1
|
Grome MW, Nguyen MTA, Moonan DW, Mohler K, Gurara K, Wang S, Hemez C, Stenton BJ, Cao Y, Radford F, Kornaj M, Patel J, Prome M, Rogulina S, Sozanski D, Tordoff J, Rinehart J, Isaacs FJ. Engineering a genomically recoded organism with one stop codon. Nature 2025; 639:512-521. [PMID: 39910296 PMCID: PMC11903333 DOI: 10.1038/s41586-024-08501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/05/2024] [Indexed: 02/07/2025]
Abstract
The genetic code is conserved across all domains of life, yet exceptions have revealed variations in codon assignments and associated translation factors1-3. Inspired by this natural malleability, synthetic approaches have demonstrated whole-genome replacement of synonymous codons to construct genomically recoded organisms (GROs)4,5 with alternative genetic codes. However, no efforts have fully leveraged translation factor plasticity and codon degeneracy to compress translation function to a single codon and assess the possibility of a non-degenerate code. Here we describe construction and characterization of Ochre, a GRO that fully compresses a translational function into a single codon. We replaced 1,195 TGA stop codons with the synonymous TAA in ∆TAG Escherichia coli C321.∆A4. We then engineered release factor 2 (RF2) and tRNATrp to mitigate native UGA recognition, translationally isolating four codons for non-degenerate functions. Ochre thus utilizes UAA as the sole stop codon, with UGG encoding tryptophan and UAG and UGA reassigned for multi-site incorporation of two distinct non-standard amino acids into single proteins with more than 99% accuracy. Ochre fully compresses degenerate stop codons into a single codon and represents an important step toward a 64-codon non-degenerate code that will enable precise production of multi-functional synthetic proteins with unnatural encoded chemistries and broad utility in biotechnology and biotherapeutics.
Collapse
Affiliation(s)
- Michael W Grome
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Michael T A Nguyen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Daniel W Moonan
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kebron Gurara
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Shenqi Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Colin Hemez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Benjamin J Stenton
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Yunteng Cao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Felix Radford
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Maya Kornaj
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Jaymin Patel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Maisha Prome
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Svetlana Rogulina
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - David Sozanski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jesse Tordoff
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
| | - Farren J Isaacs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Lauer SM, Gasse J, Krizsan A, Reepmeyer M, Sprink T, Nikolay R, Spahn CMT, Hoffmann R. The proline-rich antimicrobial peptide Api137 disrupts large ribosomal subunit assembly and induces misfolding. Nat Commun 2025; 16:567. [PMID: 39794318 PMCID: PMC11723945 DOI: 10.1038/s41467-025-55836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The proline-rich antimicrobial designer peptide Api137 inhibits protein expression in bacteria by binding simultaneously to the ribosomal polypeptide exit tunnel and the release factor (RF), depleting the cellular RF pool and leading to ribosomal arrest at stop codons. This study investigates the additional effect of Api137 on the assembly of ribosomes using an Escherichia coli reporter strain expressing one ribosomal protein per 30S and 50S subunit tagged with mCherry and EGFP, respectively. Separation of cellular extracts derived from cells exposed to Api137 in a sucrose gradient reveals elevated levels of partially assembled and not fully matured precursors of the 50S subunit (pre-50S). High-resolution structures obtained by cryogenic electron microscopy demonstrate that a large proportion of pre-50S states are missing up to five proteins (uL22, bL32, uL29, bL23, and uL16) and have misfolded helices in 23S rRNA domain IV. These data suggest a second mechanism for Api137, wherein it disrupts 50S subunit assembly by inducing the formation of misfolded precursor particles potentially incapable of evolving into active ribosomes, suggesting a bactericidal mechanism.
Collapse
Affiliation(s)
- Simon Malte Lauer
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Institut für Biologie, 10099, Berlin, Germany
| | - Jakob Gasse
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Andor Krizsan
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Maren Reepmeyer
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Thiemo Sprink
- Core Facility for Cryo-Electron Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cryo-EM Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Rainer Nikolay
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany.
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
3
|
Li L, Rybak MY, Lin J, Gagnon MG. The ribosome termination complex remodels release factor RF3 and ejects GDP. Nat Struct Mol Biol 2024; 31:1909-1920. [PMID: 39030416 PMCID: PMC11995864 DOI: 10.1038/s41594-024-01360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Translation termination involves release factors RF1, RF2 and the GTPase RF3 that recycles RF1 and RF2 from the ribosome. RF3 dissociates from the ribosome in the GDP-bound form and must then exchange GDP for GTP. The 70S ribosome termination complex (70S-TC) accelerates GDP exchange in RF3, suggesting that the 70S-TC can function as the guanine nucleotide exchange factor for RF3. Here, we use cryogenic-electron microscopy to elucidate the mechanism of GDP dissociation from RF3 catalyzed by the Escherichia coli 70S-TC. The non-rotated ribosome bound to RF1 remodels RF3 and induces a peptide flip in the phosphate-binding loop, efficiently ejecting GDP. Binding of GTP allows RF3 to dock at the GTPase center, promoting the dissociation of RF1 from the ribosome. The structures recapitulate the functional cycle of RF3 on the ribosome and uncover the mechanism by which the 70S-TC allosterically dismantles the phosphate-binding groove in RF3, a previously overlooked function of the ribosome.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Mariia Yu Rybak
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Center for mRNA Translational Research, Fudan University, Shanghai, China.
| | - Matthieu G Gagnon
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
4
|
Prince CR, Lin IN, Feaga HA. The evolution and functional significance of the programmed ribosomal frameshift in prfB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614795. [PMID: 39386688 PMCID: PMC11463598 DOI: 10.1101/2024.09.24.614795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Release Factor 2 (RF2) is one of two peptide release factors that terminate translation in bacteria. In Escherichia coli, the gene encoding RF2, prfB, contains an in-frame premature RF2-specific stop codon. Therefore, a programmed ribosomal frameshift is required to translate full-length RF2. Here, we investigate the diversity of prfB frameshifting through bioinformatic analyses of >12,000 genomes. We present evidence that prfB frameshifting autoregulates RF2 levels throughout the bacterial domain since (i) the prfB in-frame stop codon is always TGA or TAA, both of which are recognized by RF2, and never the RF1-specific TAG stop codon, and (ii) species that lack the autoregulatory programmed frameshift likely need higher RF2 levels since, on average, they have significantly higher RF2-specific stop codon usage. Overexpression of prfB without the autoregulatory frameshift motif is toxic to Bacillus subtilis, an organism with intermediate RF2-specific stop codon usage. We did not detect the programmed frameshift in any Actinobacteriota. Consistent with this finding, we observed very low frameshift efficiency at the prfB frameshift motif in the Actinobacterium Mycobacterium smegmatis. Our work provides a more complete picture of the evolution of the RF2 programmed frameshifting motif, and its usage to prevent toxic overexpression of RF2.
Collapse
Affiliation(s)
| | - Isabella N. Lin
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
5
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
6
|
Ngo PHT, Ishida S, Busogi BB, Do H, Ledesma MA, Kar S, Ellington A. Changes in Coding and Efficiency through Modular Modifications to a One Pot PURE System for In Vitro Transcription and Translation. ACS Synth Biol 2023; 12:3771-3777. [PMID: 38050859 DOI: 10.1021/acssynbio.3c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The incorporation of unnatural amino acids is an attractive method for improving or bringing new and novel functions in peptides and proteins. Cell-free protein synthesis using the Protein Synthesis Using Recombinant Elements (PURE) system is an attractive platform for efficient unnatural amino acid incorporation. In this work, we further adapted and modified the One Pot PURE to obtain a robust and modular system for enzymatic single-site-specific incorporation of an unnatural amino acid. We demonstrated the flexibility of this system through the introduction of two different orthogonal aminoacyl tRNA synthetase:tRNA pairs that suppressed two distinctive stop codons in separate reaction mixtures.
Collapse
Affiliation(s)
- Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Bianca B Busogi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hannah Do
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Maximiliano A Ledesma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shaunak Kar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Nagao A, Nakanishi Y, Yamaguchi Y, Mishina Y, Karoji M, Toya T, Fujita T, Iwasaki S, Miyauchi K, Sakaguchi Y, Suzuki T. Quality control of protein synthesis in the early elongation stage. Nat Commun 2023; 14:2704. [PMID: 37198183 PMCID: PMC10192219 DOI: 10.1038/s41467-023-38077-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
In the early stage of bacterial translation, peptidyl-tRNAs frequently dissociate from the ribosome (pep-tRNA drop-off) and are recycled by peptidyl-tRNA hydrolase. Here, we establish a highly sensitive method for profiling of pep-tRNAs using mass spectrometry, and successfully detect a large number of nascent peptides from pep-tRNAs accumulated in Escherichia coli pthts strain. Based on molecular mass analysis, we found about 20% of the peptides bear single amino-acid substitutions of the N-terminal sequences of E. coli ORFs. Detailed analysis of individual pep-tRNAs and reporter assay revealed that most of the substitutions take place at the C-terminal drop-off site and that the miscoded pep-tRNAs rarely participate in the next round of elongation but dissociate from the ribosome. These findings suggest that pep-tRNA drop-off is an active mechanism by which the ribosome rejects miscoded pep-tRNAs in the early elongation, thereby contributing to quality control of protein synthesis after peptide bond formation.
Collapse
Affiliation(s)
- Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Yui Nakanishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshifumi Mishina
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Minami Karoji
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takafumi Toya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
8
|
Nguyen H, Hoffer E, Fagan C, Maehigashi T, Dunham C. Structural basis for reduced ribosomal A-site fidelity in response to P-site codon-anticodon mismatches. J Biol Chem 2023; 299:104608. [PMID: 36924943 PMCID: PMC10140155 DOI: 10.1016/j.jbc.2023.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.
Collapse
Affiliation(s)
- HaAn Nguyen
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - EricD Hoffer
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - CrystalE Fagan
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Tatsuya Maehigashi
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - ChristineM Dunham
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA.
| |
Collapse
|
9
|
Nguyen HA, Hoffer ED, Fagan CE, Maehigashi T, Dunham CM. Structural basis for reduced ribosomal A-site fidelity in response to P-site codon-anticodon mismatches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526049. [PMID: 36747737 PMCID: PMC9900946 DOI: 10.1101/2023.01.28.526049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNA Lys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.
Collapse
Affiliation(s)
- Ha An Nguyen
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - Eric D. Hoffer
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Crystal E. Fagan
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Tatsuya Maehigashi
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| |
Collapse
|
10
|
Sharma D, Aswal M, Ahmad N, Kumar M, Khan AU. Proteomic Analysis of the Colistin-resistant E. coli Clinical Isolate: Explorations of the Resistome. Protein Pept Lett 2022; 29:184-198. [PMID: 34844531 DOI: 10.2174/0929866528666211129095001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antimicrobial resistance is a worldwide problem after the emergence of colistin resistance since it was the last option left to treat carbapenemase-resistant bacterial infections. The mcr gene and its variants are one of the causes for colistin resistance. Besides mcr genes, some other intrinsic genes are also involved in colistin resistance but still need to be explored. OBJECTIVE The aim of this study was to investigate differential proteins expression of colistin-resistant E. coli clinical isolate and to understand their interactive partners as future drug targets. METHODS In this study, we have employed the whole proteome analysis through LC-MS/MS. The advance proteomics tools were used to find differentially expressed proteins in the colistin-resistant Escherichia coli clinical isolate compared to susceptible isolate. Gene ontology and STRING were used for functional annotation and protein-protein interaction networks, respectively. RESULTS LC-MS/MS analysis showed overexpression of 47 proteins and underexpression of 74 proteins in colistin-resistant E. coli. These proteins belong to DNA replication, transcription and translational process; defense and stress related proteins; proteins of phosphoenol pyruvate phosphotransferase system (PTS) and sugar metabolism. Functional annotation and protein-protein interaction showed translational and cellular metabolic process, sugar metabolism and metabolite interconversion. CONCLUSION We conclude that these protein targets and their pathways might be used to develop novel therapeutics against colistin-resistant infections. These proteins could unveil the mechanism of colistin resistance.
Collapse
Affiliation(s)
- Divakar Sharma
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manisha Aswal
- Department of Biophysics, University of Delhi South Campus, India
| | - Nayeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- Department of Biophysics, All India Institute Of Medical Science (AIIMS), New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
11
|
Sharma AK. Translational autoregulation of RF2 protein in E. coli through programmed frameshifting. Phys Rev E 2021; 103:062412. [PMID: 34271674 DOI: 10.1103/physreve.103.062412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2021] [Indexed: 11/07/2022]
Abstract
Various feedback mechanisms regulate the expression of different genes to ensure the required protein levels inside a cell. In this paper, we develop a kinetic model for one such mechanism that autoregulates RF2 protein synthesis in E. coli through programmed frameshifting. The model finds that the programmed frameshifting autoregulates RF2 protein synthesis by two independent mechanisms. First, it increases the rate of RF2 synthesis from each mRNA transcript at low RF2 concentration. Second, programmed frameshifting can dramatically increase the lifetime of RF2 transcripts when RF2 protein levels are lower than a threshold. This sharp increase in mRNA lifetime is caused by a first-order phase transition from a low to a high ribosome density on an RF2 transcript. The high ribosome density prevents the transcript's degradation by shielding it from nucleases, which increases its average lifetime and hence RF2 protein levels. Our study identifies this quality control mechanism that regulates the cellular protein levels by breaking the hierarchy of processes involved in gene expression.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu 181221, India
| |
Collapse
|
12
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
The composition and turnover of the Arabidopsis thaliana 80S cytosolic ribosome. Biochem J 2021; 477:3019-3032. [PMID: 32744327 PMCID: PMC7452503 DOI: 10.1042/bcj20200385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Cytosolic 80S ribosomes contain proteins of the mature cytosolic ribosome (r-proteins) as well as proteins with roles in ribosome biogenesis, protein folding or modification. Here, we refined the core r-protein composition in Arabidopsis thaliana by determining the abundance of different proteins during enrichment of ribosomes from cell cultures using peptide mass spectrometry. The turnover rates of 26 40S subunit r-proteins and 29 60S subunit r-proteins were also determined, showing that half of the ribosome population is replaced every 3–4 days. Three enriched proteins showed significantly shorter half-lives; a protein annotated as a ribosomal protein uL10 (RPP0D, At1g25260) with a half-life of 0.5 days and RACK1b and c with half-lives of 1–1.4 days. The At1g25260 protein is a homologue of the human Mrt4 protein, a trans-acting factor in the assembly of the pre-60S particle, while RACK1 has known regulatory roles in cell function beyond its role in the 40S subunit. Our experiments also identified 58 proteins that are not from r-protein families but co-purify with ribosomes and co-express with r-proteins; 26 were enriched more than 10-fold during ribosome enrichment. Some of these enriched proteins have known roles in translation, while others are newly proposed ribosome-associated factors in plants. This analysis provides an improved understanding of A. thaliana ribosome protein content, shows that most r-proteins turnover in unison in vivo, identifies a novel set of potential plant translatome components, and how protein turnover can help identify r-proteins involved in ribosome biogenesis or regulation in plants.
Collapse
|
14
|
Yan LL, Zaher HS. Ribosome quality control antagonizes the activation of the integrated stress response on colliding ribosomes. Mol Cell 2020; 81:614-628.e4. [PMID: 33338396 DOI: 10.1016/j.molcel.2020.11.033] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022]
Abstract
Stalling during translation triggers ribosome quality control (RQC) to maintain proteostasis. Recently, stalling has also been linked to the activation of integrated stress response (ISR) by Gcn2. How the two processes are coordinated is unclear. Here, we show that activation of RQC by Hel2 suppresses that of Gcn2. We further show that Hel2 and Gcn2 are activated by a similar set of agents that cause ribosome stalling, with maximal activation of Hel2 observed at a lower frequency of stalling. Interestingly, inactivation of one pathway was found to result in the overactivation of the other, suggesting that both are activated by the same signal of ribosome collisions. Notably, the processes do not appear to be in direct competition with each other; ISR prefers a vacant A site, whereas RQC displays no preference. Collectively, our findings provide important details about how multiple pathways that recognize stalled ribosomes coordinate to mount the appropriate response.
Collapse
Affiliation(s)
- Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
15
|
Tollerson R, Ibba M. Translational regulation of environmental adaptation in bacteria. J Biol Chem 2020; 295:10434-10445. [PMID: 32518156 DOI: 10.1074/jbc.rev120.012742] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation-initiation, elongation, and termination-cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels of specific protein products using programmed ribosome pausing or inducing frameshifting. Recent studies have improved understanding and revealed greater complexity regarding long-standing paradigms describing key regulatory steps of translation such as start-site selection and the coupling of transcription and translation. In this review, we describe how bacteria regulate their gene expression at the three translational steps and discuss how translation is used to detect and respond to changes in the cellular environment. Finally, we appraise the costs and benefits of regulation at the translational level in bacteria.
Collapse
Affiliation(s)
- Rodney Tollerson
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Michael Ibba
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Ayyub SA, Gao F, Lightowlers RN, Chrzanowska-Lightowlers ZM. Rescuing stalled mammalian mitoribosomes - what can we learn from bacteria? J Cell Sci 2020; 133:133/1/jcs231811. [PMID: 31896602 DOI: 10.1242/jcs.231811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the canonical process of translation, newly completed proteins escape from the ribosome following cleavage of the ester bond that anchors the polypeptide to the P-site tRNA, after which the ribosome can be recycled to initiate a new round of translation. Not all protein synthesis runs to completion as various factors can impede the progression of ribosomes. Rescuing of stalled ribosomes in mammalian mitochondria, however, does not share the same mechanisms that many bacteria use. The classic method for rescuing bacterial ribosomes is trans-translation. The key components of this system are absent from mammalian mitochondria; however, four members of a translation termination factor family are present, with some evidence of homology to members of a bacterial back-up rescue system. To date, there is no definitive demonstration of any other member of this family functioning in mitoribosome rescue. Here, we provide an overview of the processes and key players of canonical translation termination in both bacteria and mammalian mitochondria, followed by a perspective of the bacterial systems used to rescue stalled ribosomes. We highlight any similarities or differences with the mitochondrial translation release factors, and suggest potential roles for these proteins in ribosome rescue in mammalian mitochondria.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Fei Gao
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Zofia M Chrzanowska-Lightowlers
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
17
|
Ma NJ, Hemez CF, Barber KW, Rinehart J, Isaacs FJ. Organisms with alternative genetic codes resolve unassigned codons via mistranslation and ribosomal rescue. eLife 2018; 7:34878. [PMID: 30375330 PMCID: PMC6207430 DOI: 10.7554/elife.34878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/26/2018] [Indexed: 11/13/2022] Open
Abstract
Organisms possessing genetic codes with unassigned codons raise the question of how cellular machinery resolves such codons and how this could impact horizontal gene transfer. Here, we use a genomically recoded Escherichia coli to examine how organisms address translation at unassigned UAG codons, which obstruct propagation of UAG-containing viruses and plasmids. Using mass spectrometry, we show that recoded organisms resolve translation at unassigned UAG codons via near-cognate suppression, dramatic frameshifting from at least −3 to +19 nucleotides, and rescue by ssrA-encoded tmRNA, ArfA, and ArfB. We then demonstrate that deleting tmRNA restores expression of UAG-ending proteins and propagation of UAG-containing viruses and plasmids in the recoded strain, indicating that tmRNA rescue and nascent peptide degradation is the cause of impaired virus and plasmid propagation. The ubiquity of tmRNA homologs suggests that genomic recoding is a promising path for impairing horizontal gene transfer and conferring genetic isolation in diverse organisms. Usually, DNA passes from parent to offspring, vertically down the generations. But not always. In some cases, it can move directly from one organism to another by a process called horizontal gene transfer. In bacteria, this happens when DNA segments pass through a bacterium’s cell wall, which can then be picked up by another bacterium. Because the vast majority of organisms share the same genetic code, the bacteria can read this DNA with ease, as it is in the same biological language. Horizontal gene transfer helps bacteria adapt and evolve to their surroundings, letting them swap and share genetic information that could be useful. The process also poses a threat to human health because the DNA that bacteria share can help spread antibiotic resistance. However, some organisms use an alternative genetic code, which obstructs horizontal gene transfer. They cannot read the DNA transmitted to them, because it is in a different ‘biological language’. The mechanism of how this language barrier works has been poorly understood until now. Ma, Hemez, Barber et al. investigated this using Escherichia coli bacteria with an artificially alternated genetic code. In this E. coli, one of the three-letter DNA ‘words’ in the sequence is a blank – it does not exist in the bacterium’s biological language. This three-letter DNA word normally corresponds to a particular protein building block. Using a technique called mass spectrometry, Ma et al. analyzed the proteins this E. coli forms. The results showed that it has several strategies to deal with DNA transmitted horizontally into the bacterium. One method is destroying the proteins that are half-created from the DNA, using molecules called tmRNAs. These are part of a rescue system that intervenes when protein translation stalls on the blank word. The tmRNAs help to add a tag to half-formed proteins, marking them for destruction. This mechanism creates a ‘genetic firewall’ that prevents horizontal gene transfer. In organisms engineered to work from an altered genetic code, this helps to isolate them from outside interference. The findings could have applications in creating engineered bacteria that are safer for use in fields such as medicine and biofuel production.
Collapse
Affiliation(s)
- Natalie Jing Ma
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| | - Colin F Hemez
- Systems Biology Institute, Yale University, West Haven, United States.,Department of Biomedical Engineering, Yale University, New Haven, United States
| | - Karl W Barber
- Systems Biology Institute, Yale University, West Haven, United States.,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, United States
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, United States.,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, United States
| | - Farren J Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| |
Collapse
|
18
|
Abrahams L, Hurst LD. Refining the Ambush Hypothesis: Evidence That GC- and AT-Rich Bacteria Employ Different Frameshift Defence Strategies. Genome Biol Evol 2018; 10:1153-1173. [PMID: 29617761 PMCID: PMC5909447 DOI: 10.1093/gbe/evy075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Stop codons are frequently selected for beyond their regular termination function for error control. The “ambush hypothesis” proposes out-of-frame stop codons (OSCs) terminating frameshifted translations are selected for. Although early indirect evidence was partially supportive, recent evidence suggests OSC frequencies are not exceptional when considering underlying nucleotide content. However, prior null tests fail to control amino acid/codon usages or possible local mutational biases. We therefore return to the issue using bacterial genomes, considering several tests defining and testing against a null. We employ simulation approaches preserving amino acid order but shuffling synonymous codons or preserving codons while shuffling amino acid order. Additionally, we compare codon usage in amino acid pairs, where one codon can but the next, otherwise identical codon, cannot encode an OSC. OSC frequencies exceed expectations typically in AT-rich genomes, the +1 frame and for TGA/TAA but not TAG. With this complex evidence, simply rejecting or accepting the ambush hypothesis is not warranted. We propose a refined post hoc model, whereby AT-rich genomes have more accidental frameshifts, handled by RF2–RF3 complexes (associated with TGA/TAA) and are mostly +1 (or −2) slips. Supporting this, excesses positively correlate with in silico predicted frameshift probabilities. Thus, we propose a more viable framework, whereby genomes broadly adopt one of the two strategies to combat frameshifts: preventing frameshifting (GC-rich) or permitting frameshifts but minimizing impacts when most are caught early (AT-rich). Our refined framework holds promise yet some features, such as the bias of out-of-frame sense codons, remain unexplained.
Collapse
Affiliation(s)
- Liam Abrahams
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| |
Collapse
|
19
|
Decoding on the ribosome depends on the structure of the mRNA phosphodiester backbone. Proc Natl Acad Sci U S A 2018; 115:E6731-E6740. [PMID: 29967153 DOI: 10.1073/pnas.1721431115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During translation, the ribosome plays an active role in ensuring that mRNA is decoded accurately and rapidly. Recently, biochemical studies have also implicated certain accessory factors in maintaining decoding accuracy. However, it is currently unclear whether the mRNA itself plays an active role in the process beyond its ability to base pair with the tRNA. Structural studies revealed that the mRNA kinks at the interface of the P and A sites. A magnesium ion appears to stabilize this structure through electrostatic interactions with the phosphodiester backbone of the mRNA. Here we examined the role of the kink structure on decoding using a well-defined in vitro translation system. Disruption of the kink structure through site-specific phosphorothioate modification resulted in an acute hyperaccurate phenotype. We measured rates of peptidyl transfer for near-cognate tRNAs that were severely diminished and in some instances were almost 100-fold slower than unmodified mRNAs. In contrast to peptidyl transfer, the modifications had little effect on GTP hydrolysis by elongation factor thermal unstable (EF-Tu), suggesting that only the proofreading phase of tRNA selection depends critically on the kink structure. Although the modifications appear to have no effect on typical cognate interactions, peptidyl transfer for a tRNA that uses atypical base pairing is compromised. These observations suggest that the kink structure is important for decoding in the absence of Watson-Crick or G-U wobble base pairing at the third position. Our findings provide evidence for a previously unappreciated role for the mRNA backbone in ensuring uniform decoding of the genetic code.
Collapse
|
20
|
Adio S, Sharma H, Senyushkina T, Karki P, Maracci C, Wohlgemuth I, Holtkamp W, Peske F, Rodnina MV. Dynamics of ribosomes and release factors during translation termination in E. coli. eLife 2018; 7:34252. [PMID: 29889659 PMCID: PMC5995542 DOI: 10.7554/elife.34252] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
Release factors RF1 and RF2 promote hydrolysis of peptidyl-tRNA during translation termination. The GTPase RF3 promotes recycling of RF1 and RF2. Using single molecule FRET and biochemical assays, we show that ribosome termination complexes that carry two factors, RF1–RF3 or RF2–RF3, are dynamic and fluctuate between non-rotated and rotated states, whereas each factor alone has its distinct signature on ribosome dynamics and conformation. Dissociation of RF1 depends on peptide release and the presence of RF3, whereas RF2 can dissociate spontaneously. RF3 binds in the GTP-bound state and can rapidly dissociate without GTP hydrolysis from termination complex carrying RF1. In the absence of RF1, RF3 is stalled on ribosomes if GTP hydrolysis is blocked. Our data suggest how the assembly of the ribosome–RF1–RF3–GTP complex, peptide release, and ribosome fluctuations promote termination of protein synthesis and recycling of the release factors. Inside cells, molecular machines called ribosomes make proteins using messenger RNA as a template. However, the template contains more than just the information needed to create the protein. A ‘stop codon’ in the mRNA marks where the ribosome should stop. When this is reached a group of proteins called release factors removes the newly made protein from the ribosome. Bacteria typically have three types of release factors. RF1 and RF2 recognize the stop codon, and RF3 helps to release RF1 or RF2 from the ribosome so that it can be recycled to produce another protein. It was not fully understood how the release factors interact with the ribosome and how this terminates protein synthesis. Adio et al. used TIRF microscopy to study individual ribosomes from the commonly studied bacteria species Escherichia coli. This technique allows researchers to monitor movements of the ribosome and record how release factors bind to it. The results of the experiments performed by Adio et al. show that although RF1 and RF2 are very similar to each other, they interact with the ribosome in different ways. In addition, only RF1 relies upon RF3 to release it from the ribosome; RF2 can release itself. RF3 releases RF1 by forcing the ribosome to change shape. RF3 then uses energy produced by the breakdown of a molecule called GTP to help release itself from the ribosome. Most importantly, the findings presented by Adio et al. highlight that the movements of ribosomes and release factors during termination are only loosely coupled rather than occur in a set order. Other molecular machines are likely to work in a similar way. The results could also help us to understand the molecular basis of several human diseases, such as Duchenne muscular dystrophy and cystic fibrosis, that result from ribosomes not recognizing stop codons in the mRNA.
Collapse
Affiliation(s)
- Sarah Adio
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heena Sharma
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
21
|
Zeng F, Jin H. Conformation of methylated GGQ in the Peptidyl Transferase Center during Translation Termination. Sci Rep 2018; 8:2349. [PMID: 29403017 PMCID: PMC5799190 DOI: 10.1038/s41598-018-20107-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/12/2018] [Indexed: 11/24/2022] Open
Abstract
The universally conserved Gly-Gly-Gln (GGQ) tripeptide in release factors or release factor-like surveillance proteins is required to catalyze the release of nascent peptide in the ribosome. The glutamine of the GGQ is methylated post-translationally at the N5 position in vivo; this covalent modification is essential for optimal cell growth and efficient translation termination. However, the precise conformation of the methylated-GGQ tripeptide in the ribosome remains unknown. Using cryoEM and X-ray crystallography, we report the conformation of methylated-GGQ in the peptidyl transferase center of the ribosome during canonical translational termination and co-translation quality control. It has been suggested that the GGQ motif arose independently through convergent evolution among otherwise unrelated proteins that catalyze peptide release. The requirement for this tripeptide in the highly conserved peptidyl transferase center suggests that the conformation reported here is likely shared during termination of protein synthesis in all domains of life.
Collapse
Affiliation(s)
- Fuxing Zeng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, USA. .,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, USA.
| |
Collapse
|
22
|
Pierson WE, Hoffer ED, Keedy HE, Simms CL, Dunham CM, Zaher HS. Uniformity of Peptide Release Is Maintained by Methylation of Release Factors. Cell Rep 2017; 17:11-18. [PMID: 27681416 DOI: 10.1016/j.celrep.2016.08.085] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/30/2016] [Accepted: 08/24/2016] [Indexed: 10/20/2022] Open
Abstract
Termination of protein synthesis on the ribosome is catalyzed by release factors (RFs), which share a conserved glycine-glycine-glutamine (GGQ) motif. The glutamine residue is methylated in vivo, but a mechanistic understanding of its contribution to hydrolysis is lacking. Here, we show that the modification, apart from increasing the overall rate of termination on all dipeptides, substantially increases the rate of peptide release on a subset of amino acids. In the presence of unmethylated RFs, we measure rates of hydrolysis that are exceptionally slow on proline and glycine residues and approximately two orders of magnitude faster in the presence of the methylated factors. Structures of 70S ribosomes bound to methylated RF1 and RF2 reveal that the glutamine side-chain methylation packs against 23S rRNA nucleotide 2451, stabilizing the GGQ motif and placing the side-chain amide of the glutamine toward tRNA. These data provide a framework for understanding how release factor modifications impact termination.
Collapse
Affiliation(s)
- William E Pierson
- Department of Biology, Washington University in St. Louis, Campus Box 1137, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Eric D Hoffer
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road NE, Room G223, Atlanta, GA 30322, USA; Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Room G223, Atlanta, GA 30322, USA
| | - Hannah E Keedy
- Department of Biology, Washington University in St. Louis, Campus Box 1137, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Carrie L Simms
- Department of Biology, Washington University in St. Louis, Campus Box 1137, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Room G223, Atlanta, GA 30322, USA.
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, Campus Box 1137, 1 Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
23
|
Baggett NE, Zhang Y, Gross CA. Global analysis of translation termination in E. coli. PLoS Genet 2017; 13:e1006676. [PMID: 28301469 PMCID: PMC5373646 DOI: 10.1371/journal.pgen.1006676] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/30/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. Proteins are the cellular workhorses, performing essentially all of the functions required for cell and organismal survival. But, it takes a great deal of energy to make proteins, making it critical that proteins are made accurately and in the proper time frame. After a ribosome synthesizes a protein, release factors catalyze the accurate and timely release of the finished protein from the ribosome, a process called termination. Ribosomes are then recycled and start the next protein. We utilized ribosome profiling, a method that allows us to follow the position of every ribosome that is making a protein, to globally investigate and strengthen insights on termination fidelity for cells with and without mutant release factors. We find that as we decrease release factor function, the time to terminate/release a protein increases across the genome. We observe that the accuracy of terminating a protein at the correct place decreases on a global scale. Using this metric we identify genes with inherently low termination efficiency and confirm two novel events resulting in extended protein products. In addition we find that beyond disrupting accurate protein synthesis, release factor mutations can alter expression of genes involved in the production of key amino acids.
Collapse
Affiliation(s)
- Natalie E. Baggett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Zeng F, Jin H. Peptide release promoted by methylated RF2 and ArfA in nonstop translation is achieved by an induced-fit mechanism. RNA (NEW YORK, N.Y.) 2016; 22:49-60. [PMID: 26554029 PMCID: PMC4691834 DOI: 10.1261/rna.053082.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/01/2015] [Indexed: 05/27/2023]
Abstract
Here we report that the specificity of peptide release in the ribosome on a nonstop mRNA by ArfA and RF2 is achieved by an induced-fit mechanism. Using RF2 that is methylated on the glutamine of its GGQ motif (RF2(m)), we show that methylation substantially increases the rate of ArfA/RF2-catalyzed peptide release on a nonstop mRNA that does not occupy the ribosomal A site, but has only a modest effect on k(cat) by the same proteins on longer nonstop mRNAs occupying the A site of the mRNA channel in the ribosome. Our data suggest that enhancement in the kcat of peptide release by ArfA and RF2 under the cognate decoding condition is the result of favorable conformational changes in the nonstop complex. We demonstrate a shared mechanism between canonical and nonstop termination, supported by similarities in the kinetic mechanisms in antibiotic inhibition and methylation-correlated enhancement in the rate of peptide release. Despite these similarities, our data suggest that nonstop termination differs from canonical pathway in the downstream event of recycling.
Collapse
Affiliation(s)
- Fuxing Zeng
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hong Jin
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
26
|
Svidritskiy E, Korostelev AA. Ribosome Structure Reveals Preservation of Active Sites in the Presence of a P-Site Wobble Mismatch. Structure 2015; 23:2155-61. [PMID: 26412335 DOI: 10.1016/j.str.2015.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 11/17/2022]
Abstract
Translation initiation in the P site occasionally occurs at atypical (non-AUG) start codons, including those forming a mismatch in the third (wobble) position. During elongation, however, a pyrimidine-pyrimidine wobble mismatch may trigger a translation quality-control mechanism, whereby the P-site mismatch is thought to perturb the downstream A-site codon or the decoding center, thereby reducing translation fidelity and inducing termination of aberrant translation. We report a crystal structure of the 70S initiation complex containing an AUC codon in the ribosomal P site. Remarkably, the ribosome stabilizes the mismatched codon-anticodon helix, arranging a normally disruptive cytosine-cytosine pair into a Watson-Crick-like conformation. Translation-competent conformations of the tRNA, mRNA, and decoding center suggest that a P-site wobble-position mismatch in the 70S initiation complex does not pre-arrange the mRNA or decoding center to favor subsequent miscoding events.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
27
|
|
28
|
O’Connor M. Interactions of release factor RF3 with the translation machinery. Mol Genet Genomics 2015; 290:1335-44. [DOI: 10.1007/s00438-015-0994-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
|
29
|
Kurita D, Chadani Y, Muto A, Abo T, Himeno H. ArfA recognizes the lack of mRNA in the mRNA channel after RF2 binding for ribosome rescue. Nucleic Acids Res 2014; 42:13339-52. [PMID: 25355516 PMCID: PMC4245945 DOI: 10.1093/nar/gku1069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which usually acts as a stop codon-specific peptide release factor. It poses a fascinating question of how ArfA and RF2 recognize and rescue the stalled ribosome. Here, we mapped the location of ArfA in the stalled ribosome by directed hydroxyl radical probing. It revealed an ArfA-binding site around the neck region of the 30S subunit in which the N- and C-terminal regions of ArfA are close to the decoding center and the mRNA entry channel, respectively. ArfA and RF2 sequentially enter the ribosome stalled in either the middle or 3′ end of mRNA, whereas RF2 induces a productive conformational change of ArfA only when ribosome is stalled at the 3′ end of mRNA. On the basis of these results, we propose that ArfA functions as the sensor to recognize the target ribosome after RF2 binding.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Yuhei Chadani
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan Department of Biology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| |
Collapse
|