1
|
Zhong W, Dong YJ, Hong C, Li YH, Xiao CX, Liu XH, Chang J. ASH2L upregulation contributes to diabetic endothelial dysfunction in mice through STEAP4-mediated copper uptake. Acta Pharmacol Sin 2024; 45:558-569. [PMID: 37903897 PMCID: PMC10834535 DOI: 10.1038/s41401-023-01174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
Endothelial dysfunction is a common complication of diabetes mellitus (DM) and contributes to the high incidence and mortality of cardiovascular and cerebrovascular diseases. Aberrant epigenetic regulation under diabetic conditions, including histone modifications, DNA methylation, and non-coding RNAs (ncRNAs) play key roles in the initiation and progression of diabetic vascular complications. ASH2L, a H3K4me3 regulator, triggers genetic transcription, which is critical for physiological and pathogenic processes. In this study we investigated the role of ASH2L in mediating diabetic endothelial dysfunction. We showed that ASH2L expression was significantly elevated in vascular tissues from diabetic db/db mice and in rat aortic endothelial cells (RAECs) treated with high glucose medium (11 and 22 mM). Knockdown of ASH2L in RAECs markedly inhibited the deteriorating effects of high glucose, characterized by reduced oxidative stress and inflammatory responses. Deletion of endothelial ASH2L in db/db mice by injection of an adeno-associated virus (AAV)-endothelial specific system carrying shRNA against Ash2l (AAV-shAsh2l) restored the impaired endothelium-dependent relaxations, and ameliorated DM-induced vascular dysfunction. We revealed that ASH2L expression activated reductase STEAP4 transcription in vitro and in vivo, which consequently elevated Cu(I) transportation into ECs by the copper transporter CTR1. Excess copper produced by STEAP4-mediated copper uptake triggered oxidative stress and inflammatory responses, resulting in endothelial dysfunction. Our results demonstrate that hyperglycemia triggered ASH2L-STEAP4 axis contributes to diabetic endothelial dysfunction by modulating copper uptake into ECs and highlight the therapeutic potential of blocking the endothelial ASH2L in the pathogenesis of diabetic vascular complications.
Collapse
Affiliation(s)
- Wen Zhong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Ye-Jun Dong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Yu-Hui Li
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen-Xi Xiao
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Xin-Hua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Jun Chang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Zhong W, Hong C, Zhang Y, Li Y, Xiao C, Liu X. ASH2L-mediated H3K4me3 drives diabetic nephropathy through HIPK2 and Notch1 pathway. Transl Res 2024; 264:85-96. [PMID: 37879562 DOI: 10.1016/j.trsl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Diabetic nephropathy (DN) is one of the complications of diabetes. Long-term hyperglycemia in the kidney results in renal insufficiency, and eventually leads to end-stage renal disease. Epigenetic factor ASH2L has long been identified as a transcriptional activator, and we previously indicated that ASH2L aggravated fibrosis and inflammation in high glucose-induced glomerular mesangial cells, but the pathophysiological relevance and the mechanism of ASH2L-mediated H3K4me3 in DN is not well understood. Here we demonstrated that ASH2L is upregulated in glomeruli isolated from db/db mice. Loss of ASH2L protected glomerular injury caused by hyperglycemia, as evidenced by reduced albuminuria, preserved structure, decreased glomerular extracellular matrix deposition, and lowered renal glomerular expression of proinflammatory and profibrotic markers in db/db mice. Furthermore, we demonstrated that enrichment of ASH2L-mediated H3K4me3 on the promoter regions of ADAM17 and HIPK2 triggered their transcription, leading to aberrant activation of Notch1 signaling pathway, thereby contributing to fibrosis and inflammation in DN. The findings of this study provide compelling evidence for targeting ASH2L as a potential therapeutic strategy to prevent or slow down the progression of DN.
Collapse
Affiliation(s)
- Wen Zhong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuyu Zhang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuhui Li
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chenxi Xiao
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China.
| |
Collapse
|
3
|
Su Z, Wang J, Xiao C, Zhong W, Liu J, Liu X, Zhu YZ. Functional role of Ash2l in oxLDL induced endothelial dysfunction and atherosclerosis. Cell Mol Life Sci 2024; 81:62. [PMID: 38280036 PMCID: PMC10821849 DOI: 10.1007/s00018-024-05130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Endothelial injury and dysfunction in the artery wall fuel the process of atherosclerosis. As a key epigenetic regulator, Ash2l (Absent, small, or homeotic-Like 2) is involved in regulating vascular injury and its complications. However, the role of Ash2l in atherosclerosis has not yet been fully elucidated. Here, we found increased Ash2l expression in high-cholesterol diet-fed ApoE-/- mice and oxidized LDL (oxLDL) treated endothelial cells (ECs). Furthermore, Ash2l promoted the scavenger receptors transcription by catalyzing histone H3 lysine 4 (H3K4) trimethylation at the promoter region of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) and triggered the activation of the pro-inflammatory nuclear factor-kappa B (NF-κB) by enhancing interaction between CD36 and toll-like receptor 4 (TLR4). Meanwhile, enhanced expression of scavenger receptors drove more oxLDL uptake by ECs. In vivo studies revealed that ECs-specific Ash2l knockdown reduced atherosclerotic lesion formation and promoted fibrous cap stability in the aorta of ApoE-/- mice, which was partly associated with a reduced endothelial activation by suppressing scavenger receptors and the uptake of lipids by ECs. Collectively, our findings identify Ash2l as a novel regulator that mediates endothelial injury and atherosclerosis. Targeting Ash2l may provide valuable insights for developing novel therapeutic candidates for atherosclerosis.
Collapse
Affiliation(s)
- Zhenghua Su
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jinghuan Wang
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chenxi Xiao
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Wen Zhong
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jiayao Liu
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Xinhua Liu
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China.
| | - Yi Zhun Zhu
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy and 1st affiliate hospital, Macau University of Science and Technology, Macau, China.
- School of Pharmacy, Macau University of Science and Technology Taipa, Macau, China.
| |
Collapse
|
4
|
Batbayar G, Ishimura A, Lyu H, Wanna-Udom S, Meguro-Horike M, Terashima M, Horike SI, Takino T, Suzuki T. ASH2L, a COMPASS core subunit, is involved in the cell invasion and migration of triple-negative breast cancer cells through the epigenetic control of histone H3 lysine 4 methylation. Biochem Biophys Res Commun 2023; 669:19-29. [PMID: 37262949 DOI: 10.1016/j.bbrc.2023.05.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
ASH2L (Absent-Small-Homeotic-2-Like protein) is a core subunit of the COMPASS (COMplex of Proteins ASsociated with Set1) complex, the most notable writer of the methylation of histone H3 lysine 4 (H3K4). The COMPASS complex regulates active promoters or enhancers for gene expression, and its dysfunction is associated with aberrant development and disease. Here, we demonstrated that ASH2L mediated the cell invasion and migration activity of triple-negative breast cancer cells through the interaction with the COMPASS components and the target genomic regions. Transcriptome analysis indicated a potential correlation between ASH2L and the genes involved in inflammatory/immune responses. Among them, we found that the intrinsic expression of IL1B (interleukin 1 beta), an essential proinflammatory gene, was directly regulated by ASH2L. These results revealed a novel role of ASH2L on the maintenance of breast cancer malignancy possibly through H3K4 methylation of the target inflammatory/immune responsive genes.
Collapse
Affiliation(s)
- Gerelsuren Batbayar
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Akihiko Ishimura
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Hanbing Lyu
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Sasithorn Wanna-Udom
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Thailand
| | - Makiko Meguro-Horike
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi, Kanazawa, 920-0934, Ishikawa, Japan
| | - Minoru Terashima
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Shin-Ichi Horike
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi, Kanazawa, 920-0934, Ishikawa, Japan
| | - Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Ishikawa, Japan.
| |
Collapse
|
5
|
Côrtes L, Basso TR, Villacis RAR, Souza JDS, Jørgensen MMA, Achatz MI, Rogatto SR. Co-Occurrence of Germline Genomic Variants and Copy Number Variations in Hereditary Breast and Colorectal Cancer Patients. Genes (Basel) 2023; 14:1580. [PMID: 37628631 PMCID: PMC10454294 DOI: 10.3390/genes14081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is an autosomal dominant disease associated with a high risk of developing breast, ovarian, and other malignancies. Lynch syndrome is caused by mutations in mismatch repair genes predisposing to colorectal and endometrial cancers, among others. A rare phenotype overlapping hereditary colorectal and breast cancer syndromes is poorly characterized. Three breast and colorectal cancer unrelated patients fulfilling clinical criteria for HBOC were tested by whole exome sequencing. A family history of colorectal cancer was reported in two patients (cases 2 and 3). Several variants and copy number variations were identified, which potentially contribute to the cancer risk or prognosis. All patients presented copy number imbalances encompassing PMS2 (two deletions and one duplication), a known gene involved in the DNA mismatch repair pathway. Two patients showed gains covering the POLE2 (cases 1 and 3), which is associated with DNA replication. Germline potentially damaging variants were found in PTCH1 (patient 3), MAT1A, and WRN (patient 2). Overall, concurrent genomic alterations were described that may increase the risk of cancer appearance in HBOC patients with breast and colorectal cancers.
Collapse
Affiliation(s)
- Luiza Côrtes
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
- Tocogynecoly Graduation Program, Botucatu Medical School, University of São Paulo State—UNESP, Botucatu 18618-687, SP, Brazil
| | - Tatiane Ramos Basso
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
| | - Rolando André Rios Villacis
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília—UnB, Brasília 70910-900, DF, Brazil;
| | | | - Mads Malik Aagaard Jørgensen
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
| | - Maria Isabel Achatz
- Cancer Genetics Unit, Oncology Branch, Hospital Sirio-Libanês, São Paulo 01308-050, SP, Brazil;
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| |
Collapse
|
6
|
Zhong W, Hong C, Dong Y, Li Y, Xiao C, Liu X. ASH2L Aggravates Fibrosis and Inflammation through HIPK2 in High Glucose-Induced Glomerular Mesangial Cells. Genes (Basel) 2022; 13:genes13122244. [PMID: 36553510 PMCID: PMC9816940 DOI: 10.3390/genes13122244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease and continues to be a threat to patients with diabetes. Dysfunction of glomerular mesangial cells (GMCs) is the main contributing factor to glomerulosclerosis, which is a pathological feature of DN. The epigenetic factor ASH2L has long been thought to be a transcriptional activator, but its function and involvement in diabetic nephropathy is still unclear. Here, we investigated the effect of ASH2L on the regulation of fibrosis and inflammation induced by high glucose in mouse mesangial cells (mMCs). We observed that ASH2L expression is increased in high glucose-induced mMCs, while loss of ASH2L alleviated fibrosis and inflammation. Furthermore, ASH2L-mediates H3K4me3 of the homeodomain-interacting protein kinase 2 (HIPK2) promoter region, which is a contributor to fibrosis in the kidneys and promotes its transcriptional expression. Similar to loss of ASH2L, silencing HIPK2 also inhibited fibrosis and inflammation. In addition, ASH2L and HIPK2 are upregulated in the kidneys of both streptozocin-induced and db/db mouse. In conclusion, we uncovered the crucial role of ASH2L in high glucose-induced fibrosis and inflammation, suggesting that ASH2L regulation may be an attractive approach to attenuate the progression of DN.
Collapse
Affiliation(s)
- Wen Zhong
- School of pharmacy, Fudan University, Shanghai 201203, China
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yejun Dong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuhui Li
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chenxi Xiao
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
- Correspondence: ; Tel.: +86-21-51980159
| |
Collapse
|
7
|
LncRNA GNAS-AS1 facilitates ER+ breast cancer cells progression by promoting M2 macrophage polarization via regulating miR-433-3p/GATA3 axis. Biosci Rep 2021; 40:225295. [PMID: 32538432 PMCID: PMC7327181 DOI: 10.1042/bsr20200626] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Objective: ER+ breast cancer is the most common type of breast cancer, which seriously affects the physical and mental health of women. Recently, lncRNAs mediated tumor-associated macrophages (TAM) were identified to involve in tumorigenesis. Therefore, the present study aimed at demonstrating the regulatory network of GNAS-AS1 in TAM-mediated ER+ breast cancer progress. Methods: The expression levels of genes were evaluated using qRT-PCR. The proportions of polarized macrophages (M1, M2) were assessed by flow cytometry. Cell proliferation, migration and invasion were evaluated by CCK-8, wound healing and transwell assay, respectively. Double-luciferase reporter system was used to detect the interaction between molecules. Western blot was applied to test protein levels. Results: The expression of GNAS-AS1 was obviously increased in ER+ breast cancer tissues and cell lines, as well as M2 macrophages. GNAS-AS1 facilitated the capabilities of proliferation, migration and invasion of ER+ breast cancer cells by accelerating M2 macrophage polarization via directly sponging miR-433-3p. GATA3, as a target of miR-433-3p, could positively regulate by GNAS-AS1. Furthermore, either miR-433-3p overexpression or GATA3 knockdown impaired the effects of GNAS-AS1 on M2 macrophage polarization and ER+ breast cancer cells progression. Conclusion: GNAS-AS1/miR-433-3p/GATA3 axis promoted proliferation, metastasis of ER+ breast cancer cells by accelerating M2 macrophage polarization. The mechanism may provide a new strategy and target for ER+ breast cancer treatment.
Collapse
|
8
|
Voutsadakis IA. Amplification of 8p11.23 in cancers and the role of amplicon genes. Life Sci 2020; 264:118729. [PMID: 33166592 DOI: 10.1016/j.lfs.2020.118729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Copy number alterations are widespread in cancer genomes and are part of the genomic instability underlying the pathogenesis of neoplastic diseases. Recurrent copy number alterations of specific chromosomal loci may result in gains of oncogenes or losses of tumor suppressor genes and become entrenched in the genomic framework of certain types of cancers. The locus at chromosome 8p11.23 presents recurrent amplifications most commonly in squamous lung carcinomas, breast cancers, squamous esophageal carcinomas, and urothelial carcinomas. Amplification is rare in other cancers. The amplified segment involves several described oncogenes that may promote cancer cell survival and proliferation, as well as less well characterized genes that could also contribute to neoplastic processes. Genes proposed to be "drivers" in 8p11.23 amplifications include ZNF703, FGFR1 and PLPP5. Additional genes in the locus that could be functionally important in neoplastic networks include co-chaperone BAG4, lysine methyltransferase NSD3, ASH2L, a member of another methyltransferase complex, MLL and the mRNA processing and translation regulators LSM1 and EIF4EBP1. In this paper, genes located in the amplified segment of 8p11.23 will be examined for their role in cancer and data arguing for their importance for cancers with the amplification will be presented.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada; Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
9
|
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, Ravandi A, Stanton E, Slutsky AS, Dos Santos CC, Romaschin A, Marshall JC, Addison C, Malone S, Heyland D, Scheltens P, Killestein J, Teunissen C, Diamandis EP, Siu KWM, Marshall JG. The plasma peptides of breast versus ovarian cancer. Clin Proteomics 2019; 16:43. [PMID: 31889940 PMCID: PMC6927194 DOI: 10.1186/s12014-019-9262-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background There is a need to demonstrate a proof of principle that proteomics has the capacity to analyze plasma from breast cancer versus other diseases and controls in a multisite clinical trial design. The peptides or proteins that show a high observation frequency, and/or precursor intensity, specific to breast cancer plasma might be discovered by comparison to other diseases and matched controls. The endogenous tryptic peptides of breast cancer plasma were compared to ovarian cancer, female normal, sepsis, heart attack, Alzheimer's and multiple sclerosis along with the institution-matched normal and control samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from individual breast cancer and control EDTA plasma samples in a step gradient of acetonitrile, and collected over preparative C18 for LC-ESI-MS/MS with a set of LTQ XL linear quadrupole ion traps working together in parallel to randomly and independently sample clinical populations. The MS/MS spectra were fit to fully tryptic peptides or phosphopeptides within proteins using the X!TANDEM algorithm. The protein observation frequency was counted using the SEQUEST algorithm after selecting the single best charge state and peptide sequence for each MS/MS spectra. The observation frequency was subsequently tested by Chi Square analysis. The log10 precursor intensity was compared by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as APOE, C4A, C4B, C3, APOA1, APOC2, APOC4, ITIH3 and ITIH4 showed increased observation frequency and/or precursor intensity in breast cancer. Many cellular proteins also showed large changes in frequency by Chi Square (χ2 > 100, p < 0.0001) in the breast cancer samples such as CPEB1, LTBP4, HIF-1A, IGHE, RAB44, NEFM, C19orf82, SLC35B1, 1D12A, C8orf34, HIF1A, OCLN, EYA1, HLA-DRB1, LARS, PTPDC1, WWC1, ZNF562, PTMA, MGAT1, NDUFA1, NOGOC, OR1E1, OR1E2, CFI, HSA12, GCSH, ELTD1, TBX15, NR2C2, FLJ00045, PDLIM1, GALNT9, ASH2L, PPFIBP1, LRRC4B, SLCO3A1, BHMT2, CS, FAM188B2, LGALS7, SAT2, SFRS8, SLC22A12, WNT9B, SLC2A4, ZNF101, WT1, CCDC47, ERLIN1, SPFH1, EID2, THOC1, DDX47, MREG, PTPRE, EMILIN1, DKFZp779G1236 and MAP3K8 among others. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. An increase in mean precursor intensity of peptides was observed for QSER1 as well as SLC35B1, IQCJ-SCHIP1, MREG, BHMT2, LGALS7, THOC1, ANXA4, DHDDS, SAT2, PTMA and FYCO1 among others. In contrast, the QSER1 peptide QPKVKAEPPPK was apparently specific to ovarian cancer. Conclusion There was striking agreement between the breast cancer plasma peptides and proteins discovered by LC-ESI-MS/MS with previous biomarkers from tumors, cells lines or body fluids by genetic or biochemical methods. The results indicate that variation in plasma peptides from breast cancer versus ovarian cancer may be directly discovered by LC-ESI-MS/MS that will be a powerful tool for clinical research. It may be possible to use a battery of sensitive and robust linear quadrupole ion traps for random and independent sampling of plasma from a multisite clinical trial.
Collapse
Affiliation(s)
- Jaimie Dufresne
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Pete Bowden
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Thanusi Thavarajah
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Angelique Florentinus-Mefailoski
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Zhuo Zhen Chen
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Monika Tucholska
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Tenzin Norzin
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Margaret Truc Ho
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Morla Phan
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Nargiz Mohamed
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Amir Ravandi
- 2Institute of Cardiovascular Sciences, St. Boniface Hospital Research Center, University of Manitoba, Winnipeg, Canada
| | - Eric Stanton
- 3Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Arthur S Slutsky
- 4St. Michael's Hospital, Keenan Chair in Medicine, Professor of Medicine, Surgery & Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Claudia C Dos Santos
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Alexander Romaschin
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - John C Marshall
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Christina Addison
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shawn Malone
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Daren Heyland
- 7Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada
| | - Philip Scheltens
- 8Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- 9MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- 10Neurochemistry Lab and Biobank, Dept of Clinical Chemsitry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - K W M Siu
- 12University of Windsor, Windsor, Canada
| | - John G Marshall
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada.,13International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (formerly CRP Sante Luxembourg), Strassen, Luxembourg
| |
Collapse
|
10
|
Rutkovsky AC, Yeh ES, Guest ST, Findlay VJ, Muise-Helmericks RC, Armeson K, Ethier SP. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer. BMC Cancer 2019; 19:491. [PMID: 31122207 PMCID: PMC6533768 DOI: 10.1186/s12885-019-5667-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.
Collapse
Affiliation(s)
- Alexandria C. Rutkovsky
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Elizabeth S. Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, MSC 509, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Stephen T. Guest
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109 USA
| | - Victoria J. Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB 601, MSC 508, Charleston, SC 29425 USA
| | - Kent Armeson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street Suite 303 MSC 835, Charleston, USA
| | - Stephen P. Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| |
Collapse
|
11
|
Kumar A, Kumari N, Nallabelli N, Prasad R. Pathogenic and Therapeutic Role of H3K4 Family of Methylases and Demethylases in Cancers. Indian J Clin Biochem 2019; 34:123-132. [PMID: 31092985 DOI: 10.1007/s12291-019-00828-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Histone modifications occupy an essential position in the epigenetic landscape of the cell, and their alterations have been linked to cancers. Histone 3 lysine 4 (H3K4) methylation has emerged as a critical epigenetic cue for the regulation of gene transcription through dynamic modulation by several H3K4 methyltransferases (writers) and demethylases (erasers). Any disturbance in the delicate balance of writers and erasers can result in the mis-regulation of H3K4 methylation, which has been demonstrated in several human cancers. Therefore, H3K4 methylation has been recognized as a putative therapeutic or prognostic tool and drug trials of different inhibitors of this process have demonstrated promising results. Henceforth, more detailed knowledge of H3K4 methylation is utmost important for elucidating the complex cellular processes, which might help in improving the disease outcome. The primary focus of this review will be directed on deciphering the role of H3K4 methylation along with its writers/erasers in different cancers.
Collapse
Affiliation(s)
- Aman Kumar
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Niti Kumari
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Nayudu Nallabelli
- 2Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Rajendra Prasad
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| |
Collapse
|
12
|
Nassa G, Salvati A, Tarallo R, Gigantino V, Alexandrova E, Memoli D, Sellitto A, Rizzo F, Malanga D, Mirante T, Morelli E, Nees M, Åkerfelt M, Kangaspeska S, Nyman TA, Milanesi L, Giurato G, Weisz A. Inhibition of histone methyltransferase DOT1L silences ERα gene and blocks proliferation of antiestrogen-resistant breast cancer cells. SCIENCE ADVANCES 2019; 5:eaav5590. [PMID: 30775443 PMCID: PMC6365116 DOI: 10.1126/sciadv.aav5590] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/21/2018] [Indexed: 06/01/2023]
Abstract
Breast cancer (BC) resistance to endocrine therapy results from constitutively active or aberrant estrogen receptor α (ERα) signaling, and ways to block ERα pathway in these tumors are sought after. We identified the H3K79 methyltransferase DOT1L as a novel cofactor of ERα in BC cell chromatin, where the two proteins colocalize to regulate estrogen target gene transcription. DOT1L blockade reduces proliferation of hormone-responsive BC cells in vivo and in vitro, consequent to cell cycle arrest and apoptotic cell death, with widespread effects on ER-dependent gene transcription, including ERα and FOXA1 gene silencing. Antiestrogen-resistant BC cells respond to DOT1L inhibition also in mouse xenografts, with reduction in ERα levels, H3K79 methylation, and tumor growth. These results indicate that DOT1L is an exploitable epigenetic target for treatment of endocrine therapy-resistant ERα-positive BCs.
Collapse
Affiliation(s)
- Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
- Genomix4Life Srl, University of Salerno, Baronissi, SA, Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | - Donatella Malanga
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, Catanzaro (CZ), Italy
| | - Teresa Mirante
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, Catanzaro (CZ), Italy
| | - Eugenio Morelli
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, Catanzaro (CZ), Italy
| | - Matthias Nees
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Malin Åkerfelt
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sara Kangaspeska
- Institute for Molecular Medicine, Biomedicum 2U, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate, MI, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
- Genomix4Life Srl, University of Salerno, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
13
|
Li R, Tang T, Hui T, Song Z, Li F, Li J, Xu J. Impact of next-generation sequencing (NGS) for primary endocrine resistance in breast cancer patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5450-5458. [PMID: 31949629 PMCID: PMC6963051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/22/2018] [Indexed: 06/10/2023]
Abstract
Multiple mechanisms have been detected to account for the acquired resistance to endocrine therapies in breast cancer. In this study we retrospectively studied the mechanism of primary endocrine resistance in estrogen receptor positive (ER+) breast cancer patients by next-generation sequencing (NGS). Tumor specimens and matched blood samples were obtained from 24 ER+ breast cancer patients. Fifteen of them displayed endocrine resistance, including recurrence and/or metastases within 24 months from the beginning of endocrine therapy, and 9 patients remained sensitive to endocrine therapy for more than 5 years. Genomic DNA of tumor tissue was extracted from formalin-fixed paraffin-embedded (FFPE) tumor tissue blocks. Genomic DNA of normal tissue was extracted from peripheral blood mononuclear cells (PBMC). Sequencing libraries for each sample were prepared, followed by target capturing for 372 genes that are frequently rearranged in cancers. Massive parallel sequencing was then performed using Illumina NextSeq 500, and samples with a mean sequencing depth of 500× were analyzed. The analysis revealed that 8 (55%) of 15 patients showed phosphatidylinositol 3-kinase CA (PIK3CA) mutations, including 3 pathogenic variants in kinase domain, 3 pathogenic variants in helical domain, and 2 variants of unknown significance, in the endocrine-resistant group, while 3 (33%) of 9 patients displayed PIK3CA mutations, including 2 pathogenic variants in kinase domain and 1 pathogenic variant in helical domain, in the endocrine-sensitive group. In the endocrine-sensitive group, copy number gain of C11orf30 (EMSY) gene, copy number loss of CDH1 (E-cadherin) gene, and a missense mutation of splicing factor 3b (SF3B1) gene were also detected, which would probably decrease the expression of ESR1 and contribute to endocrine sensitivity. Collectively, the PIK3CA mutation rate in the resistance group is relatively higher than that in the sensitive group and thus PIK3CA mutations may contribute the primary endocrine resistance of breast cancer.
Collapse
Affiliation(s)
- Ruoyang Li
- Breast Center, Fourth Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Tiantian Tang
- Breast Center, Fourth Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Tianli Hui
- Breast Center, Fourth Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Zhenchuan Song
- Breast Center, Fourth Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Fugen Li
- Institute of Precision Medicine, 3D Medicines Inc.Shanghai, China
| | - Jingyu Li
- Institute of Precision Medicine, 3D Medicines Inc.Shanghai, China
| | - Jiajia Xu
- Institute of Precision Medicine, 3D Medicines Inc.Shanghai, China
| |
Collapse
|
14
|
Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin. Cells 2018; 7:cells7030017. [PMID: 29498679 PMCID: PMC5870349 DOI: 10.3390/cells7030017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation.
Collapse
|
15
|
Kanaya N, Somlo G, Wu J, Frankel P, Kai M, Liu X, Wu SV, Nguyen D, Chan N, Hsieh MY, Kirschenbaum M, Kruper L, Vito C, Badie B, Yim JH, Yuan Y, Hurria A, Peiguo C, Mortimer J, Chen S. Characterization of patient-derived tumor xenografts (PDXs) as models for estrogen receptor positive (ER+HER2- and ER+HER2+) breast cancers. J Steroid Biochem Mol Biol 2017; 170:65-74. [PMID: 27154416 PMCID: PMC5094906 DOI: 10.1016/j.jsbmb.2016.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 12/18/2022]
Abstract
The research was to appraise the utility of the patient-derived tumor xenografts (PDXs) as models of estrogen receptor positive (ER+HER2- and ER+HER2+) breast cancers. We compared protein expression profiles by Reverse Phase Protein Array (RPPA) in tumors that resulted in PDXs compared to those that did not. Our overall PDX intake rate for ER+ breast cancer was 9% (9/97). The intake rate for ER+HER2+ tumors (3/16, 19%) was higher than for ER+HER2- tumors (6/81, 7%). Heat map analyses of RPPA data showed that ER+HER2- tumors were divided into 2 groups by luminal A/B signature [protein expression of ER, AR, Bcl-2, Bim (BCL2L11), GATA3 and INPP4b], and this expression signature was also associated with the rate of PDX intake. Cell survival pathways such as the PI3K/AKT signaling and RAS/ERK pathways were more activated in the specimens that could be established as PDX in both classes. Expression of the ER protein itself may have a bearing on the potential success of an ER+ PDX model. In addition, HER2 and its downstream protein expressions were up-regulated in the ER+HER2+ patient tumors that were successfully established as PDX models. Moreover, the comparison of RPPA data between original and PDX tumors suggested that the selection/adaptation process required to grow the tumors in mice is unavoidable for generation of ER+ PDX models, and we identified differences between patient tumor samples and paired PDX tumors. A better understanding of the biological characteristics of ER+PDX would be the key to using PDX models in assessing treatment strategies in a preclinical setting.
Collapse
Affiliation(s)
- Noriko Kanaya
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - George Somlo
- Department of Medical Oncology, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Jun Wu
- Department of Comparative Medicine, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Paul Frankel
- Department of Information Sciences, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Masaya Kai
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xueli Liu
- Department of Information Sciences, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Shang Victoria Wu
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Duc Nguyen
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Nymph Chan
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Meng-Yin Hsieh
- Department of Comparative Medicine, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Michele Kirschenbaum
- Clinical Trials Office, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Laura Kruper
- Department of Surgery, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Courtney Vito
- Department of Surgery, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Behnam Badie
- Department of Surgery, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - John H Yim
- Department of Surgery, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Yuan Yuan
- Department of Medical Oncology, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Arti Hurria
- Department of Medical Oncology, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Chu Peiguo
- Department of Pathology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Joanne Mortimer
- Department of Medical Oncology, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.
| |
Collapse
|
16
|
Piunti A, Shilatifard A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 2016; 352:aad9780. [PMID: 27257261 DOI: 10.1126/science.aad9780] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation of gene expression in metazoans is central for establishing cellular diversity, and its deregulation can result in pathological conditions. Although transcription factors are essential for implementing gene expression programs, they do not function in isolation and require the recruitment of various chromatin-modifying and -remodeling machineries. A classic example of developmental chromatin regulation is the balanced activities of the Polycomb group (PcG) proteins within the PRC1 and PRC2 complexes, and the Trithorax group (TrxG) proteins within the COMPASS family, which are highly mutated in a large number of human diseases. In this review, we will discuss the latest findings regarding the properties of the PcG and COMPASS families and the insight they provide into the epigenetic control of transcription under physiological and pathological settings.
Collapse
Affiliation(s)
- Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Irish JC, Mills JN, Turner-Ivey B, Wilson RC, Guest ST, Rutkovsky A, Dombkowski A, Kappler CS, Hardiman G, Ethier SP. Amplification of WHSC1L1 regulates expression and estrogen-independent activation of ERα in SUM-44 breast cancer cells and is associated with ERα over-expression in breast cancer. Mol Oncol 2016; 10:850-65. [PMID: 27005559 PMCID: PMC4920706 DOI: 10.1016/j.molonc.2016.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022] Open
Abstract
The 8p11‐p12 amplicon occurs in approximately 15% of breast cancers in aggressive luminal B‐type tumors. Previously, we identified WHSC1L1 as a driving oncogene from this region. Here, we demonstrate that over‐expression of WHSC1L1 is linked to over‐expression of ERα in SUM‐44 breast cancer cells and in primary human breast cancers. Knock‐down of WHSC1L1, particularly WHSC1L1‐short, had a dramatic effect on ESR1 mRNA and ERα protein levels. SUM‐44 cells do not require exogenous estrogen for growth in vitro; however, they are dependent on ERα expression, as ESR1 knock‐down or exposure to the selective estrogen receptor degrader fulvestrant resulted in growth inhibition. ChIP‐Seq experiments utilizing ERα antibodies demonstrated extensive ERα binding to chromatin in SUM‐44 cells under estrogen‐free conditions. ERα bound to ERE and FOXA1 motifs under estrogen‐free conditions and regulated expression of estrogen‐responsive genes. Short‐term treatment with estradiol enhanced binding of ERα to chromatin and influenced expression of many of the same genes to which ERα was bound under estrogen‐free conditions. Finally, knock‐down of WHSC1L1 in SUM‐44 cells resulted in loss of ERα binding to chromatin under estrogen‐free conditions, which was restored upon exposure to estradiol. These results indicate the SUM‐44 cells are a good model of a subset of luminal B breast cancers that have the 8p11‐p12 amplicon, over‐express WHSC1L1, and over‐express ERα, but are independent of estrogen for binding to chromatin and regulation of gene expression. Breast cancers such as these, that are dependent on ERα activity but independent of estradiol, are a major cause of breast cancer mortality. SUM44 is a model cell line for ERα positive breast cancer with the 8p11 amplicon. WHSC1L1 is a driving oncogene from the 8p11 amplicon in SUM44 cells. SUM44 breast cancer cells have high ERα expression, regulated by WHSC1L1 knockdown. ERα is required for growth and survival of SUM44 cells but is estrogen‐independent. WHSC1L1 knock‐down re‐sensitizes ERα to estradiol for binding to essential genes.
Collapse
Affiliation(s)
- Jonathan C Irish
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA; Department of Cancer Biology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA.
| | - Jamie N Mills
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Brittany Turner-Ivey
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Stephen T Guest
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Alexandria Rutkovsky
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Alan Dombkowski
- Department of Cancer Biology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA.
| | - Christiana S Kappler
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Gary Hardiman
- Department of Medicine and Public Health, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC 29425, USA.
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| |
Collapse
|
18
|
GATA3 inhibits GCM1 activity and trophoblast cell invasion. Sci Rep 2016; 6:21630. [PMID: 26899996 PMCID: PMC4761948 DOI: 10.1038/srep21630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/28/2016] [Indexed: 11/17/2022] Open
Abstract
Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine trophoblast giant cells. The regulation of trophoblastic invasion by GCM1 may involve novel cellular factors. Here we show that GATA3 interacts with GCM1 and inhibits its activity to suppress trophoblastic invasion. Immunohistochemistry demonstrates that GATA3 and GCM1 are coexpressed in villous cytotrophoblast cells, syncytiotrophoblast layer, and extravillous trophoblast cells of human placenta. Interestingly, GATA3 interacts with GCM1, but not the GCM2 homologue, through the DNA-binding domain and first transcriptional activation domain in GCM1 and the transcriptional activation domains and zinc finger 1 domain in GATA3. While GATA3 did not affect DNA-binding activity of GCM1, it suppressed transcriptional activity of GCM1 and therefore HtrA4 promoter activity. Correspondingly, GATA3 knockdown elevated HtrA4 expression in BeWo and JEG-3 trophoblast cell lines and enhanced the invasion activities of both lines. This study uncovered a new GATA3 function in placenta as a negative regulator of GCM1 activity and trophoblastic invasion.
Collapse
|