1
|
Gerard L, Duvivier L, Fourrez M, Salazar P, Sprimont L, Xia D, Ambudkar SV, Gottesman MM, Gillet JP. Identification of two novel heterodimeric ABC transporters in melanoma: ABCB5β/B6 and ABCB5β/B9. J Biol Chem 2024; 300:105594. [PMID: 38145744 PMCID: PMC10828454 DOI: 10.1016/j.jbc.2023.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023] Open
Abstract
ABCB5 is a member of the ABC transporter superfamily composed of 48 transporters, which have been extensively studied for their role in cancer multidrug resistance and, more recently, in tumorigenesis. ABCB5 has been identified as a marker of skin progenitor cells, melanoma, and limbal stem cells. It has also been associated with multidrug resistance in several cancers. The unique feature of ABCB5 is that it exists as both a full transporter (ABCB5FL) and a half transporter (ABCB5β). Several studies have shown that the ABCB5β homodimer does not confer multidrug resistance, in contrast to ABCB5FL. In this study, using three complementary techniques, (1) nanoluciferase-based bioluminescence resonance energy transfer, (2) coimmunoprecipitation, and (3) proximity ligation assay, we identified two novel heterodimers in melanoma: ABCB5β/B6 and ABCB5β/B9. Both heterodimers could be expressed in High-Five insect cells and ATPase assays revealed that both functional nucleotide-binding domains of homodimers and heterodimers are required for their basal ATPase activity. These results are an important step toward elucidating the functional role of ABCB5β in melanocytes and melanoma.
Collapse
Affiliation(s)
- Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Laurent Duvivier
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Marie Fourrez
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Paula Salazar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lindsay Sprimont
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium.
| |
Collapse
|
2
|
Kawaguchi K, Imanaka T. Substrate Specificity and the Direction of Transport in the ABC Transporters ABCD1–3 and ABCD4. Chem Pharm Bull (Tokyo) 2022; 70:533-539. [DOI: 10.1248/cpb.c21-01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kosuke Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Tsuneo Imanaka
- Faculty of Pharmaceutical Sciences, Hiroshima International University
| |
Collapse
|
3
|
Structures of the human peroxisomal fatty acid transporter ABCD1 in a lipid environment. Commun Biol 2022; 5:7. [PMID: 35013584 PMCID: PMC8748874 DOI: 10.1038/s42003-021-02970-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023] Open
Abstract
The peroxisomal very long chain fatty acid (VLCFA) transporter ABCD1 is central to fatty acid catabolism and lipid biosynthesis. Its dysfunction underlies toxic cytosolic accumulation of VLCFAs, progressive demyelination, and neurological impairments including X-linked adrenoleukodystrophy (X-ALD). We present cryo-EM structures of ABCD1 in phospholipid nanodiscs in a nucleotide bound conformation open to the peroxisomal lumen and an inward facing conformation open to the cytosol at up to 3.5 Å resolution, revealing details of its transmembrane cavity and ATP dependent conformational spectrum. We identify features distinguishing ABCD1 from its closest homologs and show that coenzyme A (CoA) esters of VLCFAs modulate ABCD1 activity in a species dependent manner. Our data suggest a transport mechanism where the CoA moieties of VLCFA-CoAs enter the hydrophilic transmembrane domain while the acyl chains extend out into the surrounding membrane bilayer. The structures help rationalize disease causing mutations and may aid ABCD1 targeted structure-based drug design. Le et al. present cryo-EM structures of the peroxisomal very long chain fatty acid (VLCFA) transporter ABCD1 in phospholipid nanodiscs in a nucleotide-bound conformation open to the peroximsomal lumen and a conformation open to the cytosol. These structures provide the basis for structure-function studies to investigate VLCFA transport properties, disease-causing mutations, and drug design for disorders, such as X-linked adrenoleukodystrophy, associated with ABCD1 dysfunction.
Collapse
|
4
|
Peroxisomal ABC Transporters: An Update. Int J Mol Sci 2021; 22:ijms22116093. [PMID: 34198763 PMCID: PMC8201181 DOI: 10.3390/ijms22116093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest superfamilies of conserved proteins from bacteria to mammals. In humans, three members of this family are expressed in the peroxisomal membrane and belong to the subfamily D: ABCD1 (ALDP), ABCD2 (ALDRP), and ABCD3 (PMP70). These half-transporters must dimerize to form a functional transporter, but they are thought to exist primarily as tetramers. They possess overlapping but specific substrate specificity, allowing the transport of various lipids into the peroxisomal matrix. The defects of ABCD1 and ABCD3 are responsible for two genetic disorders called X-linked adrenoleukodystrophy and congenital bile acid synthesis defect 5, respectively. In addition to their role in peroxisome metabolism, it has recently been proposed that peroxisomal ABC transporters participate in cell signaling and cell control, particularly in cancer. This review presents an overview of the knowledge on the structure, function, and mechanisms involving these proteins and their link to pathologies. We summarize the different in vitro and in vivo models existing across the species to study peroxisomal ABC transporters and the consequences of their defects. Finally, an overview of the known and possible interactome involving these proteins, which reveal putative and unexpected new functions, is shown and discussed.
Collapse
|
5
|
Montoro R, Heine VM, Kemp S, Engelen M. Evolution of adrenoleukodystrophy model systems. J Inherit Metab Dis 2021; 44:544-553. [PMID: 33373044 PMCID: PMC8248356 DOI: 10.1002/jimd.12357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023]
Abstract
X-linked adrenoleukodystrophy (ALD) is a neurometabolic disorder affecting the adrenal glands, testes, spinal cord and brain. The disease is caused by mutations in the ABCD1 gene resulting in a defect in peroxisomal degradation of very long-chain fatty acids and their accumulation in plasma and tissues. Males with ALD have a near 100% life-time risk to develop myelopathy. The life-time prevalence to develop progressive cerebral white matter lesions (known as cerebral ALD) is about 60%. Adrenal insufficiency occurs in about 80% of male patients. In adulthood, 80% of women with ALD also develop myelopathy, but adrenal insufficiency or cerebral ALD are very rare. The complex clinical presentation and the absence of a genotype-phenotype correlation are complicating our understanding of the disease. In an attempt to understand the pathophysiology of ALD various model systems have been developed. While these model systems share the basic genetics and biochemistry of ALD they fail to fully recapitulate the complex neurodegenerative etiology of ALD. Each model system recapitulates certain aspects of the disorder. This exposes the complexity of ALD and therefore the challenge to create a comprehensive model system to fully understand ALD. In this review, we provide an overview of the different ALD modeling strategies from single-celled to multicellular organisms and from in vitro to in vivo approaches, and introduce how emerging iPSC-derived technologies could improve the understanding of this highly complex disorder.
Collapse
Affiliation(s)
- Roberto Montoro
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, Amsterdam NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Vivi M. Heine
- Department of Child and Youth Psychiatry, Amsterdam UMC, Amsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephan Kemp
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, Amsterdam NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, Amsterdam NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
6
|
Luo WJ, Wei Q, Dong HL, Yan YT, Chen MJ, Li HF. Spastic paraplegia as the predominant phenotype in a cohort of Chinese patients with adrenoleukodystrophy. Mol Genet Genomic Med 2019; 8:e1065. [PMID: 31777199 PMCID: PMC6978395 DOI: 10.1002/mgg3.1065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Background X‐linked adrenoleukodystrophy (ALD) is one of the most common peroxisomal disorders characterized by abnormal accumulation of very long‐chain fatty acids (VLCFA) in plasma and tissues and caused by mutations within ABCD1. Clinically, ALD present with various phenotypes, ranging from asymptomatic type to rapidly progressive childhood cerebral form. However, no remarkable abnormality in cerebral white matter usually makes it difficult to distinguish adult ALD from hereditary spastic paraplegia (HSP). Methods We analyzed the features of seven Chinese ALD patients who had a primary phenotype of spastic paraplegia. Sequencing was performed in the probands and their familial members. Detailed clinical, VLCFAs test, hormone test, magnetic resonance imaging, and electromyogram are presented. Results We reported seven ALD patients from a Chinese cohort of 142 HSP patients. Genetic investigations revealed five known ABCD1 mutations (c.346G>C, c.521A>G, c.829G>T, c.1415_1416delAG, and c.1849C>T) and two novel mutations (c.454C>G, c.1452_1482del). Further auxiliary testing revealed that they had higher VLCFA and/or adrenal insufficiency. Conclusions Our findings expand the mutation spectrum of ABCD1 and indicate that ALD represent a significant portion (4.9%, 7/142) of the spastic paraplegia entities. ALD should be considered in male patients with spastic paraplegia, even if there was no positive family history.
Collapse
Affiliation(s)
- Wen-Jiao Luo
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao Wei
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang-Tian Yan
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology, Wenling Hospital of Traditional Chinese Medicine, Wenling, China
| | - Mei-Jiao Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Mutagenesis separates ATPase and thioesterase activities of the peroxisomal ABC transporter, Comatose. Sci Rep 2019; 9:10502. [PMID: 31324846 PMCID: PMC6642094 DOI: 10.1038/s41598-019-46685-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/27/2019] [Indexed: 01/11/2023] Open
Abstract
The peroxisomal ABC transporter, Comatose (CTS), a full length transporter from Arabidopsis has intrinsic acyl-CoA thioesterase (ACOT) activity, important for physiological function. We used molecular modelling, mutagenesis and biochemical analysis to identify amino acid residues important for ACOT activity. D863, Q864 and T867 lie within transmembrane helix 9. These residues are orientated such that they might plausibly contribute to a catalytic triad similar to type II Hotdog fold thioesterases. When expressed in Saccharomyces cerevisiae, mutation of these residues to alanine resulted in defective of β-oxidation. All CTS mutants were expressed and targeted to peroxisomes and retained substrate-stimulated ATPase activity. When expressed in insect cell membranes, Q864A and S810N had similar ATPase activity to wild type but greatly reduced ACOT activity, whereas the Walker A mutant K487A had greatly reduced ATPase and no ATP-dependent ACOT activity. In wild type CTS, ATPase but not ACOT was stimulated by non-cleavable C14 ether-CoA. ACOT activity was stimulated by ATP but not by non-hydrolysable AMPPNP. Thus, ACOT activity depends on functional ATPase activity but not vice versa, and these two activities can be separated by mutagenesis. Whether D863, Q864 and T867 have a catalytic role or play a more indirect role in NBD-TMD communication is discussed.
Collapse
|
8
|
Raas Q, Gondcaille C, Hamon Y, Leoni V, Caccia C, Ménétrier F, Lizard G, Trompier D, Savary S. CRISPR/Cas9-mediated knockout of Abcd1 and Abcd2 genes in BV-2 cells: novel microglial models for X-linked Adrenoleukodystrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:704-714. [DOI: 10.1016/j.bbalip.2019.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/24/2019] [Accepted: 02/09/2019] [Indexed: 01/08/2023]
|
9
|
Peroxisomes and cancer: The role of a metabolic specialist in a disease of aberrant metabolism. Biochim Biophys Acta Rev Cancer 2018; 1870:103-121. [PMID: 30012421 DOI: 10.1016/j.bbcan.2018.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.
Collapse
|
10
|
How to move an amphipathic molecule across a lipid bilayer: different mechanisms for different ABC transporters? Biochem Soc Trans 2017; 44:774-82. [PMID: 27284041 PMCID: PMC4900756 DOI: 10.1042/bst20160040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 02/06/2023]
Abstract
Import of β-oxidation substrates into peroxisomes is mediated by ATP binding cassette (ABC) transporters belonging to subfamily D. In order to enter the β-oxidation pathway, fatty acids are activated by conversion to fatty acyl-CoA esters, a reaction which is catalysed by acyl-CoA synthetases (ACSs). Here, we present evidence for an unusual transport mechanism, in which fatty acyl-CoA substrates are accepted by ABC subclass D protein (ABCD) transporters, cleaved by the transporters during transit across the lipid bilayer to release CoA, and ultimately re-esterified in the peroxisome lumen by ACSs which interact with the transporter. We propose that this solves the biophysical problem of moving an amphipathic molecule across the peroxisomal membrane, since the intrinsic thioesterase activity of the transporter permits separate membrane translocation pathways for the hydrophobic fatty acid moiety and the polar CoA moiety. The cleavage/re-esterification mechanism also has the potential to control entry of disparate substrates into the β-oxidation pathway when coupled with distinct peroxisomal ACSs. A different solution to the movement of amphipathic molecules across a lipid bilayer is deployed by the bacterial lipid-linked oligosaccharide (LLO) flippase, PglK, in which the hydrophilic head group and the hydrophobic polyprenyl tail of the substrate are proposed to have distinct translocation pathways but are not chemically separated during transport. We discuss a speculative alternating access model for ABCD proteins based on the mammalian ABC transporter associated with antigen processing (TAP) and compare it to the novel mechanism suggested by the recent PglK crystal structures and biochemical data.
Collapse
|
11
|
Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters. Int J Mol Sci 2017; 18:ijms18071593. [PMID: 28737695 PMCID: PMC5536080 DOI: 10.3390/ijms18071593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85 Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues.
Collapse
|
12
|
Nury T, Zarrouk A, Ragot K, Debbabi M, Riedinger JM, Vejux A, Aubourg P, Lizard G. 7-Ketocholesterol is increased in the plasma of X-ALD patients and induces peroxisomal modifications in microglial cells: Potential roles of 7-ketocholesterol in the pathophysiology of X-ALD. J Steroid Biochem Mol Biol 2017; 169:123-136. [PMID: 27041118 DOI: 10.1016/j.jsbmb.2016.03.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/09/2015] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder induced by a mutation in the ABCD1 gene, which causes the accumulation of very long-chain fatty acids in tissue and plasma. Oxidative stress may be a hallmark of X-ALD. In the plasma of X-ALD patients with different forms of the disease, characterized by high levels of C24:0 and C26:0, we observed the presence of oxidative stress revealed by decreased levels of GSH, α-tocopherol, and docosahexaenoic acid (DHA). We showed that oxidative stress caused the oxidation of cholesterol and linoleic acid, leading to the formation of cholesterol oxide derivatives oxidized at C7 (7-ketocholesterol (7KC), 7β-hydroxycholesterol (7β-OHC), and 7α-hydroxycholesrol (7α-OHC)) and of 9- and 13-hydroxyoctadecadienoic acids (9-HODE, 13-HODE), respectively. High levels of 7KC, 7β-OHC, 7α-OHC, 9-HODE and 13-HODE were found. As 7KC induces oxidative stress, inflammation and cell death, which could play key roles in the development of X-ALD, the impact of 7KC on the peroxisomal status was determined in microglial BV-2 cells. Indeed, environmental stress factors such as 7KC could exacerbate peroxisomal dysfunctions in microglial cells and thus determine the progression of the disease. 7KC induces oxiapoptophagy in BV-2 cells: overproduction of H2O2 and O2-, presence of cleaved caspase-3 and PARP, nuclear condensation and/or fragmentation; elevated [LC3-II/LC3-I] ratio, increased p62 levels. 7KC also induces several peroxisomal modifications: decreased Abcd1, Abcd2, Abcd3, Acox1 and/or Mfp2 mRNA and protein levels, increased catalase activity and decreased Acox1-activity. However, the Pex14 level was unchanged. It is suggested that high levels of 7KC in X-ALD patients could foster generalized peroxisomal dysfunction in microglial cells, which could in turn intensify brain damage.
Collapse
Affiliation(s)
- Thomas Nury
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France
| | - Amira Zarrouk
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS Nutrition - Functional Food & Vascular Health, Monastir, Tunisia; Univ. Sousse, Faculty of Medicine, Sousse, Tunisia
| | - Kévin Ragot
- SYSMEX, Department of Cytometry, Roissy, France
| | - Meryam Debbabi
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS Nutrition - Functional Food & Vascular Health, Monastir, Tunisia
| | | | - Anne Vejux
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France
| | - Patrick Aubourg
- INSERM UMR 1169, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Gérard Lizard
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France.
| |
Collapse
|
13
|
Geillon F, Gondcaille C, Raas Q, Dias AMM, Pecqueur D, Truntzer C, Lucchi G, Ducoroy P, Falson P, Savary S, Trompier D. Peroxisomal ATP-binding cassette transporters form mainly tetramers. J Biol Chem 2017; 292:6965-6977. [PMID: 28258215 DOI: 10.1074/jbc.m116.772806] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
ABCD1 and its homolog ABCD2 are peroxisomal ATP-binding cassette (ABC) half-transporters of fatty acyl-CoAs with both distinct and overlapping substrate specificities. Although it is established that ABC half-transporters have at least to dimerize to generate a functional unit, functional equivalents of tetramers (i.e. dimers of full-length transporters) have also been reported. However, oligomerization of peroxisomal ABCD transporters is incompletely understood but is of potential significance because more complex oligomerization might lead to differences in substrate specificity. In this work, we have characterized the quaternary structure of the ABCD1 and ABCD2 proteins in the peroxisomal membrane. Using various biochemical approaches, we clearly demonstrate that both transporters exist as both homo- and heterotetramers, with a predominance of homotetramers. In addition to tetramers, some larger molecular ABCD assemblies were also found but represented only a minor fraction. By using quantitative co-immunoprecipitation assays coupled with tandem mass spectrometry, we identified potential binding partners of ABCD2 involved in polyunsaturated fatty-acid metabolism. Interestingly, we identified calcium ATPases as ABCD2-binding partners, suggesting a role of ABCD2 in calcium signaling. In conclusion, we have shown here that ABCD1 and its homolog ABCD2 exist mainly as homotetramers in the peroxisomal membrane.
Collapse
Affiliation(s)
| | | | | | | | - Delphine Pecqueur
- CLIPP-ICMUB, Université Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France and
| | - Caroline Truntzer
- CLIPP-ICMUB, Université Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France and
| | - Géraldine Lucchi
- CLIPP-ICMUB, Université Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France and
| | - Patrick Ducoroy
- CLIPP-ICMUB, Université Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France and
| | - Pierre Falson
- the Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, Institut de Biologie et Chimie des Protéines (IBCP), UMR5086 CNRS/Université Lyon 1, 7 Passage du Vercors, 69367 Lyon, France
| | | | | |
Collapse
|
14
|
Ward-Caviness CK, Breitner S, Wolf K, Cyrys J, Kastenmüller G, Wang-Sattler R, Schneider A, Peters A. Short-term NO2 exposure is associated with long-chain fatty acids in prospective cohorts from Augsburg, Germany: results from an analysis of 138 metabolites and three exposures. Int J Epidemiol 2016; 45:1528-1538. [PMID: 27892410 DOI: 10.1093/ije/dyw247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Short-term exposure to air pollution is associated with morbidity and mortality. Metabolites are intermediaries in biochemical processes, and associations between air pollution and metabolites can yield unique mechanistic insights. METHODS We used independent cross-sectional samples with targeted metabolomics (138 metabolites across five metabolite classes) from three cohort studies, each a part of the Cooperative Health Research in the Region of Augsburg (KORA). The KORA cohorts are numbered (1 to 4) according to which survey they belong to, and lettered S or F according to whether the survey was a baseline or follow-up survey. KORA F4 (N = 3044) served as our discovery cohort, with KORA S4 (N = 485) serving as the primary replication cohort. KORA F4 and KORA S4 were primarily fasting cohorts. We used the non-fasting KORA F3 (N = 377) cohort to evaluate replicated associations in non-fasting individuals, and we performed a random effects meta-analysis of all three cohorts. Associations between the 0-4-day lags and the 5-day average of particulate matter (PM)2.5, NO2 and ozone were modelled via generalized additive models. All air pollution exposures were scaled to the interquartile range, and effect estimates presented as percent changes relative to the geometric mean of the metabolite concentration (ΔGM). RESULTS There were 10 discovery cohort associations, of which seven were lysophosphatidylcholines (LPCs); NO2 was the most ubiquitous exposure (5/10). The 5-day average NO2-LPC(28:0) association was associated at a Bonferroni corrected P-value threshold (P < 1.2x10-4) in KORA F4 [ΔGM = 11.5%; 95% confidence interval (CI) = 6.60, 16.3], and replicated (P < 0.05) in KORA S4 (ΔGM = 21.0%; CI = 4.56, 37.5). This association was not observed in the non-fasting KORA F3 cohort (ΔGM = -5.96%; CI = -26.3, 14.3), but remained in the random effects meta-analysis (ΔGM = 10.6%; CI = 0.16, 21). CONCLUSIONS LPCs are associated with short-term exposure to air pollutants, in particular NO2 Further research is needed to understand the effect of nutritional/fasting status on these associations and the causal mechanisms linking air pollution exposure and metabolite profiles.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Wang-Sattler
- Institute of Epidemiology II.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | |
Collapse
|
15
|
ABC Transporter Subfamily D: Distinct Differences in Behavior between ABCD1-3 and ABCD4 in Subcellular Localization, Function, and Human Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6786245. [PMID: 27766264 PMCID: PMC5059523 DOI: 10.1155/2016/6786245] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest families of membrane-bound proteins and transport a wide variety of substrates across both extra- and intracellular membranes. They play a critical role in maintaining cellular homeostasis. To date, four ABC transporters belonging to subfamily D have been identified. ABCD1-3 and ABCD4 are localized to peroxisomes and lysosomes, respectively. ABCD1 and ABCD2 are involved in the transport of long and very long chain fatty acids (VLCFA) or their CoA-derivatives into peroxisomes with different substrate specificities, while ABCD3 is involved in the transport of branched chain acyl-CoA into peroxisomes. On the other hand, ABCD4 is deduced to take part in the transport of vitamin B12 from lysosomes into the cytosol. It is well known that the dysfunction of ABCD1 results in X-linked adrenoleukodystrophy, a severe neurodegenerative disease. Recently, it is reported that ABCD3 and ABCD4 are responsible for hepatosplenomegaly and vitamin B12 deficiency, respectively. In this review, the targeting mechanism and physiological functions of the ABCD transporters are summarized along with the related disease.
Collapse
|
16
|
Pluchino KM, Hall MD, Moen JK, Chufan EE, Fetsch PA, Shukla S, Gill DR, Hyde SC, Xia D, Ambudkar SV, Gottesman MM. Human-Mouse Chimeras with Normal Expression and Function Reveal That Major Domain Swapping Is Tolerated by P-Glycoprotein (ABCB1). Biochemistry 2016; 55:1010-23. [PMID: 26820614 DOI: 10.1021/acs.biochem.5b01064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes.
Collapse
Affiliation(s)
- Kristen M Pluchino
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States.,Gene Medicine Research Group, Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , Oxford OX3 9DU, U.K
| | - Matthew D Hall
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Janna K Moen
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Eduardo E Chufan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Patricia A Fetsch
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Deborah R Gill
- Gene Medicine Research Group, Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , Oxford OX3 9DU, U.K
| | - Stephen C Hyde
- Gene Medicine Research Group, Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , Oxford OX3 9DU, U.K
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
17
|
Abstract
Peroxisomes are arguably the most biochemically versatile of all eukaryotic organelles. Their metabolic functions vary between different organisms, between different tissue types of the same organism and even between different developmental stages or in response to changed environmental conditions. New functions for peroxisomes are still being discovered and their importance is underscored by the severe phenotypes that can arise as a result of peroxisome dysfunction. The β-oxidation pathway is central to peroxisomal metabolism, but the substrates processed are very diverse, reflecting the diversity of peroxisomes across species. Substrates for β-oxidation enter peroxisomes via ATP-binding cassette (ABC) transporters of subfamily D; (ABCD) and are activated by specific acyl CoA synthetases for further metabolism. Humans have three peroxisomal ABCD family members, which are half transporters that homodimerize and have distinct but partially overlapping substrate specificity; Saccharomyces cerevisiae has two half transporters that heterodimerize and plants have a single peroxisomal ABC transporter that is a fused heterodimer and which appears to be the single entry point into peroxisomes for a very wide variety of β-oxidation substrates. Our studies suggest that the Arabidopsis peroxisomal ABC transporter AtABCD1 accepts acyl CoA substrates, cleaves them before or during transport followed by reactivation by peroxisomal synthetases. We propose that this is a general mechanism to provide specificity to this class of transporters and by which amphipathic compounds are moved across peroxisome membranes.
Collapse
|
18
|
Wiesinger C, Eichler FS, Berger J. The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. APPLICATION OF CLINICAL GENETICS 2015; 8:109-21. [PMID: 25999754 PMCID: PMC4427263 DOI: 10.2147/tacg.s49590] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding a peroxisomal ABC transporter. In this review, we compare estimates of incidence derived from different populations in order to provide an overview of the worldwide incidence of X-ALD. X-ALD presents with heterogeneous phenotypes ranging from adrenomyeloneuropathy (AMN) to inflammatory demyelinating cerebral ALD (CALD). A large number of different mutations has been described, providing a unique opportunity for analysis of functional domains within ABC transporters. Yet the molecular basis for the heterogeneity of clinical symptoms is still largely unresolved, as no correlation between genotype and phenotype exists in X-ALD. Beyond ABCD1, environmental triggers and other genetic factors have been suggested as modifiers of the disease course. Here, we summarize the findings of numerous reports that aimed at identifying modifier genes in X-ALD and discuss potential problems and future approaches to address this issue. Different options for prenatal diagnosis are summarized, and potential pitfalls when applying next-generation sequencing approaches are discussed. Recently, the measurement of very long-chain fatty acids in lysophosphatidylcholine for the identification of peroxisomal disorders was included in newborn screening programs.
Collapse
Affiliation(s)
- Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Florian S Eichler
- Department for Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|