1
|
Aynaci A, Toussaint M, Gilis F, Albert M, Gaussin JF, Jadot M, Boonen M. Disruption of Man-6-P-Dependent Sorting to Lysosomes Confers IGF1R-Mediated Apoptosis Resistance. Int J Mol Sci 2025; 26:3586. [PMID: 40332073 PMCID: PMC12026698 DOI: 10.3390/ijms26083586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Mutations in GNPTAB underlie mucolipidosis II and mucolipidosis III α/β, which are inherited lysosomal storage disorders caused by a defective UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosamine phosphotransferase. As a result, newly synthesized acid hydrolases fail to acquire Mannose-6-Phosphate (Man-6-P) sorting signals, or do so to a lesser extent, and exhibit an impaired trafficking to lysosomes. Interestingly, we found that GNPTAB knockout HeLa cells are resistant to several cytotoxic agents: doxorubicin, chloroquine, staurosporine and paclitaxel. While we detected an increased trapping of weak bases in the expanded lysosomal population of these cells, which could reduce the effect of doxorubicin and chloroquine; the decreased cell response to staurosporine and paclitaxel suggested the involvement of alternative resistance mechanisms. Indeed, further investigation revealed that the hyperactivation of the Insulin-like Growth Factor 1 Receptor (IGF1R) pathway is a central player in the apoptosis resistance exhibited by Man-6-P sorting deficient cells.
Collapse
Affiliation(s)
- Asena Aynaci
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Maxence Toussaint
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Florentine Gilis
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Martine Albert
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
| | - Jean-François Gaussin
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
| | - Michel Jadot
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Marielle Boonen
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
| |
Collapse
|
2
|
Monteagudo-Vilavedra E, Rodrigues D, Vella G, Bravo SB, Pena C, Lopez-Valverde L, Colon C, Sanchez-Pintos P, Otero Espinar FJ, Couce ML, Alvarez JV. Novel Phenotypical and Biochemical Findings in Mucolipidosis Type II. Int J Mol Sci 2025; 26:2408. [PMID: 40141052 PMCID: PMC11941985 DOI: 10.3390/ijms26062408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Mucolipidosis type II is a very rare lysosomal disease affecting the UDP-GlcNAc N-acetylglucosamine-1-phosphotransferase enzyme, which catalyzes the synthesis of the targeting signal mannose 6-phosphate in lysosomal acid hydrolases. Its deficiency hinders the arrival of lysosomal enzymes to the lysosome, diminishing the multiple degradations of components that cells need to perform. Due to the low prevalence of this condition, available information is scarce. This article aims to deepen the understanding of the disease; clinical, biochemical, and proteomic data are analyzed. Three patients have been identified presenting GNPTAB pathogenic variants using whole exome sequencing. A biochemical profile for these patients has been carried out through quantification of glycosaminoglycans in urine samples and enzymatic analysis in dried blood spot (DBS) samples. Quantitative proteomic studies were performed. Results show how enzymatic assays in DBS can be used to diagnose this disease both during the neonatal period or in patients of more advanced age. Increased levels of acid sphingomyelinase, alpha-iduronidase, iduronidate 2-sulfatase, alpha-N-acetyl glucosaminidase, and beta-glucuronidase are found. Conclusion: this biochemical method could potentially improve early diagnosis. Proteomic data supporting these results reveal disrupted biochemical pathways, including the degradation of dermatan sulfate, heparan sulfate, and cellular cholesterol trafficking.
Collapse
Affiliation(s)
- Eines Monteagudo-Vilavedra
- Metabolopathies Platform, IDIS—Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (E.M.-V.); (D.R.); (G.V.); (L.L.-V.); (C.C.); (P.S.-P.)
| | - Daniel Rodrigues
- Metabolopathies Platform, IDIS—Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (E.M.-V.); (D.R.); (G.V.); (L.L.-V.); (C.C.); (P.S.-P.)
- Metabolic Unit, Clinical University Hospital of Santiago de Compostela, Centro de Investigaciones Biomedicas en Red de Enfermedades Raras (CIBERER), European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), 15706 Santiago de Compostela, Spain
| | - Giorgia Vella
- Metabolopathies Platform, IDIS—Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (E.M.-V.); (D.R.); (G.V.); (L.L.-V.); (C.C.); (P.S.-P.)
| | - Susana B. Bravo
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Carmen Pena
- Proteomic Platform, IDIS—Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Lopez-Valverde
- Metabolopathies Platform, IDIS—Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (E.M.-V.); (D.R.); (G.V.); (L.L.-V.); (C.C.); (P.S.-P.)
- Metabolic Unit, Clinical University Hospital of Santiago de Compostela, Centro de Investigaciones Biomedicas en Red de Enfermedades Raras (CIBERER), European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), 15706 Santiago de Compostela, Spain
| | - Cristobal Colon
- Metabolopathies Platform, IDIS—Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (E.M.-V.); (D.R.); (G.V.); (L.L.-V.); (C.C.); (P.S.-P.)
- Metabolic Unit, Clinical University Hospital of Santiago de Compostela, Centro de Investigaciones Biomedicas en Red de Enfermedades Raras (CIBERER), European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), 15706 Santiago de Compostela, Spain
| | - Paula Sanchez-Pintos
- Metabolopathies Platform, IDIS—Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (E.M.-V.); (D.R.); (G.V.); (L.L.-V.); (C.C.); (P.S.-P.)
- Metabolic Unit, Clinical University Hospital of Santiago de Compostela, Centro de Investigaciones Biomedicas en Red de Enfermedades Raras (CIBERER), European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), 15706 Santiago de Compostela, Spain
- Redsamid: Red de Salud Materno Infantil y del Desarrollo, Instituto de Salud Carlos III (ISCIII), 20829 Madrid, Spain
| | - Francisco J. Otero Espinar
- Paraquasil Platform, IDIS—Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Instituto of Materials—iMATUS, Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Maria L. Couce
- Metabolopathies Platform, IDIS—Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (E.M.-V.); (D.R.); (G.V.); (L.L.-V.); (C.C.); (P.S.-P.)
- Metabolic Unit, Clinical University Hospital of Santiago de Compostela, Centro de Investigaciones Biomedicas en Red de Enfermedades Raras (CIBERER), European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), 15706 Santiago de Compostela, Spain
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - J. Victor Alvarez
- Metabolopathies Platform, IDIS—Health Research Institute of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (E.M.-V.); (D.R.); (G.V.); (L.L.-V.); (C.C.); (P.S.-P.)
- Metabolic Unit, Clinical University Hospital of Santiago de Compostela, Centro de Investigaciones Biomedicas en Red de Enfermedades Raras (CIBERER), European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Yang J, Liu C, Geng Q, Chen L, Zhang L, Wu W. Two GNPTAB Variations Caused Mucolipidosis II Alpha/Beta in a Chinese Family. Fetal Pediatr Pathol 2025; 44:157-165. [PMID: 39957256 DOI: 10.1080/15513815.2025.2466057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Introduction: Mucolipidosis II alpha/beta (ML II) is an autosomal recessive disorder with craniofacial dysmorphism and bone deformities. The variants in GNPTAB are associated with ML II. Materials and Methods: A female pediatric patient presented with bone deformities, mental and motor developmental abnormalities and craniofacial dysmorphism. We performed clinical whole-exome sequencing (WES) and verified the variants via qPCR, gap-PCR and Sanger sequencing. Results: Clinical WES identified a point variant c.1090C > T (p.R364*) and a copy number variation (CNV) in GNPTAB. Compared with normal control, GNPTAB expression was reduced in blood of the proband. Using Gap-PCR and Sanger sequencing, we identified the break point of CNV (NC_000012.11:g.102136912_102142973del), and successfully performed prenatal diagnosis for the proband's mother. Conclusion: To our knowledge, this is the first report of this novel CNV associated with ML II. Our findings expand the genotypes related to ML II and contribute to the gene diagnosis of ML II.
Collapse
Affiliation(s)
- Jingxin Yang
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Chao Liu
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Qian Geng
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Liyuan Chen
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Lei Zhang
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Weiqing Wu
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| |
Collapse
|
4
|
Nong T, Li J, Li X, Li Y, Li Z, Shi W, Zhou Q, Xu H, Zhu M, Tang YP. The mucolipidosis III-causing mutation in GNPTAB, c.1760G>C, disrupts the development of somites in rats. Genes Dis 2024; 11:101172. [PMID: 39157455 PMCID: PMC11327505 DOI: 10.1016/j.gendis.2023.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/29/2023] [Indexed: 08/20/2024] Open
Affiliation(s)
- Tianying Nong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong 510623, China
| | - Jiangui Li
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong 510623, China
| | - Xia Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong 510623, China
| | - Yiqiang Li
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong 510623, China
| | - Zhaohui Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong 510623, China
| | - Weizhe Shi
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong 510623, China
| | - Qiuchan Zhou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong 510623, China
| | - Hongwen Xu
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong 510623, China
| | - Mingwei Zhu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong 510623, China
| | - Ya-Ping Tang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong 510623, China
| |
Collapse
|
5
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
6
|
Del Grosso A, Parlanti G, Mezzena R, Cecchini M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114464. [PMID: 35878795 DOI: 10.1016/j.addr.2022.114464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Lysosomal storage disorders (LSDs) are a vast group of more than 50 clinically identified metabolic diseases. They are singly rare, but they affect collectively 1 on 5,000 live births. They result in most of the cases from an enzymatic defect within lysosomes, which causes the subsequent augmentation of unwanted substrates. This accumulation process leads to plenty of clinical signs, determined by the specific substrate and accumulation area. The majority of LSDs present a broad organ and tissue engagement. Brain, connective tissues, viscera and bones are usually afflicted. Among them, brain disease is markedly frequent (two-thirds of LSDs). The most clinically employed approach to treat LSDs is enzyme replacement therapy (ERT), which is practiced by administering systemically the missed or defective enzyme. It represents a healthful strategy for 11 LSDs at the moment, but it solves the pathology only in the case of Gaucher disease. This approach, in fact, is not efficacious in the case of LSDs that have an effect on the central nervous system (CNS) due to the existence of the blood-brain barrier (BBB). Additionally, ERT suffers from several other weak points, such as low penetration of the exogenously administered enzyme to poorly vascularized areas, the development of immunogenicity and infusion-associated reactions (IARs), and, last but not least, the very high cost and lifelong needed. To ameliorate these weaknesses lot of efforts have been recently spent around the development of innovative nanotechnology-driven ERT strategies. They may boost the power of ERT and minimize adverse reactions by loading enzymes into biodegradable nanomaterials. Enzyme encapsulation into biocompatible liposomes, micelles, and polymeric nanoparticles, for example, can protect enzymatic activity, eliminating immunologic reactions and premature enzyme degradation. It can also permit a controlled release of the payload, ameliorating pharmacokinetics and pharmacodynamics of the drug. Additionally, the potential to functionalize the surface of the nanocarrier with targeting agents (antibodies or peptides), could promote the passage through biological barriers. In this review we examined the clinically applied ERTs, highlighting limitations that do not allow to completely cure the specific LSD. Later, we critically consider the nanotechnology-based ERT strategies that have beenin-vitroand/orin-vivotested to improve ERT efficacy.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberta Mezzena
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
7
|
Westermann LM, Fleischhauer L, Vogel J, Jenei-Lanzl Z, Ludwig NF, Schau L, Morellini F, Baranowsky A, Yorgan TA, Di Lorenzo G, Schweizer M, de Souza Pinheiro B, Guarany NR, Sperb-Ludwig F, Visioli F, Oliveira Silva T, Soul J, Hendrickx G, Wiegert JS, Schwartz IVD, Clausen-Schaumann H, Zaucke F, Schinke T, Pohl S, Danyukova T. Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma. Dis Model Mech 2020; 13:dmm046425. [PMID: 33023972 PMCID: PMC7687858 DOI: 10.1242/dmm.046425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Mucolipidosis type III (MLIII) gamma is a rare inherited lysosomal storage disorder caused by mutations in GNPTG encoding the γ-subunit of GlcNAc-1-phosphotransferase, the key enzyme ensuring proper intracellular location of multiple lysosomal enzymes. Patients with MLIII gamma typically present with osteoarthritis and joint stiffness, suggesting cartilage involvement. Using Gnptg knockout (Gnptgko ) mice as a model of the human disease, we showed that missorting of a number of lysosomal enzymes is associated with intracellular accumulation of chondroitin sulfate in Gnptgko chondrocytes and their impaired differentiation, as well as with altered microstructure of the cartilage extracellular matrix (ECM). We also demonstrated distinct functional and structural properties of the Achilles tendons isolated from Gnptgko and Gnptab knock-in (Gnptabki ) mice, the latter displaying a more severe phenotype resembling mucolipidosis type II (MLII) in humans. Together with comparative analyses of joint mobility in MLII and MLIII patients, these findings provide a basis for better understanding of the molecular reasons leading to joint pathology in these patients. Our data suggest that lack of GlcNAc-1-phosphotransferase activity due to defects in the γ-subunit causes structural changes within the ECM of connective and mechanosensitive tissues, such as cartilage and tendon, and eventually results in functional joint abnormalities typically observed in MLIII gamma patients. This idea was supported by a deficit of the limb motor function in Gnptgko mice challenged on a rotarod under fatigue-associated conditions, suggesting that the impaired motor performance of Gnptgko mice was caused by fatigue and/or pain at the joint.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lena Marie Westermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lutz Fleischhauer
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine (Canter), University of Applied Sciences, 80533 Munich, Germany
| | - Jonas Vogel
- Center for Applied Tissue Engineering and Regenerative Medicine (Canter), University of Applied Sciences, 80533 Munich, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, 60528 Frankfurt/Main, Germany
| | - Nataniel Floriano Ludwig
- Post-Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Brazil
| | - Lynn Schau
- RG Behavioral Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Fabio Morellini
- RG Behavioral Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Giorgia Di Lorenzo
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Bruna de Souza Pinheiro
- Department of Genetics, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Brazil
| | - Nicole Ruas Guarany
- Occupational Therapy Faculty, Federal University of Pelotas, 96010-610 Pelotas, Brazil
| | - Fernanda Sperb-Ludwig
- Department of Genetics, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Brazil
| | - Fernanda Visioli
- Pathology Department, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Brazil
| | - Thiago Oliveira Silva
- Post-Graduate Program in Medicine: Medical Sciences, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Brazil
| | - Jamie Soul
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Gretl Hendrickx
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - J Simon Wiegert
- RG Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ida V D Schwartz
- Department of Genetics, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Brazil
- Post-Graduate Program in Medicine: Medical Sciences, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Brazil
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (Canter), University of Applied Sciences, 80533 Munich, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, 60528 Frankfurt/Main, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Mucolipidoses Overview: Past, Present, and Future. Int J Mol Sci 2020; 21:ijms21186812. [PMID: 32957425 PMCID: PMC7555117 DOI: 10.3390/ijms21186812] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mucolipidosis II and III (ML II/III) are caused by a deficiency of uridine-diphosphate N-acetylglucosamine: lysosomal-enzyme-N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase, EC2.7.8.17), which tags lysosomal enzymes with a mannose 6-phosphate (M6P) marker for transport to the lysosome. The process is performed by a sequential two-step process: first, GlcNAc-1-phosphotransferase catalyzes the transfer of GlcNAc-1-phosphate to the selected mannose residues on lysosomal enzymes in the cis-Golgi network. The second step removes GlcNAc from lysosomal enzymes by N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase (uncovering enzyme) and exposes the mannose 6-phosphate (M6P) residues in the trans-Golgi network, in which the enzymes are targeted to the lysosomes by M6Preceptors. A deficiency of GlcNAc-1-phosphotransferase causes the hypersecretion of lysosomal enzymes out of cells, resulting in a shortage of multiple lysosomal enzymes within lysosomes. Due to a lack of GlcNAc-1-phosphotransferase, the accumulation of cholesterol, phospholipids, glycosaminoglycans (GAGs), and other undegraded substrates occurs in the lysosomes. Clinically, ML II and ML III exhibit quite similar manifestations to mucopolysaccharidoses (MPSs), including specific skeletal deformities known as dysostosis multiplex and gingival hyperplasia. The life expectancy is less than 10 years in the severe type, and there is no definitive treatment for this disease. In this review, we have described the updated diagnosis and therapy on ML II/III.
Collapse
|
9
|
Sachs W, Sachs M, Krüger E, Zielinski S, Kretz O, Huber TB, Baranowsky A, Westermann LM, Voltolini Velho R, Ludwig NF, Yorgan TA, Di Lorenzo G, Kollmann K, Braulke T, Schwartz IV, Schinke T, Danyukova T, Pohl S, Meyer-Schwesinger C. Distinct Modes of Balancing Glomerular Cell Proteostasis in Mucolipidosis Type II and III Prevent Proteinuria. J Am Soc Nephrol 2020; 31:1796-1814. [PMID: 32641396 PMCID: PMC7460914 DOI: 10.1681/asn.2019090960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/14/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The mechanisms balancing proteostasis in glomerular cells are unknown. Mucolipidosis (ML) II and III are rare lysosomal storage disorders associated with mutations of the Golgi-resident GlcNAc-1-phosphotransferase, which generates mannose 6-phosphate residues on lysosomal enzymes. Without this modification, lysosomal enzymes are missorted to the extracellular space, which results in lysosomal dysfunction of many cell types. Patients with MLII present with severe skeletal abnormalities, multisystemic symptoms, and early death; the clinical course in MLIII is less progressive. Despite dysfunction of a major degradative pathway, renal and glomerular involvement is rarely reported, suggesting organ-specific compensatory mechanisms. METHODS MLII mice were generated and compared with an established MLIII model to investigate the balance of protein synthesis and degradation, which reflects glomerular integrity. Proteinuria was assessed in patients. High-resolution confocal microscopy and functional assays identified proteins to deduce compensatory modes of balancing proteostasis. RESULTS Patients with MLII but not MLIII exhibited microalbuminuria. MLII mice showed lysosomal enzyme missorting and several skeletal alterations, indicating that they are a useful model. In glomeruli, both MLII and MLIII mice exhibited reduced levels of lysosomal enzymes and enlarged lysosomes with abnormal storage material. Nevertheless, neither model had detectable morphologic or functional glomerular alterations. The models rebalance proteostasis in two ways: MLII mice downregulate protein translation and increase the integrated stress response, whereas MLIII mice upregulate the proteasome system in their glomeruli. Both MLII and MLIII downregulate the protein complex mTORC1 (mammalian target of rapamycin complex 1) signaling, which decreases protein synthesis. CONCLUSIONS Severe lysosomal dysfunction leads to microalbuminuria in some patients with mucolipidosis. Mouse models indicate distinct compensatory pathways that balance proteostasis in MLII and MLIII.
Collapse
Affiliation(s)
- Wiebke Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Marie Westermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renata Voltolini Velho
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nataniel Floriano Ludwig
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giorgia Di Lorenzo
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Kollmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Braulke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ida Vanessa Schwartz
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
11
|
Wang P, Mazrier H, Caverly Rae J, Raj K, Giger U. A GNPTAB nonsense variant is associated with feline mucolipidosis II (I-cell disease). BMC Vet Res 2018; 14:416. [PMID: 30591066 PMCID: PMC6307278 DOI: 10.1186/s12917-018-1728-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/30/2018] [Indexed: 11/15/2022] Open
Abstract
Background Mucolipidosis II (ML II; I-cell disease) is caused by a deficiency of N-acetylglucosamine-1-phosphotransferase (GNPTAB; EC 2.7.8.17), which leads to a failure to internalize acid hydrolases into lysosomes for proper catabolism of various substances. This is an autosomal recessive lysosomal storage disease and causes severe progressive neuropathy and oculoskeletal dysfunction in humans (OMIM 252500). A naturally occurring disease model has been reported in juvenile domestic cats (OMIA 001248–9685) with clinical signs similar to human patients. We investigated the molecular genetic basis of ML II in a colony of affected cats by sequencing the coding and regulatory regions of GNPTAB from affected and clinically healthy related and unrelated domestic cats and compared the sequences to the published feline genome sequence (NCBI-RefSeq accession no. XM_003989173.4, Gene ID: 101100231). Results All affected cats were homozygous for a single base substitution (c.2644C > T) in exon 13 of GNPTAB. This variant results in a premature stop codon (p.Gln882*) which predicts severe truncation and complete dysfunction of the GNPTAB enzyme. About 140 GNPTAB variants have been described in human ML II patients, with 41.3% nonsense/missense mutations, nine occurring in the same gene region as in this feline model. Restriction fragment length polymorphism and allelic discrimination real-time polymerase chain reaction assays accurately differentiated between clear, asymptomatic carriers and homozygous affected cats. Conclusion Molecular genetic characterization advances this large animal model of ML II for use to further define the pathophysiology of the disease and evaluate novel therapeutic approaches for this fatal lysosomal storage disease in humans. Electronic supplementary material The online version of this article (10.1186/s12917-018-1728-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Wang
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hamutal Mazrier
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Caverly Rae
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karthik Raj
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Urs Giger
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Attenuation of the Niemann-Pick type C2 disease phenotype by intracisternal administration of an AAVrh.10 vector expressing Npc2. Exp Neurol 2018; 306:22-33. [DOI: 10.1016/j.expneurol.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/28/2018] [Accepted: 04/01/2018] [Indexed: 11/18/2022]
|
13
|
Barnes TD, Holy TE. Knockout of Lysosomal Enzyme-Targeting Gene Causes Abnormalities in Mouse Pup Isolation Calls. Front Behav Neurosci 2017; 10:237. [PMID: 28101008 PMCID: PMC5209381 DOI: 10.3389/fnbeh.2016.00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/05/2016] [Indexed: 01/26/2023] Open
Abstract
Humans lacking a working copy of the GNPTAB gene suffer from the metabolic disease Mucolipidosis type II (MLII). MLII symptoms include mental retardation, skeletal deformities and cartilage defects as well as a speech delay with most subjects unable to utter single words (Otomo et al., 2009; Cathey et al., 2010; Leroy et al., 2012). Here we asked whether mice lacking a copy of Gnptab gene exhibited vocal abnormities. We recorded ultrasonic vocalizations from 5 to 8 day old mice separated from their mother and littermates. Although Gnptab-/- pups emitted a similar number of calls, several features of the calls were different from their wild type littermates. Gnptab-/- mice showed a decrease in the length of calls, an increase in the intra-bout pause duration, significantly fewer pitch jumps with smaller mean size, and an increase in the number of isolated calls. In addition, Gnptab-/- mice vocalizations had less power, particularly in the higher frequencies. Gnptab+/- mouse vocalizations did not appear to be affected. We then attempted to classify these recordings using these features to determine the genotype of the animal. We were able to correctly identify 87% of the recordings as either Gnptab-/- or Gnptab+/+ pup, significantly better than chance, demonstrating that genotype is a strong predictor of vocalization phenotype. These data show that deletion of genes in the lysosomal enzyme targeting pathway affect mouse pup isolation calls.
Collapse
Affiliation(s)
- Terra D. Barnes
- Department of Neuroscience, Washington University in St. Louis School of MedicineSt. Louis, MO, USA
| | | |
Collapse
|
14
|
Ko AR, Jin DK, Cho SY, Park SW, Przybylska M, Yew NS, Cheng SH, Kim JS, Kwak MJ, Kim SJ, Sohn YB. AAV8-mediated expression of N-acetylglucosamine-1-phosphate transferase attenuates bone loss in a mouse model of mucolipidosis II. Mol Genet Metab 2016; 117:447-55. [PMID: 26857995 DOI: 10.1016/j.ymgme.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/22/2022]
Abstract
Mucolipidoses II and III (ML II and ML III) are lysosomal disorders in which the mannose 6-phosphate recognition marker is absent from lysosomal hydrolases and other glycoproteins due to mutations in GNPTAB, which encodes two of three subunits of the heterohexameric enzyme, N-acetylglucosamine-1-phosphotransferase. Both disorders are caused by the same gene, but ML II represents the more severe phenotype. Bone manifestations of ML II include hip dysplasia, scoliosis, rickets and osteogenesis imperfecta. In this study, we sought to determine whether a recombinant adeno-associated viral vector (AAV2/8-GNPTAB) could confer high and prolonged gene expression of GNPTAB and thereby influence the pathology in the cartilage and bone tissue of a GNPTAB knock out (KO) mouse model. The results demonstrated significant increases in bone mineral density and content in AAV2/8-GNPTAB-treated as compared to non-treated KO mice. We also showed that IL-6 (interleukin-6) expression in articular cartilage was reduced in AAV2/8-GNPTAB treated ML II mice. Together, these data suggest that AAV-mediated expression of GNPTAB in ML II mice can attenuate bone loss via inhibition of IL-6 production. This study emphasizes the value of the MLII KO mouse to recapitulate the clinical manifestations of the disease and highlights its amenability to therapy.
Collapse
Affiliation(s)
- Ah-Ra Ko
- Clinical Research Center, Samsung Biomedical Research Center, Seoul, Republic of Korea; Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Won Park
- Department of Pediatrics, Cheil General Hospital and Woman's Health Care Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | | | | | | | - Jung-Sun Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min Jung Kwak
- Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Su Jin Kim
- Department of Pediatrics, Myongji Hospital, Seonam University College of Medicine, Goyang, Republic of Korea
| | - Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
15
|
Toonen JA, Anastasaki C, Smithson LJ, Gianino SM, Li K, Kesterson RA, Gutmann DH. NF1 germline mutation differentially dictates optic glioma formation and growth in neurofibromatosis-1. Hum Mol Genet 2016; 25:1703-13. [PMID: 26908603 PMCID: PMC4986327 DOI: 10.1093/hmg/ddw039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/08/2016] [Indexed: 12/24/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common neurogenetic condition characterized by significant clinical heterogeneity. A major barrier to developing precision medicine approaches for NF1 is an incomplete understanding of the factors that underlie its inherent variability. To determine the impact of the germline NF1 gene mutation on the optic gliomas frequently encountered in children with NF1, we developed genetically engineered mice harboring two representative NF1-patient-derived Nf1 gene mutations (c.2542G>C;p.G848R and c.2041C>T;p.R681X). We found that each germline Nf1 gene mutation resulted in different levels of neurofibromin expression. Importantly, only R681X(CKO) but not G848R(CKO), mice develop optic gliomas with increased optic nerve volumes, glial fibrillary acid protein immunoreactivity, proliferation and retinal ganglion cell death, similar to Nf1 conditional knockout mice harboring a neomycin insertion (neo) as the germline Nf1 gene mutation. These differences in optic glioma phenotypes reflect both cell-autonomous and stromal effects of the germline Nf1 gene mutation. In this regard, primary astrocytes harboring the R681X germline Nf1 gene mutation exhibit increased basal astrocyte proliferation (BrdU incorporation) indistinguishable from neo(CKO) astrocytes, whereas astrocytes with the G848R mutation have lower levels of proliferation. Evidence for paracrine effects from the tumor microenvironment were revealed when R681X(CKO) mice were compared with conventional neo(CKO) mice. Relative to neo(CKO) mice, the optic gliomas from R681X(CKO) mice had more microglia infiltration and JNK(Thr183/Tyr185) activation, microglia-produced Ccl5, and glial AKT(Thr308) activation. Collectively, these studies establish that the germline Nf1 gene mutation is a major determinant of optic glioma development and growth through by both tumor cell-intrinsic and stromal effects.
Collapse
Affiliation(s)
- Joseph A Toonen
- Department of Neurology, Washington University School of Medicine, PO Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA and
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, PO Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA and
| | - Laura J Smithson
- Department of Neurology, Washington University School of Medicine, PO Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA and
| | - Scott M Gianino
- Department of Neurology, Washington University School of Medicine, PO Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA and
| | - Kairong Li
- Department of Genetics, University of Alabama, Birmingham, AL 35233, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama, Birmingham, AL 35233, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, PO Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA and
| |
Collapse
|
16
|
Shibazaki T, Hirabayashi K, Saito S, Shigemura T, Nakazawa Y, Sakashita K, Takagi M, Shiohara M, Adachi K, Nanba E, Sakai N, Koike K. Clinical and laboratory outcomes after umbilical cord blood transplantation in a patient with mucolipidosis II alpha/beta. Am J Med Genet A 2016; 170A:1278-82. [PMID: 26789537 DOI: 10.1002/ajmg.a.37563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/30/2015] [Indexed: 11/11/2022]
Abstract
Mucolipidosis (ML) II alpha/beta is an autosomal recessive disease caused by reduced enzyme activity of N-acetylglucosamine-1-phosphotransferase. Clinical symptoms of ML II are severe psychomotor delay and dysostosis multiplex; death usually occurs by 5-8 years of age from cardiopulmonary complications. Allogeneic hematopoietic stem cell transplantation (HSCT) has been attempted for ML; however, few reports have documented the detailed outcomes of HSCT for ML. A 26-month-old girl received a human leukocyte antigen 3/6-allele-matched transplant from cord blood. The preparative regimen consisted of fludarabine, cyclophosphamide, 6-Gy total body irradiation, and rabbit antithymocyte globulin. Although comparing before and after cord blood transplantation results, we observed that lysosomal enzyme activities in the plasma decreased by approximately 20-40%. Low serum levels of immunoglobulin A, G2, and G4 were also observed before HSCT; however, these values normalized after transplantation. Despite undergoing HSCT, she was treated twice for bacterial pneumonia with acute respiratory distress syndrome at ages 37 and 38 months. Although HSCT effects on the clinical manifestations were limited, laboratory data including plasma lysosomal enzyme activities and serum levels of immunoglobulin showed improvement.
Collapse
Affiliation(s)
- Takumi Shibazaki
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Koichi Hirabayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomonari Shigemura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazuo Sakashita
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mineo Takagi
- Department of Pediatrics, Okaya Municipal Hospital, Okaya, Japan
| | - Masaaki Shiohara
- Division of Hematology/Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Kaori Adachi
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Eiji Nanba
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Norio Sakai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
17
|
Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet 2015; 47:528-34. [PMID: 25848753 PMCID: PMC4414867 DOI: 10.1038/ng.3256] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/02/2015] [Indexed: 12/14/2022]
Abstract
Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in the sorting nexin gene SNX14, encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate, a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma, accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.
Collapse
|
18
|
Vecsernyés M, Fenyvesi F, Bácskay I, Deli MA, Szente L, Fenyvesi É. Cyclodextrins, blood-brain barrier, and treatment of neurological diseases. Arch Med Res 2014; 45:711-29. [PMID: 25482528 DOI: 10.1016/j.arcmed.2014.11.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Biological barriers are the main defense systems of the homeostasis of the organism and protected organs. The blood-brain barrier (BBB), formed by the endothelial cells of brain capillaries, not only provides nutrients and protection to the central nervous system but also restricts the entry of drugs, emphasizing its importance in the treatment of neurological diseases. Cyclodextrins are increasingly used in human pharmacotherapy. Due to their favorable profile to form hydrophilic inclusion complexes with poorly soluble active pharmaceutical ingredients, they are present as excipients in many marketed drugs. Application of cyclodextrins is widespread in formulations for oral, parenteral, nasal, pulmonary, and skin delivery of drugs. Experimental and clinical data suggest that cyclodextrins can be used not only as excipients for centrally acting marketed drugs like antiepileptics, but also as active pharmaceutical ingredients to treat neurological diseases. Hydroxypropyl-β-cyclodextrin received orphan drug designation for the treatment of Niemann-Pick type C disease. In addition to this rare lysosomal storage disease with neurological symptoms, experimental research revealed the potential therapeutic use of cyclodextrins and cyclodextrin nanoparticles in neurodegenerative diseases, stroke, neuroinfections and brain tumors. In this context, the biological effects of cyclodextrins, their interaction with plasma membranes and extraction of different lipids are highly relevant at the level of the BBB.
Collapse
Affiliation(s)
- Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Mária A Deli
- Department of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lajos Szente
- Cyclolab Cyclodextrin Research and Development Laboratory Ltd., Budapest, Hungary
| | - Éva Fenyvesi
- Cyclolab Cyclodextrin Research and Development Laboratory Ltd., Budapest, Hungary
| |
Collapse
|