1
|
Wang Y, Tan BC. Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications. PLANT COMMUNICATIONS 2025; 6:101203. [PMID: 39644091 PMCID: PMC11897456 DOI: 10.1016/j.xplc.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, playing vital roles in plant growth, development, cytoplasmic male sterility restoration, and responses to biotic and abiotic stresses. Over the last three decades, significant advances have been made in understanding the functions of PPR proteins and the primary mechanisms through which they mediate post-transcriptional processing. This review aims to summarize these advancements, highlighting the mechanisms by which PPR proteins facilitate RNA editing, intron splicing, and RNA maturation in the context of organellar gene expression. We also present the latest progress in PPR engineering and discuss its potential as a biotechnological tool. Additionally, we discuss key challenges and questions that remain in PPR research.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Zeng C, Jiao Q, Jia T, Hu X. Updated Progress on Group II Intron Splicing Factors in Plant Chloroplasts. Curr Issues Mol Biol 2022; 44:4229-4239. [PMID: 36135202 PMCID: PMC9497791 DOI: 10.3390/cimb44090290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Group II introns are large catalytic RNAs (ribozymes) in the bacteria and organelle genomes of several lower eukaryotes. Many critical photosynthesis-related genes in the plant chloroplast genome also contain group II introns, and their splicing is critical for chloroplast biogenesis and photosynthesis processes. The structure of chloroplast group II introns was altered during evolution, resulting in the loss of intron self-splicing. Therefore, the assistance of protein factors was required for their splicing processes. As an increasing number of studies focus on the mechanism of chloroplast intron splicing; many new nuclear-encoded splicing factors that are involved in the chloroplast intron splicing process have been reported. This report reviewed the research progress of the updated splicing factors found to be involved in the splicing of chloroplast group II introns. We discuss the main problems that remain in this research field and suggest future research directions.
Collapse
Affiliation(s)
- Chu Zeng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
3
|
Higashi H, Kato Y, Fujita T, Iwasaki S, Nakamura M, Nishimura Y, Takenaka M, Shikanai T. The Pentatricopeptide Repeat Protein PGR3 Is Required for the Translation of petL and ndhG by Binding Their 5' UTRs. PLANT & CELL PHYSIOLOGY 2021; 62:1146-1155. [PMID: 33439244 DOI: 10.1093/pcp/pcaa180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
PGR3 is a P-class pentatricopeptide repeat (PPR) protein required for the stabilization of petL operon RNA and the translation of the petL gene in plastids. Irrespective of its important roles in plastids, key questions have remained unanswered, including how PGR3 protein promotes translation and which plastid mRNA PGR3 activates the translation. Here, we show that PGR3 facilitates the translation from ndhG, in addition to petL, through binding to their 5' untranslated regions (UTRs). Ribosome profiling and RNA sequencing in pgr3 mutants revealed that translation from petL and ndhG was specifically suppressed. Harnessing small RNA fragments protected by PPR proteins in vivo, we probed the PGR3 recruitment to the 5' UTRs of petL and ndhG. The putative PGR3-bound RNA segments per se repress the translation possibly with a strong secondary structure and thereby block ribosomes' access. However, the PGR3 binding antagonizes the effects and facilitates the protein synthesis from petL and ndhG in vitro. The prediction of the 3-dimensional structure of PGR3 suggests that the 26th PPR motif plays important roles in target RNA binding. Our data show the specificity of a plastidic RNA-binding protein and provide a mechanistic insight into translational control.
Collapse
Affiliation(s)
- Haruka Higashi
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yoshinobu Kato
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8503 Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561 Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Wako, Saitama 351-0198, Japan
| | - Masayuki Nakamura
- Center of Gene Research, Nagoya University, Nagoya, Aichi, 464-8602 Japan
| | - Yoshiki Nishimura
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Mizuki Takenaka
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Toshiharu Shikanai
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
4
|
Pentatricopeptide repeat protein MID1 modulates nad2 intron 1 splicing and Arabidopsis development. Sci Rep 2020; 10:2008. [PMID: 32029763 PMCID: PMC7005036 DOI: 10.1038/s41598-020-58495-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
As one of the best-studied RNA binding proteins in plant, pentatricopeptide repeats (PPRs) protein are mainly targeted to mitochondria and/or chloroplasts for RNA processing to regulate the biogenesis and function of the organelles, but its molecular mechanism and role in development remain to be further revealed. Here, we identified a mitochondria-localized P-type small PPR protein, MITOCHONDRION-MEDIATED GROWTH DEFECT 1 (MID1) that is crucial for Arabidopsis development. Mutation in MID1 causes retarded embryo development and stunted plant growth with defects in cell expansion and proliferation. Molecular experiments showed that MID1 is required for the splicing of the nad2 intron 1 in mitochondria. Consistently, mid1 plants display significant reduction in the abundance and activity of mitochondrial respiration complex I, accompanied by abnormal mitochondrial morphology and energy metabolism. Furthermore, MID1 is associated with other trans-factors involved in NICOTINAMIDE ADENINE DINUCLEOTIDE HYDROGEN (NADH) DEHYDROGENASE SUBUNIT 2 (nad2) intron 1 splicing, and interacts directly with itself and MITOCHONDRIAL STABILITY FACTOR 1 (MTSF1). This suggests that MID1 most likely functions as a dimer for nad2 intron 1 splicing. Together, we characterized a novel PPR protein MID1 for nad2 intron 1 splicing.
Collapse
|
5
|
Dedow LK, Bailey-Serres J. Searching for a Match: Structure, Function and Application of Sequence-Specific RNA-Binding Proteins. PLANT & CELL PHYSIOLOGY 2019; 60:1927-1938. [PMID: 31329953 DOI: 10.1093/pcp/pcz072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 05/21/2023]
Abstract
Plants encode over 1800 RNA-binding proteins (RBPs) that modulate a myriad of steps in gene regulation from chromatin organization to translation, yet only a small number of these proteins and their target transcripts have been functionally characterized. Two classes of eukaryotic RBPs, pentatricopeptide repeat (PPR) and pumilio/fem-3 binding factors (PUF), recognize and bind to specific sequential RNA sequences through protein-RNA interactions. These modular proteins possess helical structural units containing key residues with high affinity for specific nucleotides, whose sequential order determines binding to a specific target RNA sequence. PPR proteins are nucleus-encoded, but largely regulate post-transcriptional gene regulation within plastids and mitochondria, including splicing, translation and RNA editing. Plant PUFs are involved in gene regulatory processes within the cell nucleus and cytoplasm. The modular structures of PPRs and PUFs that determine sequence specificity has facilitated identification of their RNA targets and biological functions. The protein-based RNA-targeting of PPRs and PUFs contrasts to the prokaryotic cluster regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) that target RNAs in prokaryotes. Together the PPR, PUF and CRISPR-Cas systems provide varied opportunities for RNA-targeted engineering applications.
Collapse
|
6
|
RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem 2018; 62:51-64. [PMID: 29453323 PMCID: PMC5897788 DOI: 10.1042/ebc20170061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.
Collapse
|
7
|
Miranda RG, Rojas M, Montgomery MP, Gribbin KP, Barkan A. RNA-binding specificity landscape of the pentatricopeptide repeat protein PPR10. RNA (NEW YORK, N.Y.) 2017; 23:586-599. [PMID: 28108520 PMCID: PMC5340921 DOI: 10.1261/rna.059568.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/09/2017] [Indexed: 05/02/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins comprise a large family of helical repeat proteins that influence gene expression in mitochondria and chloroplasts. PPR tracts can bind RNA via a modular one repeat-one nucleotide mechanism in which the nucleotide is specified by the identities of several amino acids in each repeat. This mode of recognition, the so-called PPR code, offers opportunities for the prediction of native PPR binding sites and the design of proteins to bind specified RNAs. However, a deep understanding of the parameters that dictate the affinity and specificity of PPR-RNA interactions is necessary to realize these goals. We report a comprehensive analysis of the sequence specificity of PPR10, a protein that binds similar RNA sequences of ∼18 nucleotides (nt) near the chloroplast atpH and psaJ genes in maize. We assessed the contribution of each nucleotide in the atpH binding site to PPR10 affinity in vitro by analyzing the effects of single-nucleotide changes at each position. In a complementary approach, the RNAs bound by PPR10 from partially randomized RNA pools were analyzed by deep sequencing. The results revealed three patches in which nucleotide identity has a major impact on binding affinity. These include 5 nt for which protein contacts were not observed in a PPR10-RNA crystal structure and 4 nt that are not explained by current views of the PPR code. These findings highlight aspects of PPR-RNA interactions that pose challenges for binding site prediction and design.
Collapse
Affiliation(s)
- Rafael G Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Kyle P Gribbin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
8
|
Spåhr H, Rozanska A, Li X, Atanassov I, Lightowlers RN, Chrzanowska-Lightowlers ZMA, Rackham O, Larsson NG. SLIRP stabilizes LRPPRC via an RRM-PPR protein interface. Nucleic Acids Res 2016; 44:6868-82. [PMID: 27353330 PMCID: PMC5001613 DOI: 10.1093/nar/gkw575] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
LRPPRC is a protein that has attracted interest both for its role in post-transcriptional regulation of mitochondrial gene expression and more recently because numerous mutated variants have been characterized as causing severe infantile mitochondrial neurodegeneration. LRPPRC belongs to the pentatricopeptide repeat (PPR) protein family, originally defined by their RNA binding capacity, and forms a complex with SLIRP that harbours an RNA recognition motif (RRM) domain. We show here that LRPPRC displays a broad and strong RNA binding capacity in vitro in contrast to SLIRP that associates only weakly with RNA. The LRPPRC–SLIRP complex comprises a hetero-dimer via interactions by polar amino acids in the single RRM domain of SLIRP and three neighbouring PPR motifs in the second quarter of LRPPRC, which critically contribute to the LRPPRC–SLIRP binding interface to enhance its stability. Unexpectedly, specific amino acids at this interface are located within the PPRs of LRPPRC at positions predicted to interact with RNA and within the RNP1 motif of SLIRP's RRM domain. Our findings thus unexpectedly establish that despite the prediction that these residues in LRPPRC and SLIRP should bind RNA, they are instead used to facilitate protein–protein interactions, enabling the formation of a stable complex between these two proteins.
Collapse
Affiliation(s)
- Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Agata Rozanska
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Xinping Li
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Robert N Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
9
|
Shen C, Zhang D, Guan Z, Liu Y, Yang Z, Yang Y, Wang X, Wang Q, Zhang Q, Fan S, Zou T, Yin P. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins. Nat Commun 2016; 7:11285. [PMID: 27088764 PMCID: PMC4837458 DOI: 10.1038/ncomms11285] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
As a large family of RNA-binding proteins, pentatricopeptide repeat (PPR) proteins mediate multiple aspects of RNA metabolism in eukaryotes. Binding to their target single-stranded RNAs (ssRNAs) in a modular and base-specific fashion, PPR proteins can serve as designable modules for gene manipulation. However, the structural basis for nucleotide-specific recognition by designer PPR (dPPR) proteins remains to be elucidated. Here, we report four crystal structures of dPPR proteins in complex with their respective ssRNA targets. The dPPR repeats are assembled into a right-handed superhelical spiral shell that embraces the ssRNA. Interactions between different PPR codes and RNA bases are observed at the atomic level, revealing the molecular basis for the modular and specific recognition patterns of the RNA bases U, C, A and G. These structures not only provide insights into the functional study of PPR proteins but also open a path towards the potential design of synthetic sequence-specific RNA-binding proteins.
Collapse
Affiliation(s)
- Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yexing Liu
- Center for Structural Biology, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Zhao Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - QunXia Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Shilong Fan
- Center for Structural Biology, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Tingting Zou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China,
| |
Collapse
|
10
|
De-coding and re-coding RNA recognition by PUF and PPR repeat proteins. Curr Opin Struct Biol 2016; 36:116-21. [PMID: 26874972 DOI: 10.1016/j.sbi.2016.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
Abstract
PUF and PPR proteins are two families of α-helical repeat proteins that recognize single-stranded RNA sequences. Both protein families hold promise as scaffolds for designed RNA-binding domains. A modular protein RNA recognition code was apparent from the first crystal structures of a PUF protein in complex with RNA, and recent studies continue to advance our understanding of natural PUF protein recognition (de-coding) and our ability to engineer specificity (re-coding). Degenerate recognition motifs make de-coding specificity of individual PPR proteins challenging. Nevertheless, re-coding PPR protein specificity using a consensus recognition code has been successful.
Collapse
|
11
|
Cheng S, Gutmann B, Zhong X, Ye Y, Fisher MF, Bai F, Castleden I, Song Y, Song B, Huang J, Liu X, Xu X, Lim BL, Bond CS, Yiu SM, Small I. Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:532-47. [PMID: 26764122 DOI: 10.1111/tpj.13121] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/05/2016] [Indexed: 05/02/2023]
Abstract
The pentatricopeptide repeat (PPR) proteins form one of the largest protein families in land plants. They are characterised by tandem 30-40 amino acid motifs that form an extended binding surface capable of sequence-specific recognition of RNA strands. Almost all of them are post-translationally targeted to plastids and mitochondria, where they play important roles in post-transcriptional processes including splicing, RNA editing and the initiation of translation. A code describing how PPR proteins recognise their RNA targets promises to accelerate research on these proteins, but making use of this code requires accurate definition and annotation of all of the various nucleotide-binding motifs in each protein. We have used a structural modelling approach to define 10 different variants of the PPR motif found in plant proteins, in addition to the putative deaminase motif that is found at the C-terminus of many RNA-editing factors. We show that the super-helical RNA-binding surface of RNA-editing factors is potentially longer than previously recognised. We used the redefined motifs to develop accurate and consistent annotations of PPR sequences from 109 genomes. We report a high error rate in PPR gene models in many public plant proteomes, due to gene fusions and insertions of spurious introns. These consistently annotated datasets across a wide range of species are valuable resources for future comparative genomics studies, and an essential pre-requisite for accurate large-scale computational predictions of PPR targets. We have created a web portal (http://www.plantppr.com) that provides open access to these resources for the community.
Collapse
Affiliation(s)
- Shifeng Cheng
- HKU-BGI Bioinformatics Algorithms and Core Technology Research Laboratory, Department of Computer Science, The University of Hong Kong, Hong Kong, China
- BGI-Shenzhen, Shenzhen, 518083, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009, Australia
| | | | - Yongtao Ye
- HKU-BGI Bioinformatics Algorithms and Core Technology Research Laboratory, Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Mark F Fisher
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | | | - Ian Castleden
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009, Australia
| | - Yue Song
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Bo Song
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xin Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Boon L Lim
- HKU-BGI Bioinformatics Algorithms and Core Technology Research Laboratory, Department of Computer Science, The University of Hong Kong, Hong Kong, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Siu-Ming Yiu
- HKU-BGI Bioinformatics Algorithms and Core Technology Research Laboratory, Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009, Australia
| |
Collapse
|
12
|
Karasik A, Shanmuganathan A, Howard MJ, Fierke CA, Koutmos M. Nuclear Protein-Only Ribonuclease P2 Structure and Biochemical Characterization Provide Insight into the Conserved Properties of tRNA 5' End Processing Enzymes. J Mol Biol 2015; 428:26-40. [PMID: 26655022 DOI: 10.1016/j.jmb.2015.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Protein-only RNase Ps (PRORPs) are a recently discovered class of RNA processing enzymes that catalyze maturation of the 5' end of precursor tRNAs in Eukaryotes. PRORPs are found in the nucleus and/or organelles of most eukaryotic organisms. Arabidopsis thaliana is a representative organism that contains PRORP enzymes (PRORP1, PRORP2 and PRORP3) in both its nucleus and its organelles; PRORP2 and PRORP3 localize to the nucleus and PRORP1 localizes to the chloroplast and the mitochondria. Apart from their identification, almost nothing is known about the structure and function of PRORPs that act in the nucleus. Here, we use a combination of biochemical assays and X-ray crystallography to characterize A. thaliana PRORP2. We solved the crystal structure of PRORP2 (3.2Å) revealing an overall V-shaped protein and conserved metallonuclease active-site structure. Our biochemical studies indicate that PRORP2 requires Mg(2+) for catalysis and catalyzes the maturation of nuclear encoded substrates up to 10-fold faster than mitochondrial encoded precursor nad6 t-element under single-turnover conditions. We also demonstrate that PRORP2 preferentially binds precursor tRNAs containing short 5' leaders and 3' trailers; however, leader and trailer lengths do not significantly alter the observed rate constants of PRORP2 in single-turnover cleavage assays. Our data provide a biochemical and structural framework to begin understanding how nuclear localized PRORPs recognize and cleave their substrates.
Collapse
Affiliation(s)
- Agnes Karasik
- Department of Biochemistry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 28104, USA
| | - Aranganathan Shanmuganathan
- Department of Biochemistry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 28104, USA
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Markos Koutmos
- Department of Biochemistry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 28104, USA.
| |
Collapse
|
13
|
Nahalka J, Hrabarova E, Talafova K. Protein-RNA and protein-glycan recognitions in light of amino acid codes. Biochim Biophys Acta Gen Subj 2015; 1850:1942-52. [PMID: 26145579 DOI: 10.1016/j.bbagen.2015.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND RNA-binding proteins, in cooperation with non-coding RNAs, play important roles in post-transcriptional regulation. Non-coding micro-RNAs control information flow from the genome to the glycome by interacting with glycan-synthesis enzymes. Glycan-binding proteins read the cell surface and cytoplasmic glycome and transfer signals back to the nucleus. The profiling of the protein-RNA and protein-glycan interactomes is of significant medicinal importance. SCOPE OF REVIEW This review discusses the state-of-the-art research in the protein-RNA and protein-glycan recognition fields and proposes the application of amino acid codes in profiling and programming the interactomes. MAJOR CONCLUSIONS The deciphered PUF-RNA and PPR-RNA amino acid recognition codes can be explained by the protein-RNA amino acid recognition hypothesis based on the genetic code. The tripartite amino acid code is also involved in protein-glycan interactions. At present, the results indicate that a system of four codons ("gnc", where n=g - guanine, c - cytosine, u - uracil or a - adenine) and four amino acids (G - glycine, A - alanine, V - valine, D - aspartic acid) could be the original genetic code that imprinted "rules" into both recognition processes. GENERAL SIGNIFICANCE Amino acid recognition codes have provocative potential in the profiling and programming of the protein-RNA and protein-glycan interactomes. The profiling and even programming of the interactomes will play significant roles in diagnostics and the development of therapeutic procedures against cancer and neurodegenerative, developmental and other diseases.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, SK-84538 Bratislava, Slovak Republic; Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovak Republic.
| | - Eva Hrabarova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, SK-84538 Bratislava, Slovak Republic; Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovak Republic
| | - Klaudia Talafova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, SK-84538 Bratislava, Slovak Republic; Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovak Republic
| |
Collapse
|
14
|
Gully BS, Cowieson N, Stanley WA, Shearston K, Small ID, Barkan A, Bond CS. The solution structure of the pentatricopeptide repeat protein PPR10 upon binding atpH RNA. Nucleic Acids Res 2015; 43:1918-26. [PMID: 25609698 PMCID: PMC4330388 DOI: 10.1093/nar/gkv027] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The pentatricopeptide repeat (PPR) protein family is a large family of RNA-binding proteins that is characterized by tandem arrays of a degenerate 35-amino-acid motif which form an α-solenoid structure. PPR proteins influence the editing, splicing, translation and stability of specific RNAs in mitochondria and chloroplasts ZEA MAYS: PPR10 is amongst the best studied PPR proteins, where sequence-specific binding to two RNA transcripts, ATPH: and PSAJ, HAS BEEN DEMONSTRATED TO FOLLOW: a recognition code where the identity of two amino acids per repeat determines the base-specificity. A recently solved ZmPPR10: PSAJ: complex crystal structure suggested a homodimeric complex with considerably fewer sequence-specific protein-RNA contacts than inferred PREVIOUSLY: Here we describe the solution structure of the ZmPPR10: ATPH: complex using size-exclusion chromatography-coupled synchrotron small-angle X-ray scattering (SEC-SY-SAXS). Our results support prior evidence that PPR10 binds RNA as a monomer, and that it does so in a manner that is commensurate with a canonical and predictable RNA-binding mode across much of the RNA-protein interface.
Collapse
Affiliation(s)
- Benjamin S Gully
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nathan Cowieson
- SAXSWAXS beamline, Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Will A Stanley
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kate Shearston
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
15
|
Shikanai T. RNA editing in plants: Machinery and flexibility of site recognition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:779-85. [PMID: 25585161 DOI: 10.1016/j.bbabio.2014.12.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 11/20/2022]
Abstract
In plants, RNA editing is a process that deaminates specific cytidines (C) to uridines (U). PLS subfamily members of PPR proteins function in site recognition of the target C. In silico analysis has predicted the code used for PPR motif-nucleotide interaction, and the crystal structure of a protein-RNA complex supports this model. Despite progress in understanding the RNA-binding mechanism of PPR proteins, some of the flexibility of RNA recognition observed in trans-factors of RNA editing has not been fully explained. It is probably necessary to consider another unknown mechanism, and this consideration is related to the question of how PPR proteins have managed the creation of RNA editing sites during evolution. This question may be related to the mystery of the biological function of RNA editing in plants. MORF/RIP family members are required for RNA editing at multiple editing sites and are components of the RNA editosome in plants. The DYW domain has been a strong candidate for the C deaminase activity required for C-to-U conversion in RNA editing. So far, the activity of this enzyme has not been detected in recombinant DYW proteins, and several puzzling experimental results need to be explained to support the model. It is still difficult to resolve the entire image of the editosome in RNA editing in plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|