1
|
Hinsch CL, Venkata JK, Hsu T, Dammai V. Controlled Plasma Membrane Delivery of FGFR1 and Modulation of Signaling by a Novel Regulated Anterograde RTK Transport Pathway. Cancers (Basel) 2023; 15:5837. [PMID: 38136383 PMCID: PMC10741464 DOI: 10.3390/cancers15245837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
How human FGFR1 localizes to the PM is unknown. Currently, it is assumed that newly synthesized FGFR1 is continuously delivered to the PM. However, evidence indicates that FGFR1 is mostly sequestered in intracellular post-Golgi vesicles (PGVs) under normal conditions. In this report, live-cell imaging and total internal reflection fluorescence microscopy (TIRFM) were employed to study the dynamics of these FGFR1-positive vesicles. We designed recombinant proteins to target different transport components to and from the FGFR1 vesicles. Mouse embryoid bodies (mEBs) were used as a 3D model system to confirm major findings. Briefly, we found that Rab2a, Rab6a, Rab8a, RalA and caveolins are integral components of FGFR1-positive vesicles, representing a novel compartment. While intracellular sequestration prevented FGFR1 activation, serum starvation and hypoxia stimulated PM localization of FGFR1. Under these conditions, FGFR1 C-terminus acts as a scaffold to assemble proteins to (i) inactivate Rab2a and release sequestration, and (ii) assemble Rab6a for localized activation of Rab8a and RalA-exocyst to deliver the receptor to the PM. This novel pathway is named Regulated Anterograde RTK Transport (RART). This is the first instance of RTK regulated through control of PM delivery.
Collapse
Affiliation(s)
- Claire Leist Hinsch
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29401, USA (J.K.V.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Jagadish Kummetha Venkata
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29401, USA (J.K.V.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Tien Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40433, Taiwan
| | - Vincent Dammai
- Aldevron LLC (Danaher Corporation), Fargo, ND 58104, USA
| |
Collapse
|
2
|
Deng Y, Adam V, Nepovimova E, Heger Z, Valko M, Wu Q, Wei W, Kuca K. c-Jun N-terminal kinase signaling in cellular senescence. Arch Toxicol 2023; 97:2089-2109. [PMID: 37335314 DOI: 10.1007/s00204-023-03540-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Cellular senescence leads to decreased tissue regeneration and inflammation and is associated with diabetes, neurodegenerative diseases, and tumorigenesis. However, the mechanisms of cellular senescence are not fully understood. Emerging evidence has indicated that c-Jun N-terminal kinase (JNK) signaling is involved in the regulation of cellular senescence. JNK can downregulate hypoxia inducible factor-1α to accelerate hypoxia-induced neuronal cell senescence. The activation of JNK inhibits mTOR activity and triggers autophagy, which promotes cellular senescence. JNK can upregulate the expression of p53 and Bcl-2 and accelerates cancer cell senescence; however, this signaling also mediates the expression of amphiregulin and PD-LI to achieve cancer cell immune evasion and prevents their senescence. The activation of JNK further triggers forkhead box O expression and its target gene Jafrac1 to extend the lifespan of Drosophila. JNK can also upregulate the expression of DNA repair protein poly ADP-ribose polymerase 1 and heat shock protein to delay cellular senescence. This review discusses recent advances in understanding the function of JNK signaling in cellular senescence and includes a comprehensive analysis of the molecular mechanisms underlying JNK-mediated senescence evasion and oncogene-induced cellular senescence. We also summarize the research progress in anti-aging agents that target JNK signaling. This study will contribute to a better understanding of the molecular targets of cellular senescence and provides insights into anti-aging, which may be used to develop drugs for the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
3
|
Antitumor Effects of Ral-GTPases Downregulation in Glioblastoma. Int J Mol Sci 2022; 23:ijms23158199. [PMID: 35897776 PMCID: PMC9330696 DOI: 10.3390/ijms23158199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common tumor in the central nervous system in adults. This neoplasia shows a high capacity of growth and spreading to the surrounding brain tissue, hindering its complete surgical resection. Therefore, the finding of new antitumor therapies for GBM treatment is a priority. We have previously described that cyclin D1-CDK4 promotes GBM dissemination through the activation of the small GTPases RalA and RalB. In this paper, we show that RalB GTPase is upregulated in primary GBM cells. We found that the downregulation of Ral GTPases, mainly RalB, prevents the proliferation of primary GBM cells and triggers a senescence-like response. Moreover, downregulation of RalA and RalB reduces the viability of GBM cells growing as tumorspheres, suggesting a possible role of these GTPases in the survival of GBM stem cells. By using mouse subcutaneous xenografts, we have corroborated the role of RalB in GBM growth in vivo. Finally, we have observed that the knockdown of RalB also inhibits cell growth in temozolomide-resistant GBM cells. Overall, our work shows that GBM cells are especially sensitive to Ral-GTPase availability. Therefore, we propose that the inactivation of Ral-GTPases may be a reliable therapeutic approach to prevent GBM progression and recurrence.
Collapse
|
4
|
Nanami T, Hoshino I, Shiratori F, Yajima S, Oshima Y, Suzuki T, Ito M, Hiwasa T, Kuwajima A, Shimada H. Presence of serum RalA and serum p53 autoantibodies in 1833 patients with various types of cancers. Int J Clin Oncol 2021; 27:72-76. [PMID: 34632560 DOI: 10.1007/s10147-021-02045-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND RalA is a member of the Ras superfamily of small GTPases. The Anti-RalA autoantibodies (s-RalA-Abs) act as tumor markers in various types of cancer and are negatively associated with the p53 autoantibodies (s-p53-Abs). This study aimed to evaluate the relationship between s-RalA-Abs and s-p53-Abs in various types of cancer. METHODS A total of 1833 cancer patients (esophageal cancer, 172; hepatocellular carcinoma, 91; lung cancer, 269; gastric cancer, 317; colon cancer, 262; breast cancer, 364; and prostate cancer, 358) and 73 healthy subjects were enrolled in the study. The levels of s-RalA-Abs and s-p53-Abs were analyzed using enzyme-linked immunosorbent assay, and the positivity rates and relations between the two autoantibodies were evaluated. The cutoff values for s-RalA abs and s-p53 abs were set as mean + 2 standard deviation and the values higher than the cutoff values were defined as positive. RESULTS The titers in all cancer types were significantly higher than those in the controls (P < 0.01). The positivity rates for s-RalA-Abs ranged between 11.7 and 21.5%, and those for s-p53-Abs ranged between 12 and 28.5%. A combined assay of the two antibodies revealed positivity rates of 20.9 and 44.2%. In Stage 0/I/II tumors, the positivity rates of the combination of the two antibodies ranged between 21.5 and 42.3%. The two autoantibodies were complementary to each other in the prostate and breast cancers, but independent in other carcinomas. CONCLUSION The combined use of s-RalA-Abs and s-p53-Abs tended to increase the positivity rate in all cancers, including Stage 0/I/II cancers.
Collapse
Affiliation(s)
- Tatsuki Nanami
- Department of Surgery, School of Medicine, Toho University, Tokyo, 143-8541, Japan
| | - Isamu Hoshino
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chiba, 260-8717, Japan
| | - Fumiaki Shiratori
- Department of Surgery, School of Medicine, Toho University, Tokyo, 143-8541, Japan
| | - Satoshi Yajima
- Department of Surgery, School of Medicine, Toho University, Tokyo, 143-8541, Japan
| | - Yoko Oshima
- Department of Surgery, School of Medicine, Toho University, Tokyo, 143-8541, Japan
| | - Takashi Suzuki
- Department of Surgery, School of Medicine, Toho University, Tokyo, 143-8541, Japan
| | - Masaaki Ito
- Department of Surgery, School of Medicine, Toho University, Tokyo, 143-8541, Japan
| | - Takaki Hiwasa
- Department of Clinical Oncology, Graduate School of Medicine, Toho University, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Akiko Kuwajima
- Medical & Biological Laboratories Co., Ltd, Nagoya, 460-0008, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, 143-8541, Japan. .,Department of Clinical Oncology, Graduate School of Medicine, Toho University, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan.
| |
Collapse
|
5
|
Komaniecki G, Lin H. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Front Cell Dev Biol 2021; 9:717503. [PMID: 34368168 PMCID: PMC8339906 DOI: 10.3389/fcell.2021.717503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Post-translational acylation of lysine side chains is a common mechanism of protein regulation. Modification by long-chain fatty acyl groups is an understudied form of lysine acylation that has gained increasing attention recently due to the characterization of enzymes that catalyze the addition and removal this modification. In this review we summarize what has been learned about lysine fatty acylation in the approximately 30 years since its initial discovery. We report on what is known about the enzymes that regulate lysine fatty acylation and their physiological functions, including tumorigenesis and bacterial pathogenesis. We also cover the effect of lysine fatty acylation on reported substrates. Generally, lysine fatty acylation increases the affinity of proteins for specific cellular membranes, but the physiological outcome depends greatly on the molecular context. Finally, we will go over the experimental tools that have been used to study lysine fatty acylation. While much has been learned about lysine fatty acylation since its initial discovery, the full scope of its biological function has yet to be realized.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Ral GTPase is essential for actin dynamics and Golgi apparatus distribution in mouse oocyte maturation. Cell Div 2021; 16:3. [PMID: 34112192 PMCID: PMC8194175 DOI: 10.1186/s13008-021-00071-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
Background Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. Results Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. Conclusions In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.
Collapse
|
7
|
Godwin I, Anto NP, Bava SV, Babu MS, Jinesh GG. Targeting K-Ras and apoptosis-driven cellular transformation in cancer. Cell Death Discov 2021; 7:80. [PMID: 33854056 PMCID: PMC8047025 DOI: 10.1038/s41420-021-00457-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular transformation is a major event that helps cells to evade apoptosis, genomic instability checkpoints, and immune surveillance to initiate tumorigenesis and to promote progression by cancer stem cell expansion. However, the key molecular players that govern cellular transformation and ways to target cellular transformation for therapy are poorly understood to date. Here we draw key evidences from the literature on K-Ras-driven cellular transformation in the context of apoptosis to shed light on the key players that are required for cellular transformation and explain how aiming p53 could be useful to target cellular transformation. The defects in key apoptosis regulators such as p53, Bax, and Bak lead to apoptosis evasion, cellular transformation, and genomic instability to further lead to stemness, tumorigenesis, and metastasis via c-Myc-dependent transcription. Therefore enabling key apoptotic checkpoints in combination with K-Ras inhibitors will be a promising therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Isha Godwin
- Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | - Nikhil Ponnoor Anto
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Smitha V Bava
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Mani Shankar Babu
- Department of Botany, University College, Thiruvananthapuram, Kerala, 695 034, India
| | - Goodwin G Jinesh
- Departments of Molecular Oncology, and Sarcoma, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
8
|
Pascucci FA, Ladelfa MF, Toledo MF, Escalada M, Suberbordes M, Monte M. MageC2 protein is upregulated by oncogenic activation of MAPK pathway and causes impairment of the p53 transactivation function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118918. [PMID: 33279609 DOI: 10.1016/j.bbamcr.2020.118918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Normal-to-tumor cell transition is accompanied by changes in gene expression and signal transduction that turns the balance toward cancer-cell phenotype, eluding by different mechanisms, the response of tumor-suppressor genes. Here, we observed that MageC2, a MAGE-I protein able to regulate the p53 tumor-suppressor, is accumulated upon MEK/ERK MAPK activation. Overexpression of H-RasV12 oncogene causes an increase in MageC2 protein that is prevented by pharmacologic inhibition of MEK. Similarly, decrease in MageC2 protein levels is shown in A375 melanoma cells (which harbor B-RafV600E oncogenic mutation) treated with MEK inhibitors. MageC2 protein levels decrease when p14ARF is expressed, causing an Mdm2-independent upregulation of p53 transactivation. However, MageC2 is refractory to p14ARF-driven downregulation when H-RasV12 is co-expressed. Using MageC2 knockout A375 cells generated by CRISPR/CAS9 technology, we demonstrated the relevance of MageC2 protein in reducing p53 transcriptional activity in cells containing hyperactive MEK/ERK signaling. Furthermore, gene expression analysis performed in cancer-genomic databases, supports the correlation of reduced p53 transcriptional activity and high MageC2 expression, in melanoma cells containing Ras or B-Raf driver mutations. Data presented here suggest that MageC2 can be a functional target of the oncogenic MEK/ERK pathway to regulate p53.
Collapse
Affiliation(s)
- Franco Andrés Pascucci
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fátima Ladelfa
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fernanda Toledo
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Escalada
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Suberbordes
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Monte
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Khawaja H, Campbell A, Roberts JZ, Javadi A, O'Reilly P, McArt D, Allen WL, Majkut J, Rehm M, Bardelli A, Di Nicolantonio F, Scott CJ, Kennedy R, Vitale N, Harrison T, Sansom OJ, Longley DB, Evergren E, Van Schaeybroeck S. RALB GTPase: a critical regulator of DR5 expression and TRAIL sensitivity in KRAS mutant colorectal cancer. Cell Death Dis 2020; 11:930. [PMID: 33122623 PMCID: PMC7596570 DOI: 10.1038/s41419-020-03131-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023]
Abstract
RAS mutant (MT) metastatic colorectal cancer (mCRC) is resistant to MEK1/2 inhibition and remains a difficult-to-treat group. Therefore, there is an unmet need for novel treatment options for RASMT mCRC. RALA and RALB GTPases function downstream of RAS and have been found to be key regulators of several cell functions implicated in KRAS-driven tumorigenesis. However, their role as regulators of the apoptotic machinery remains to be elucidated. Here, we found that inhibition of RALB expression, but not RALA, resulted in Caspase-8-dependent cell death in KRASMT CRC cells, which was not further increased following MEK1/2 inhibition. Proteomic analysis and mechanistic studies revealed that RALB depletion induced a marked upregulation of the pro-apoptotic cell surface TRAIL Death Receptor 5 (DR5) (also known as TRAIL-R2), primarily through modulating DR5 protein lysosomal degradation. Moreover, DR5 knockdown or knockout attenuated siRALB-induced apoptosis, confirming the role of the extrinsic apoptotic pathway as a regulator of siRALB-induced cell death. Importantly, TRAIL treatment resulted in the association of RALB with the death-inducing signalling complex (DISC) and targeting RALB using pharmacologic inhibition or RNAi approaches triggered a potent increase in TRAIL-induced cell death in KRASMT CRC cells. Significantly, high RALB mRNA levels were found in the poor prognostic Colorectal Cancer Intrinsic Subtypes (CRIS)-B CRC subgroup. Collectively, this study provides to our knowledge the first evidence for a role for RALB in apoptotic priming and suggests that RALB inhibition may be a promising strategy to improve response to TRAIL treatment in poor prognostic RASMT CRIS-B CRC.
Collapse
Affiliation(s)
- Hajrah Khawaja
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Andrew Campbell
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Jamie Z Roberts
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Arman Javadi
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Paul O'Reilly
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Darragh McArt
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Wendy L Allen
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Joanna Majkut
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569, Stuttgart, Germany
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, TO, 10060, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, 10060, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, TO, 10060, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, 10060, Italy
| | - Christopher J Scott
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Richard Kennedy
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Timothy Harrison
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Daniel B Longley
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Emma Evergren
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Sandra Van Schaeybroeck
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
10
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
11
|
Yang H, Xiang S, Kazi A, Sebti SM. The GTPase KRAS suppresses the p53 tumor suppressor by activating the NRF2-regulated antioxidant defense system in cancer cells. J Biol Chem 2020; 295:3055-3063. [PMID: 32001619 DOI: 10.1074/jbc.ra119.011930] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
In human cancer cells that harbor mutant KRAS and WT p53 (p53), KRAS contributes to the maintenance of low p53 levels. Moreover, KRAS depletion stabilizes and reactivates p53 and thereby inhibits malignant transformation. However, the mechanism by which KRAS regulates p53 is largely unknown. Recently, we showed that KRAS depletion leads to p53 Ser-15 phosphorylation (P-p53) and increases the levels of p53 and its target p21/WT p53-activated fragment 1 (WAF1)/CIP1. Here, using several human lung cancer cell lines, siRNA-mediated gene silencing, immunoblotting, quantitative RT-PCR, promoter-reporter assays, and reactive oxygen species (ROS) assays, we demonstrate that KRAS maintains low p53 levels by activating the NRF2 (NFE2-related factor 2)-regulated antioxidant defense system. We found that KRAS depletion led to down-regulation of NRF2 and its targets NQO1 (NAD(P)H quinone dehydrogenase 1) and SLC7A11 (solute carrier family 7 member 11), decreased the GSH/GSSG ratio, and increased ROS levels. We noted that the increase in ROS is required for increased P-p53, p53, and p21Waf1/cip1 levels following KRAS depletion. Downstream of KRAS, depletion of RalB (RAS-like proto-oncogene B) and IκB kinase-related TANK-binding kinase 1 (TBK1) activated p53 in a ROS- and NRF2-dependent manner. Consistent with this, the IκB kinase inhibitor BAY11-7085 and dominant-negative mutant IκBαM inhibited NF-κB activity and increased P-p53, p53, and p21Waf1/cip1 levels in a ROS-dependent manner. In conclusion, our findings uncover an important role for the NRF2-regulated antioxidant system in KRAS-mediated p53 suppression.
Collapse
Affiliation(s)
- Hua Yang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Shengyan Xiang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Aslamuzzaman Kazi
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Said M Sebti
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612.
| |
Collapse
|
12
|
Spiegelman NA, Zhang X, Jing H, Cao J, Kotliar IB, Aramsangtienchai P, Wang M, Tong Z, Rosch KM, Lin H. SIRT2 and Lysine Fatty Acylation Regulate the Activity of RalB and Cell Migration. ACS Chem Biol 2019; 14:2014-2023. [PMID: 31433161 DOI: 10.1021/acschembio.9b00492] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein lysine fatty acylation is increasingly recognized as a prevalent and important protein post-translation modification. Recently, it has been shown that K-Ras4a, R-Ras2, and Rac1 are regulated by lysine fatty acylation. Here, we investigated whether other members of the Ras superfamily could also be regulated by lysine fatty acylation. Several small GTPases exhibit hydroxylamine resistant fatty acylation, suggesting they may also have protein lysine fatty acylation. We further characterized one of these GTPases, RalB. We show that RalB has C-terminal lysine fatty acylation, with the predominant modification site being Lys200. The lysine acylation of RalB is regulated by SIRT2, a member of the sirtuin family of nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylases. Lysine fatty acylated RalB exhibited enhanced plasma membrane localization and recruited its known effectors Sec5 and Exo84, members of the exocyst complex, to the plasma membrane. RalB lysine fatty acylation did not affect the proliferation or anchorage-independent growth but did affect the trans-well migration of A549 lung cancer cells. This study thus identified an additional function for protein lysine fatty acylation and the deacylase SIRT2.
Collapse
Affiliation(s)
- Nicole A. Spiegelman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hui Jing
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ji Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ilana B. Kotliar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, New York 10065, United States
| | - Pornpun Aramsangtienchai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Zhen Tong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kelly M. Rosch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Cui Q, Sun T, Nie Z. Combining network topology with transcriptomic data for identifying radiosensitive gene signatures. JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2019; 19:565-579. [DOI: 10.3233/jcm-180848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Qin J, Wang S, Shi J, Ma Y, Wang K, Ye H, Zhang X, Wang P, Wang X, Song C, Dai L, Wang K, Jiang B, Zhang J. Using recursive partitioning approach to select tumor-associated antigens in immunodiagnosis of gastric adenocarcinoma. Cancer Sci 2019; 110:1829-1841. [PMID: 30950146 PMCID: PMC6550128 DOI: 10.1111/cas.14013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to select anti-tumor-associated antigen (TAA) autoantibodies as biomarkers in the immunodiagnosis of gastric adenocarcinoma (GAC) by the recursive partitioning approach (RPA) and further construct and evaluate a predictive model. A case-control study was designed including 407 GAC patients as the case group and 407 normal controls. In addition, 67 serial serum samples from 25 GAC patients were collected at different time points before and after gastrectomy treatment. Autoantibodies against 14 TAA were measured in sera from all subjects by enzyme immunoassay. Finally, RPA resulted in the selection of nine-panel TAA (c-Myc, p16, HSPD1, PTEN, p53, NPM1, ENO1, p62, HCC1.4) from all detected TAA in the case-control study; the classification tree based on this nine-TAA panel had area under curve (AUC) of 0.857, sensitivity of 71.5% and specificity of 71.3%; The optimal panel also can identify GAC patients at an early stage from normal individuals, with AUC of 0.737, sensitivity of 64.9% and specificity of 70.5%. However, frequencies of the nine autoantibodies showed no correlation with GAC stage, tumor size, lymphatic metastasis or differentiation. GAC patients positive for more than two autoantibodies in the nine-TAA panel had a worse prognosis than that of the GAC patients positive for no or one antibody. Titers of 10 autoantibodies in serial serum samples were significantly higher in GAC patients after surgical resection than before. In conclusion, this study showed that the panel of nine multiple TAAs could enhance the detection of anti-TAA antibodies in GAC, and may be potential prognostic biomarkers in GAC.
Collapse
Affiliation(s)
- Jiejie Qin
- Department of Epidemiology and Health Statistics & Henan Key Laboratory for Tumor EpidemiologyCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Shuaibing Wang
- Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jianxiang Shi
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yan Ma
- Department of Epidemiology and Health Statistics & Henan Key Laboratory for Tumor EpidemiologyCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Keyan Wang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory for Tumor EpidemiologyCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Hua Ye
- Department of Epidemiology and Health Statistics & Henan Key Laboratory for Tumor EpidemiologyCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Xiaojun Zhang
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Peng Wang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory for Tumor EpidemiologyCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Xiao Wang
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chunhua Song
- Department of Epidemiology and Health Statistics & Henan Key Laboratory for Tumor EpidemiologyCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Liping Dai
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Kaijuan Wang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory for Tumor EpidemiologyCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Binghua Jiang
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Jianying Zhang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory for Tumor EpidemiologyCollege of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
15
|
Moghadam AR, Patrad E, Tafsiri E, Peng W, Fangman B, Pluard TJ, Accurso A, Salacz M, Shah K, Ricke B, Bi D, Kimura K, Graves L, Najad MK, Dolatkhah R, Sanaat Z, Yazdi M, Tavakolinia N, Mazani M, Amani M, Ghavami S, Gartell R, Reilly C, Naima Z, Esfandyari T, Farassati F. Ral signaling pathway in health and cancer. Cancer Med 2017; 6:2998-3013. [PMID: 29047224 PMCID: PMC5727330 DOI: 10.1002/cam4.1105] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
The Ral (Ras-Like) signaling pathway plays an important role in the biology of cells. A plethora of effects is regulated by this signaling pathway and its prooncogenic effectors. Our team has demonstrated the overactivation of the RalA signaling pathway in a number of human malignancies including cancers of the liver, ovary, lung, brain, and malignant peripheral nerve sheath tumors. Additionally, we have shown that the activation of RalA in cancer stem cells is higher in comparison with differentiated cancer cells. In this article, we review the role of Ral signaling in health and disease with a focus on the role of this multifunctional protein in the generation of therapies for cancer. An improved understanding of this pathway can lead to development of a novel class of anticancer therapies that functions on the basis of intervention with RalA or its downstream effectors.
Collapse
Affiliation(s)
- Adel Rezaei Moghadam
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
| | - Elham Patrad
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Elham Tafsiri
- Department of Pediatrics, Columbia Presbyterian Medical CenterNew YorkNew York
| | - Warner Peng
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Benjamin Fangman
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Timothy J Pluard
- Saint Luke's HospitalUniversity of Missouri at Kansas CityKansas CityMissouri
| | - Anthony Accurso
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Michael Salacz
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Kushal Shah
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Brandon Ricke
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Danse Bi
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Kyle Kimura
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Leland Graves
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Marzieh Khajoie Najad
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Roya Dolatkhah
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Zohreh Sanaat
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Mina Yazdi
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Naeimeh Tavakolinia
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Mohammad Mazani
- Pasteur Institute of IranTehranIran
- Ardabil University of Medical Sciences, BiochemistryArdabilIran
| | - Mojtaba Amani
- Pasteur Institute of IranTehranIran
- Ardabil University of Medical Sciences, BiochemistryArdabilIran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
| | - Robyn Gartell
- Department of Pediatrics, Columbia Presbyterian Medical CenterNew YorkNew York
| | - Colleen Reilly
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Zaid Naima
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Tuba Esfandyari
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Faris Farassati
- Research Service (151)Kansas City Veteran Affairs Medical Center & Midwest Biomedical Research Foundation4801 E Linwood BlvdKansas CityMissouri64128‐2226
| |
Collapse
|
16
|
Sun H, Shi JX, Zhang HF, Xing MT, Li P, Dai LP, Luo CL, Wang X, Wang P, Ye H, Li LX, Zhang JY. Serum autoantibodies against a panel of 15 tumor-associated antigens in the detection of ovarian cancer. Tumour Biol 2017; 39:1010428317699132. [PMID: 28618923 DOI: 10.1177/1010428317699132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, enzyme-linked immunosorbent assay has been used to examine the frequencies of serum autoantibodies against two candidate tumor-associated antigens intensively selected from the Human Protein Atlas database, in combination with 13 tumor-associated antigens available from our lab in sera from 44 OC patients and 50 normal healthy controls. Conventional evaluation (mean + 3SD as the cutoff value to determine a positive reactivity), receiver operating characteristic curve analyses, and classification tree analysis were further used to evaluate the diagnostic performance of autoantibodies against these tumor-associated antigens (anti-tumor-associated antigens) in ovarian cancer. For single anti-tumor-associated antigen, when the cutoff values were set as mean + 3SD of normal healthy controls, NPM1, MDM2, PLAT, p53, and c-Myc could achieve sensitivity higher than 20% at 98% specificity. Combinational utilization of autoantibodies against MDM2, PLAT, NPM1, 14-3-3 Zeta, p53, and RalA achieved the optimal diagnostic performance with 72.7% sensitivity at 96% specificity. Receiver operating characteristic curve analysis showed that the area under the receiver operating characteristic curves of autoantibodies against c-Myc, NPM1, MDM2, p16, p53, and 14-3-3 Zeta were greater than 0.80. This indicated that these tumor-associated antigens held high potential to serve as diagnostic biomarkers in ovarian cancer detection. Decision tree analysis indicated that anti-c-Myc held high potential in the detection of ovarian cancer. Further studies are warranted to validate the diagnostic performance of these anti-tumor-associated antigens with high area under the receiver operating characteristic curve, including autoantibodies against c-Myc, MDM2, PLAT, NPM1, 14-3-3 Zeta, p53, and RalA.
Collapse
Affiliation(s)
- Hao Sun
- 1 Affiliated Cancer Hospital of Zhengzhou University, College of Public Health, Zhengzhou University, Zhengzhou, China.,2 Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Jian-Xiang Shi
- 1 Affiliated Cancer Hospital of Zhengzhou University, College of Public Health, Zhengzhou University, Zhengzhou, China.,2 Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Hong-Fei Zhang
- 1 Affiliated Cancer Hospital of Zhengzhou University, College of Public Health, Zhengzhou University, Zhengzhou, China.,2 Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Meng-Tao Xing
- 2 Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Pei Li
- 2 Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.,3 Henan Academy of Medical and Pharmaceutical Sciences and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li-Ping Dai
- 2 Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.,3 Henan Academy of Medical and Pharmaceutical Sciences and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cheng-Lin Luo
- 2 Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Xiao Wang
- 2 Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.,3 Henan Academy of Medical and Pharmaceutical Sciences and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- 1 Affiliated Cancer Hospital of Zhengzhou University, College of Public Health, Zhengzhou University, Zhengzhou, China.,3 Henan Academy of Medical and Pharmaceutical Sciences and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hua Ye
- 1 Affiliated Cancer Hospital of Zhengzhou University, College of Public Health, Zhengzhou University, Zhengzhou, China.,3 Henan Academy of Medical and Pharmaceutical Sciences and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liu-Xia Li
- 2 Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.,3 Henan Academy of Medical and Pharmaceutical Sciences and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian-Ying Zhang
- 1 Affiliated Cancer Hospital of Zhengzhou University, College of Public Health, Zhengzhou University, Zhengzhou, China.,2 Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.,3 Henan Academy of Medical and Pharmaceutical Sciences and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Harder B, Tian W, La Clair JJ, Tan AC, Ooi A, Chapman E, Zhang DD. Brusatol overcomes chemoresistance through inhibition of protein translation. Mol Carcinog 2017; 56:1493-1500. [PMID: 28019675 PMCID: PMC5404829 DOI: 10.1002/mc.22609] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022]
Abstract
The NRF2 pathway activates a cell survival response when cells are exposed to xenobiotics or are under oxidative stress. Therapeutic activation of NRF2 can also be used prior to insult as a means of disease prevention. However, prolonged expression of NRF2 has been shown to protect cancer cells by inducing the metabolism and efflux of chemotherapeutics, leading to both intrinsic and acquired chemoresistance to cancer drugs. This effect has been termed the "dark side" of NRF2. In an effort to combat this chemoresistance, our group discovered the first NRF2 inhibitor, the natural product brusatol, however the mechanism of inhibition was previously unknown. In this report, we show that brusatol's mode of action is not through direct inhibition of the NRF2 pathway, but through the inhibition of both cap-dependent and cap-independent protein translation, which has an impact on many short-lived proteins, including NRF2. Therefore, there is still a need to develop a new generation of specific NRF2 inhibitors with limited toxicity and off-target effects that could be used as adjuvant therapies to sensitize cancers with high expression of NRF2.
Collapse
Affiliation(s)
- Bryan Harder
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85271, USA
| | - Wang Tian
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85271, USA
| | - James J. La Clair
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85271, USA
| | - Aik-Choon Tan
- Division of Medical Oncology. School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85271, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85271, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85271, USA,University of Arizona Cancer Center (UACC), University of Arizona, Tucson, Arizona, 85271, USA,Correspondence: Dr. Donna D. Zhang,
| |
Collapse
|
18
|
Ji C, Zhao Y, Kou YW, Shao H, Guo L, Bao CH, Jiang BC, Chen XY, Dai JW, Tong YX, Yang R, Sun W, Wang Q. Cathepsin F Knockdown Induces Proliferation and Inhibits Apoptosis in Gastric Cancer Cells. Oncol Res 2017; 26:83-93. [PMID: 28474574 PMCID: PMC7844561 DOI: 10.3727/096504017x14928634401204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers in the world. The cathepsin F (CTSF) gene has recently been found to participate in the progression of several types of cancer. However, the clinical characteristics and function of CTSF in GC as well as its molecular mechanisms are not clear. Six GC cell lines and 44 paired adjacent noncancerous and GC tissue samples were used to assess CTSF expression by quantitative polymerase chain reaction (qPCR). We used lentivirus-mediated small hairpin RNA (Lenti-shRNA) against CTSF to knock down the expression of CTSF in GC cells. Western blot and qPCR were used to analyze the mRNA and related protein expression. The biological phenotypes of gastric cells were examined by cell proliferation and apoptosis assays. Microarray-based mRNA expression profile screening was also performed to evaluate the potential molecular pathways in which CTSF may be involved. The CTSF mRNA level was associated with tumor differentiation, depth of tumor invasion, and lymph node metastasis. Downregulation of CTSF expression efficiently inhibited apoptosis and promoted the proliferation of GC cells. Moreover, a total of 1,117 upregulated mRNAs and 1,143 downregulated mRNAs were identified as differentially expressed genes (DEGs). Further analysis identified the involvement of these mRNAs in cancer-related pathways and various other biological processes. Nine DEGs in cancer-related pathways and three downstream genes in the apoptosis pathway were validated by Western blot, which was mainly in agreement with the microarray data. To our knowledge, this is the first report investigating the effect of CTSF on the growth and apoptosis in GC cells and its clinical significance. The CTSF gene may function as a tumor suppressor in GC and may be a potential therapeutic target in the treatment of GC.
Collapse
Affiliation(s)
- Ce Ji
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ying Zhao
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - You-Wei Kou
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Hua Shao
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Lin Guo
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Chen-Hui Bao
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ben-Chun Jiang
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Xin-Ying Chen
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Jing-Wei Dai
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yu-Xin Tong
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ren Yang
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Wei Sun
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Qiang Wang
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
19
|
Siebring-van Olst E, Blijlevens M, de Menezes RX, van der Meulen-Muileman IH, Smit EF, van Beusechem VW. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment. Mol Oncol 2017; 11:534-551. [PMID: 28296343 PMCID: PMC5527466 DOI: 10.1002/1878-0261.12052] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 11/11/2022] Open
Abstract
Reinstating wild-type tumor suppressor p53 activity could be a valuable option for the treatment of cancer. To contribute to development of new treatment options for non-small cell lung cancer (NSCLC), we performed genome-wide siRNA screens for determinants of p53 activity in NSCLC cells. We identified many genes not previously known to be involved in regulating p53 activity. Silencing p53 pathway inhibitor genes was associated with loss of cell viability. The largest functional gene cluster influencing p53 activity was mRNA splicing. Prominent p53 activation was observed upon silencing of specific spliceosome components, rather than by general inhibition of the spliceosome. Ten genes were validated as inhibitors of p53 activity in multiple NSCLC cell lines: genes encoding the Ras pathway activator SOS1, the zinc finger protein TSHZ3, the mitochondrial membrane protein COX16, and the spliceosome components SNRPD3, SF3A3, SF3B1, SF3B6, XAB2, CWC22, and HNRNPL. Silencing these genes generally increased p53 levels, with distinct effects on CDKN1A expression, induction of cell cycle arrest and cell death. Silencing spliceosome components was associated with alternative splicing of MDM4 mRNA, which could contribute to activation of p53. In addition, silencing splice factors was particularly effective in killing NSCLC cells, albeit in a p53-independent manner. Interestingly, silencing SNRPD3 and SF3A3 exerted much stronger cytotoxicity to NSCLC cells than to lung fibroblasts, suggesting that these genes could represent useful therapeutic targets.
Collapse
Affiliation(s)
| | - Maxime Blijlevens
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Renee X de Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Egbert F Smit
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands.,Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Victor W van Beusechem
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Orue A, Chavez V, Strasberg-Rieber M, Rieber M. Hypoxic resistance of KRAS mutant tumor cells to 3-Bromopyruvate is counteracted by Prima-1 and reversed by N-acetylcysteine. BMC Cancer 2016; 16:902. [PMID: 27863474 PMCID: PMC5116131 DOI: 10.1186/s12885-016-2930-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
Background The metabolic inhibitor 3-bromopyruvate (3-BrPA) is a promising anti-cancer alkylating agent, shown to inhibit growth of some colorectal carcinoma with KRAS mutation. Recently, we demonstrated increased resistance to 3-BrPA in wt p53 tumor cells compared to those with p53 silencing or mutation. Since hypoxic microenvironments select for tumor cells with diminished therapeutic response, we investigated whether hypoxia unequally increases resistance to 3-BrPA in wt p53 MelJuso melanoma harbouring (Q61L)-mutant NRAS and wt BRAF, C8161 melanoma with (G12D)-mutant KRAS (G464E)-mutant BRAF, and A549 lung carcinoma with a KRAS (G12S)-mutation. Since hypoxia increases the toxicity of the p53 activator, Prima-1 against breast cancer cells irrespective of their p53 status, we also investigated whether Prima-1 reversed hypoxic resistance to 3-BrPA. Results In contrast to the high susceptibility of hypoxic mutant NRAS MelJuso cells to 3-BrPA or Prima-1, KRAS mutant C8161 and A549 cells revealed hypoxic resistance to 3-BrPA counteracted by Prima-1. In A549 cells, Prima-1 increased p21CDKN1mRNA, and reciprocally inhibited mRNA expression of the SLC2A1-GLUT1 glucose transporter-1 and ALDH1A1, gene linked to detoxification and stem cell properties. 3-BrPA lowered CAIX and VEGF mRNA expression. Death from joint Prima-1 and 3-BrPA treatment in KRAS mutant A549 and C8161 cells seemed mediated by potentiating oxidative stress, since it was antagonized by the anti-oxidant and glutathione precursor N-acetylcysteine. Conclusions This report is the first to show that Prima-1 kills hypoxic wt p53 KRAS-mutant cells resistant to 3-BrPA, partly by decreasing GLUT-1 expression and exacerbating pro-oxidant stress.
Collapse
Affiliation(s)
- Andrea Orue
- IVIC, Tumor Cell Biology Laboratory, Apartado 21827, Caracas, 1020A, Venezuela
| | - Valery Chavez
- IVIC, Tumor Cell Biology Laboratory, Apartado 21827, Caracas, 1020A, Venezuela
| | | | - Manuel Rieber
- IVIC, Tumor Cell Biology Laboratory, Apartado 21827, Caracas, 1020A, Venezuela.
| |
Collapse
|
21
|
Analysis of Microarray Data on Gene Expression and Methylation to Identify Long Non-coding RNAs in Non-small Cell Lung Cancer. Sci Rep 2016; 6:37233. [PMID: 27849024 PMCID: PMC5110979 DOI: 10.1038/srep37233] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
To identify what long non-coding RNAs (lncRNAs) are involved in non-small cell lung cancer (NSCLC), we analyzed microarray data on gene expression and methylation. Gene expression chip and HumanMethylation450BeadChip were used to interrogate genome-wide expression and methylation in tumor samples. Differential expression and methylation were analyzed through comparing tumors with adjacent non-tumor tissues. LncRNAs expressed differentially and correlated with coding genes and DNA methylation were validated in additional tumor samples using RT-qPCR and pyrosequencing. In vitro experiments were performed to evaluate lncRNA’s effects on tumor cells. We identified 8,500 lncRNAs expressed differentially between tumor and non-tumor tissues, of which 1,504 were correlated with mRNA expression. Two of the lncRNAs, LOC146880 and ENST00000439577, were positively correlated with expression of two cancer-related genes, KPNA2 and RCC2, respectively. High expression of LOC146880 and ENST00000439577 were also associated with poor survival. Analysis of lncRNA expression in relation to DNA methylation showed that LOC146880 expression was down-regulated by DNA methylation in its promoter. Lowering the expression of LOC146880 or ENST00000439577 in tumor cells could inhibit cell proliferation, invasion and migration. Analysis of microarray data on gene expression and methylation allows us to identify two lncRNAs, LOC146880 and ENST00000439577, which may promote the progression of NSCLC.
Collapse
|
22
|
Clinical significance of serum autoantibodies against Ras-like GTPases, RalA, in patients with esophageal squamous cell carcinoma. Esophagus 2015. [DOI: 10.1007/s10388-015-0510-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
23
|
Shirakawa R, Horiuchi H. Ral GTPases: crucial mediators of exocytosis and tumourigenesis. J Biochem 2015; 157:285-99. [DOI: 10.1093/jb/mvv029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/07/2015] [Indexed: 11/12/2022] Open
|