1
|
Bera S, Shi K, Aihara H, Grandgenett DP, Pandey KK. Molecular determinants for Rous sarcoma virus intasome assemblies involved in retroviral integration. J Biol Chem 2023; 299:104730. [PMID: 37084813 PMCID: PMC10209032 DOI: 10.1016/j.jbc.2023.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023] Open
Abstract
Integration of retroviral DNA into the host genome involves the formation of integrase (IN)-DNA complexes termed intasomes. Further characterization of these complexes is needed to understand their assembly process. Here, we report the single-particle cryo-EM structure of the Rous sarcoma virus (RSV) strand transfer complex (STC) intasome produced with IN and a preassembled viral/target DNA substrate at 3.36 Å resolution. The conserved intasome core region consisting of IN subunits contributing active sites interacting with viral/target DNA has a resolution of 3 Å. Our structure demonstrated the flexibility of the distal IN subunits relative to the IN subunits in the conserved intasome core, similar to results previously shown with the RSV octameric cleaved synaptic complex intasome produced with IN and viral DNA only. An extensive analysis of higher resolution STC structure helped in the identification of nucleoprotein interactions important for intasome assembly. Using structure-function studies, we determined the mechanisms of several IN-DNA interactions critical for assembly of both RSV intasomes. We determined the role of IN residues R244, Y246, and S124 in cleaved synaptic complex and STC intasome assemblies and their catalytic activities, demonstrating differential effects. Taken together, these studies advance our understanding of different RSV intasome structures and molecular determinants involved in their assembly.
Collapse
Affiliation(s)
- Sibes Bera
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Duane P Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Krishan K Pandey
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St Louis, Missouri, USA.
| |
Collapse
|
2
|
Pandey KK, Bera S, Shi K, Rau MJ, Oleru AV, Fitzpatrick JAJ, Engelman AN, Aihara H, Grandgenett DP. Cryo-EM structure of the Rous sarcoma virus octameric cleaved synaptic complex intasome. Commun Biol 2021; 4:330. [PMID: 33712691 PMCID: PMC7955051 DOI: 10.1038/s42003-021-01855-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Despite conserved catalytic integration mechanisms, retroviral intasomes composed of integrase (IN) and viral DNA possess diverse structures with variable numbers of IN subunits. To investigate intasome assembly mechanisms, we employed the Rous sarcoma virus (RSV) IN dimer that assembles a precursor tetrameric structure in transit to the mature octameric intasome. We determined the structure of RSV octameric intasome stabilized by a HIV-1 IN strand transfer inhibitor using single particle cryo-electron microscopy. The structure revealed significant flexibility of the two non-catalytic distal IN dimers along with previously unrecognized movement of the conserved intasome core, suggesting ordered conformational transitions between intermediates that may be important to capture the target DNA. Single amino acid substitutions within the IN C-terminal domain affected intasome assembly and function in vitro and infectivity of pseudotyped RSV virions. Unexpectedly, 17 C-terminal amino acids of IN were dispensable for virus infection despite regulating the transition of the tetrameric intasome to the octameric form in vitro. We speculate that this region may regulate the binding of highly flexible distal IN dimers to the intasome core to form the octameric complex. Our studies reveal key steps in the assembly of RSV intasomes. Pandey, Bera, Shi et al. report the cryo-electron microscopy structure of the Rous sarcoma virus octameric intasome complex stabilized by a HIV-1 integrase strand transfer inhibitor. This new structure highlights the intrinsic flexibility of the distal integrase subunits and suggests that ordered conformational transitions occur within the conserved intasome core during the assembly process.
Collapse
Affiliation(s)
- Krishan K Pandey
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Sibes Bera
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
| | - Amarachi V Oleru
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA.,Departments of Cell Biology & Physiology and Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Duane P Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
3
|
Bera S, Pandey KK, Aihara H, Grandgenett DP. Differential assembly of Rous sarcoma virus tetrameric and octameric intasomes is regulated by the C-terminal domain and tail region of integrase. J Biol Chem 2018; 293:16440-16452. [PMID: 30185621 DOI: 10.1074/jbc.ra118.004768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Indexed: 01/07/2023] Open
Abstract
Retrovirus integrase (IN) catalyzes the concerted integration of linear viral DNA ends into chromosomes. The atomic structures of five different retrovirus IN-DNA complexes, termed intasomes, have revealed varying IN subunit compositions ranging from tetramers to octamers, dodecamers, and hexadecamers. Intasomes containing two IN-associated viral DNA ends capable of concerted integration are termed stable synaptic complexes (SSC), and those formed with a viral/target DNA substrate representing the product of strand-transfer reactions are strand-transfer complexes (STC). Here, we investigated the mechanisms associated with the assembly of the Rous sarcoma virus SSC and STC. C-terminal truncations of WT IN (286 residues) indicated a role of the last 18 residues ("tail" region) in assembly of the tetrameric and octameric SSC, physically stabilized by HIV-1 IN strand-transfer inhibitors. Fine mapping through C-terminal truncations and site-directed mutagenesis suggested that at least three residues (Asp-268-Thr-270) past the last β-strand in the C-terminal domain (CTD) are necessary for assembly of the octameric SSC. In contrast, the assembly of the octameric STC was independent of the last 18 residues of IN. Single-site substitutions in the CTD affected the assembly of the SSC, but not necessarily of the STC, suggesting that STC assembly may depend less on specific interactions of the CTD with viral DNA. Additionally, we demonstrate that trans-communication between IN dimer-DNA complexes facilitates the association of native long-terminal repeat (LTR) ends with partially defective LTR ends to produce a hybrid octameric SSC. The differential assembly of the tetrameric and octameric SSC improves our understanding of intasomes.
Collapse
Affiliation(s)
- Sibes Bera
- From the Department of Molecular Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| | - Krishan K Pandey
- From the Department of Molecular Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| | - Hideki Aihara
- the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Duane P Grandgenett
- From the Department of Molecular Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| |
Collapse
|
4
|
Abstract
Integration of the reverse-transcribed viral cDNA into the host's genome is a critical step in the lifecycle of all retroviruses. Retrovirus integration is carried out by integrase (IN), a virus-encoded enzyme that forms an oligomeric 'intasome' complex with both ends of the linear viral DNA to catalyze their concerted insertions into the backbones of the host's DNA. IN also forms a complex with host proteins, which guides the intasome to the host's chromosome. Recent structural studies have revealed remarkable diversity as well as conserved features among the architectures of the intasome assembly from different genera of retroviruses. This chapter will review how IN oligomerizes to achieve its function, with particular focus on alpharetrovirus including the avian retrovirus Rous sarcoma virus. Another chapter (Craigie) will focus on the structure and function of IN from HIV-1.
Collapse
Affiliation(s)
- Duane P Grandgenett
- Saint Louis University Health Sciences Center, Department of Microbiology and Immunology, Institute for Molecular Virology, Doisy Research Center, St. Louis, MO, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Pandey KK, Bera S, Shi K, Aihara H, Grandgenett DP. A C-terminal "Tail" Region in the Rous Sarcoma Virus Integrase Provides High Plasticity of Functional Integrase Oligomerization during Intasome Assembly. J Biol Chem 2017; 292:5018-5030. [PMID: 28184005 PMCID: PMC5377814 DOI: 10.1074/jbc.m116.773382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/07/2017] [Indexed: 01/14/2023] Open
Abstract
The retrovirus integrase (IN) inserts the viral cDNA into the host DNA genome. Atomic structures of five different retrovirus INs complexed with their respective viral DNA or branched viral/target DNA substrates have indicated these intasomes are composed of IN subunits ranging from tetramers, to octamers, or to hexadecamers. IN precursors are monomers, dimers, or tetramers in solution. But how intasome assembly is controlled remains unclear. Therefore, we sought to unravel the functional mechanisms in different intasomes. We produced kinetically stabilized Rous sarcoma virus (RSV) intasomes with human immunodeficiency virus type 1 strand transfer inhibitors that interact simultaneously with IN and viral DNA within intasomes. We examined the ability of RSV IN dimers to assemble two viral DNA molecules into intasomes containing IN tetramers in contrast to one possessing IN octamers. We observed that the last 18 residues of the C terminus ("tail" region) of IN (residues 1-286) determined whether an IN tetramer or octamer assembled with viral DNA. A series of truncations of the tail region indicated that these 18 residues are critical for the assembly of an intasome containing IN octamers but not for an intasome containing IN tetramers. The C-terminally truncated IN (residues 1-269) produced an intasome that contained tetramers but failed to produce an intasome with octamers. Both intasomes have similar catalytic activities. The results suggest a high degree of plasticity for functional multimerization and reveal a critical role of the C-terminal tail region of IN in higher order oligomerization of intasomes, potentially informing future strategies to prevent retroviral integration.
Collapse
Affiliation(s)
- Krishan K Pandey
- From the Department of Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University, St. Louis, Missouri 63104 and
| | - Sibes Bera
- From the Department of Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University, St. Louis, Missouri 63104 and
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Duane P Grandgenett
- From the Department of Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University, St. Louis, Missouri 63104 and
| |
Collapse
|
6
|
Yin Z, Shi K, Banerjee S, Pandey KK, Bera S, Grandgenett DP, Aihara H. Crystal structure of the Rous sarcoma virus intasome. Nature 2016; 530:362-6. [PMID: 26887497 PMCID: PMC4881392 DOI: 10.1038/nature16950] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/23/2015] [Indexed: 01/07/2023]
Abstract
Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase-DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNA remained elusive. Here we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein-DNA and protein-protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.
Collapse
Affiliation(s)
- Zhiqi Yin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Surajit Banerjee
- Northeastern Collaborative Access Team, Cornell University, Argonne, IL, USA
| | - Krishan K. Pandey
- Institute for Molecular Virology, St. Louis University Health Sciences Center, St. Louis, MO, USA
| | - Sibes Bera
- Institute for Molecular Virology, St. Louis University Health Sciences Center, St. Louis, MO, USA
| | - Duane P. Grandgenett
- Institute for Molecular Virology, St. Louis University Health Sciences Center, St. Louis, MO, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Grandgenett DP, Pandey KK, Bera S, Aihara H. Multifunctional facets of retrovirus integrase. World J Biol Chem 2015; 6:83-94. [PMID: 26322168 PMCID: PMC4549773 DOI: 10.4331/wjbc.v6.i3.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/01/2015] [Accepted: 07/27/2015] [Indexed: 02/05/2023] Open
Abstract
The retrovirus integrase (IN) is responsible for integration of the reverse transcribed linear cDNA into the host DNA genome. First, IN cleaves a dinucleotide from the 3’ OH blunt ends of the viral DNA exposing the highly conserved CA sequence in the recessed ends. IN utilizes the 3’ OH ends to catalyze the concerted integration of the two ends into opposite strands of the cellular DNA producing 4 to 6 bp staggered insertions, depending on the retrovirus species. The staggered ends are repaired by host cell machinery that results in a permanent copy of the viral DNA in the cellular genome. Besides integration, IN performs other functions in the replication cycle of several studied retroviruses. The proper organization of IN within the viral internal core is essential for the correct maturation of the virus. IN plays a major role in reverse transcription by interacting directly with the reverse transcriptase and by binding to the viral capsid protein and a cellular protein. Recruitment of several other host proteins into the viral particle are also promoted by IN. IN assists with the nuclear transport of the preintegration complex across the nuclear membrane. With several retroviruses, IN specifically interacts with different host protein factors that guide the preintegration complex to preferentially integrate the viral genome into specific regions of the host chromosomal target. Human gene therapy using retrovirus vectors is directly affected by the interactions of IN with these host factors. Inhibitors directed against the human immunodeficiency virus (HIV) IN bind within the active site of IN containing viral DNA ends thus preventing integration and subsequent HIV/AIDS.
Collapse
|