 3q26 amplified cases include PIK3CA, TBL1XR1, DCUN1D1, and less commonly SOX2 and PRKCI. Conclusion: The subset of squamous cervical carcinomas with 3q26 amplifications is not overlapping with cancers carrying PIK3CA mutations and contains, besides PIK3CA, other cancer-associated genes that are over-expressed at the mRNA level, including TBL1XR1 and DCUN1D1. DCUN1D1, a regulator of SCF ubiquitin ligase activity, may be a relevant pathogenic player given the importance of ubiquitination and the proteasome in the disease. These observations could form the basis for therapeutic exploitation in this subset of squamous cervical carcinomas.
Collapse
|
4
|
Gai W, Peng Z, Liu CH, Zhang L, Jiang H. Advances in Cancer Treatment by Targeting the Neddylation Pathway. Front Cell Dev Biol 2021; 9:653882. [PMID: 33898451 PMCID: PMC8060460 DOI: 10.3389/fcell.2021.653882] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Developmental down-regulation protein 8 (NEDD8), expressed by neural progenitors, is a ubiquitin-like protein that conjugates to and regulates the biological function of its substrates. The main target of NEDD8 is cullin-RING E3 ligases. Upregulation of the neddylation pathway is closely associated with the progression of various tumors, and MLN4924, which inhibits NEDD8-activating enzyme (NAE), is a promising new antitumor compound for combination therapy. Here, we summarize the latest progress in anticancer strategies targeting the neddylation pathway and their combined applications, providing a theoretical reference for developing antitumor drugs and combination therapies.
Collapse
Affiliation(s)
- Wenbin Gai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Peixian People's Hospital, Xuzhou, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Chatziandreou I, Psaraki A, Paschidis K, Lazaris AC, Saetta AA. Evidence for frequent concurrent DCUN1D1, FGFR1, BCL9 gene copy number amplification in squamous cell lung cancer. Pathol Res Pract 2021; 221:153412. [PMID: 33862557 DOI: 10.1016/j.prp.2021.153412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/05/2023]
Abstract
Non-small cell lung cancer (NSCLC) targeted therapies are mostly based on activating mutations and rearrangements which are rare events in Lung Squamous Cell Carcinomas (LUSC). Recently advances in immunotherapy have improved the therapeutic repository for LUSC, but there is still an urgent need for novel targets and biomarkers. We examined 73 cases of LUSC for relative copy number amplification of DCUN1D1, BCL9, FGFR1 and ERBB2 genes and searched for correlations with molecular alterations and clinicopathological characteristics. In our cohort BCL9 gene was amplified in 57.5 % of the cases, followed by DCUN1D1 in 37 %, FGFR1 in 19 % whereas none of the cases were amplified in ERBB2 gene. The majority of the samples exhibited amplification in at least one gene while half of them displayed concurrent amplification of two/three genes. Interestingly, 93 % of the FGFR1 amplified cases were also found co amplified with DCUN1D1 and/or BCL9 genes. Linear correlations were found between BCL9 and DCUN1D1 as well as BCL9 and FGFR1 gene amplification. BCL9 and DCUN1D1 genes' amplification was correlated with poorly differentiated tumors (p = 0.035 and p = 0.056 respectively), implying their possible role in tumor aggressiveness. This is the first study, to the best of our knowledge that examines the correlation of DCUN1D1 and BCL9 genes relative copy number amplification with molecular alterations and clinicopathologic characteristics of squamous cell lung cancer tissue samples. Our findings show concurrent amplification of genes in different chromosomes, with possible involvement in tumor aggressiveness. These results support the complexity of LUSC tumorigenesis and imply the necessity of multiple biomarkers / targets for a more effective therapeutic result in LUSC.
Collapse
Affiliation(s)
- Ilenia Chatziandreou
- 1(st) Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527, Goudi, Athens, Greece.
| | - Adriana Psaraki
- 1(st) Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527, Goudi, Athens, Greece.
| | - Konstantinos Paschidis
- 1(st) Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527, Goudi, Athens, Greece.
| | - Andreas C Lazaris
- 1(st) Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527, Goudi, Athens, Greece.
| | - Angelica A Saetta
- 1(st) Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527, Goudi, Athens, Greece.
| |
Collapse
|
6
|
The high stability of the three-helix bundle UBA domain of p62 protein as revealed by molecular dynamics simulations. J Mol Model 2021; 27:102. [PMID: 33665744 DOI: 10.1007/s00894-021-04698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
The ubiquitin-associated (UBA) domain is an important motif in the modulation of many molecular functionalities. It has been mainly associated with ubiquitin-mediated proteolysis, a multistep mechanism in which undesirable proteins are tagged with polyubiquitin chains for degradation in the proteasome complex. Comparison among UBA domains reveals a quite small structural variability, displaying an overall fold with a tightly packed three-helix bundle, and a common conserved hydrophobic patch on their surface that is important for ubiquitin binding. Mutations in the UBA domain, mainly in the highly conserved hydrophobic patch, induce conformational instabilities, which can be related to weak affinity for ubiquitin. This raises the question whether such hydrophobic patch presents conserved structural arrangement for selective recognition and protein binding. A concern that led us to investigate the stability of the p62-UBA domain as a case study regarding its structural arrangement as a function of temperature and two NaCl concentrations. Our results reveal that the temperature range and ionic strengths considered in this work produced a negligible effect on the three-helix bundle fold of p62-UBA domain.
Collapse
|
7
|
Kelsall IR, Kristariyanto YA, Knebel A, Wood NT, Kulathu Y, Alpi AF. Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne-RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling. J Biol Chem 2018; 294:2651-2664. [PMID: 30587576 PMCID: PMC6393609 DOI: 10.1074/jbc.ra118.005861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/07/2018] [Indexed: 12/29/2022] Open
Abstract
Cullin-RING E3 ubiquitin ligases (CRLs) are large and diverse multisubunit protein complexes that contribute to about one-fifth of ubiquitin-dependent protein turnover in cells. CRLs are activated by the attachment of the ubiquitin-like protein neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to the cullin subunits. This cullin neddylation is essential for a plethora of CRL-regulated cellular processes and is vital for life. In mammals, neddylation is promoted by the five co-E3 ligases, defective in cullin neddylation 1 domain-containing 1–5 (DCNL1–5); however, their functional regulation within the CRL complex remains elusive. We found here that the ubiquitin-associated (UBA) domain–containing DCNL1 is monoubiquitylated when bound to CRLs and that this monoubiquitylation depends on the CRL-associated Ariadne RBR ligases TRIAD1 (ARIH2) and HHARI (ARIH1) and strictly requires the DCNL1's UBA domain. Reconstitution of DCNL1 monoubiquitylation in vitro revealed that autoubiquitylated TRIAD1 mediates binding to the UBA domain and subsequently promotes a single ubiquitin attachment to DCNL1 in a mechanism previously dubbed coupled monoubiquitylation. Moreover, we provide evidence that DCNL1 monoubiquitylation is required for efficient CRL activity, most likely by remodeling CRLs and their substrate receptors. Collectively, this work identifies DCNL1 as a critical target of Ariadne RBR ligases and coupled monoubiquitylation of DCNL1 as an integrated mechanism that affects CRL activity and client–substrate ubiquitylation at multiple levels.
Collapse
Affiliation(s)
- Ian R Kelsall
- From the MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Yosua A Kristariyanto
- From the MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Axel Knebel
- From the MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Nicola T Wood
- From the MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Yogesh Kulathu
- From the MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Arno F Alpi
- From the MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
8
|
Li J, Yu T, Yan M, Zhang X, Liao L, Zhu M, Lin H, Pan H, Yao M. DCUN1D1 facilitates tumor metastasis by activating FAK signaling and up-regulates PD-L1 in non-small-cell lung cancer. Exp Cell Res 2018; 374:304-314. [PMID: 30528265 DOI: 10.1016/j.yexcr.2018.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
E3 ubiquitin ligases, which are key enzymes in the ubiquitin proteasome system, catalyze the ubiquitination of proteins to target them for proteasomal degradation. Emerging evidence suggests that E3 ubiquitin ligases play important roles in the development and progression of lung cancer. In our study, we characterized the gene expression landscape of lung cancer using data obtained from TCGA to explore the changes in E3 ubiquitin ligase containing the regulators of E3 ubiquitin ligase activity. Overall, most gene expression changes occurred in NSCLC tissues compared with adjacent normal ones. In total, 48 E3 ubiquitin ligases containing the regulators were up-regulated in NSCLC tissues compared with their levels in normal tissues. We analyzed the expression of up-regulated E3 ubiquitin ligases containing the regulators in two publicly available transcriptome data sets (GSE13213 and GSE30219). We found that four E3 ubiquitin ligases (UHRF1, BRCA1, TRAIP and HLTF) and one regulator of ubiquitin E3 activity DCUN1D1 that were dramatically up-regulated in cancer were significantly associated with tumor metastasis and patient's poor prognosis both in two transcriptome data sets. Next, clinical analysis indicated that the expression levels of DCUN1D1 correlated with clinical stage and lymph node metastasis in NSCLC patients as determined by quantitative reverse transcription-PCR. Furthermore, functional assays showed that DCUN1D1 promoted NSCLC cell invasion and migration as determined by transwell assay in vitro. Mechanistically, we found that the C-terminal Cullin binding domain leads to oncogenic activity and the UBA domain acts as a negative regulator of DCUN1D1 function in NSCLC. Moreover, DCUN1D1 activated the FAK oncogenic signaling pathway and up-regulated PD-L1. Taken together, our results demonstrate that DCUN1D1 is a metastasis regulator and suggest a new therapeutic option for NSCLC metastasis.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxia Yan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liao
- Department of Oncology, Huashan Hospital Fudan University, Shanghai, China
| | - Miaoxin Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hechun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyu Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Liu J, Shuang Y, Li C, Zhou X, Huang Y, Zhang L. Expression of DCUN1D1 in laryngeal squamous cell carcinoma and its inhibiting effect on TU-177 cells after interfered by RNA. Clin Exp Pharmacol Physiol 2017; 45:461-466. [PMID: 29164666 DOI: 10.1111/1440-1681.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 12/26/2022]
Abstract
Expression of DCUN1D1 in laryngeal squamous cell carcinoma (LSCC) and its inhibition by small interfering RNA (siRNA) target in the TU-177 cells was investigated. Immunohistochemistry was used to detect the expression level of DCUN1D1 in LSCC tissue in 140 cases and to analyze its relationship with clinical pathological characteristics. siRNA expression plasmid targeting DCUN1D1 was constructed and transferred into TU-177 cells. The effect of siRNA target DCUN1D1 gene silencing on proliferation, invasion and migration of TU-177 cells were observed by MTS assay and Transwell experiment. The expression levels of focal adhesion kinase (FAK) and matrix metalloproteinase-2(MMP-2) were detected by western blot. Expression level of DCUN1D1 protein increased significantly in T3 + T4, N+, and III + IV stages of LSCC patients (P < .05). After DCUN1D1 was targeted by siRNA, the DCUN1D1 protein level decreased 67% in siRNA-3 group, where average absorbance value was lower than the control and blank group with significant difference(F = 6.076, P < .05) in MTS assay, meantime migration, and invasion cells in each vision were the same (F = 19.851, F = 25.454, P < .01) in the Transwell experiment. The expression level of FAK and MMP-2 was significantly down-regulated in siRNA-3 group (F = 28.896, F = 40.240, P < .01). DCUN1D1 is associated with progression and prognosis of LSCC. After siRNA based target on DCUN1D1, TU-177 cells growth was inhibited and invasion of malignant tumour was diminished by reducing the expression of FAK and MMP-2. DCUN1D1 is could become a potential new target for the treatment of LSCC.
Collapse
Affiliation(s)
- Jing Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Shuang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chao Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xuan Zhou
- Department of Otorhinolaryngology and Maxillofacial Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yongwang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lun Zhang
- Department of Otorhinolaryngology and Maxillofacial Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| |
Collapse
|