1
|
Diaz A, Roca-Martínez J, Vranken W. RRMScorer: A web server for predicting RNA recognition motif binding preferences. Nucleic Acids Res 2025:gkaf367. [PMID: 40331414 DOI: 10.1093/nar/gkaf367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
RRMScorer is a web server designed to predict RNA binding preferences for proteins containing RNA recognition motifs (RRMs), the most prevalent RNA binding domain in eukaryotes. By carefully analysing a dataset of 187 RRM-RNA structural complexes, we calculated residue-level binding scores using a probabilistic model derived from amino acid-nucleotide interaction propensities, which are the basis of RRMScorer. The server accepts protein sequences and optional RNA sequences as input, providing detailed outputs, including bar plots, sequence logos, and downloadable CSV/JSON files, to visualize and interpret RNA binding preferences. RRMScorer is particularly useful for studying the impact of single-point mutations and comparing binding preferences across multiple RRM domains. The web server, freely accessible at https://bio2byte.be/rrmscorer without login requirements, offers a user-friendly interface and integrates precomputed predictions for over 1400 RRM-containing proteins. With its ability to provide residue-level insights and accurate predictions, RRMScorer serves as a valuable tool for researchers exploring the functional landscape of RRM-RNA interactions.
Collapse
Affiliation(s)
- Adrian Diaz
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Joel Roca-Martínez
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
2
|
Harris SE, Hu Y, Bridges K, Cavazos FF, Martyr JG, Guzmán BB, Murn J, Aleman MM, Dominguez D. Dissecting RNA selectivity mediated by tandem RNA-binding domains. J Biol Chem 2025; 301:108435. [PMID: 40120682 DOI: 10.1016/j.jbc.2025.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
RNA-protein interactions are pivotal to proper gene regulation. Many RNA-binding proteins possess multiple RNA-binding domains; however, how these domains interplay to select and regulate RNA targets remains poorly understood. Here, we investigate three multidomain proteins, Musashi-1, Musashi-2, and unkempt, which share a high degree of RNA specificity, a common feature across RNA-binding proteins. We used massively parallel in vitro assays with unprecedented depth with random or naturally derived RNA sequences and find that individual domains within a protein can have differing affinities, specificities, and motif spacing preferences. We conducted large scale competition assays between these proteins and determined how individual protein specificities and affinities influence competitive binding. Integration of binding and regulation in cells with in vitro specificities showed that target selection involves a combination of the protein intrinsic specificities described here, but cellular context is critical to drive these proteins to motifs in specific transcript regions. Finally, evolutionarily conserved RNA regions displayed evidence of binding multiple RBPs in cultured cells, and these RNA regions represent the highest affinity targets. This work emphasizes the importance of in vitro and in cultured cells studies to fully profile RNA-binding proteins and highlights the complex modes of RNA-protein interactions and the contributing factors in target selection.
Collapse
Affiliation(s)
- Sarah E Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yue Hu
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kaitlin Bridges
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Francisco F Cavazos
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Justin G Martyr
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bryan B Guzmán
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, California, USA; Division of Biomedical Sciences, Center for RNA Biology and Medicine, Riverside, California, USA
| | - Maria M Aleman
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel Dominguez
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Pérez-Ropero G, Dolcemascolo R, Pérez-Ràfols A, Andersson K, Danielson UH, Rodrigo G, Buijs J. Regulatory Effects of RNA-Protein Interactions Revealed by Reporter Assays of Bacteria Grown on Solid Media. BIOSENSORS 2025; 15:175. [PMID: 40136972 PMCID: PMC11940492 DOI: 10.3390/bios15030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Reporter systems are widely used to study biomolecular interactions and processes in vivo, representing one of the basic tools used to characterize synthetic regulatory circuits. Here, we developed a method that enables the monitoring of RNA-protein interactions through a reporter system in bacteria with high temporal resolution. For this, we used a Real-Time Protein Expression Assay (RT-PEA) technology for real-time monitoring of a fluorescent reporter protein, while having bacteria growing on solid media. Experimental results were analyzed by fitting a three-variable Gompertz growth model. To validate the method, the interactions between a set of RNA sequences and the RNA-binding protein (RBP) Musashi-1 (MSI1) were evaluated, as well as the allosteric modulation of the interaction by a small molecule (oleic acid). This new approach proved to be suitable to quantitatively characterize RNA-RBP interactions, thereby expanding the toolbox to study molecular interactions in living bacteria, including allosteric modulation, with special relevance for systems that are not suitable to be studied in liquid media.
Collapse
Affiliation(s)
- Guillermo Pérez-Ropero
- Ridgeview Instruments AB, 75237 Uppsala, Sweden (J.B.)
- Department of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), Centro Superior de Investigaciones Científicas (CSIC)—University of Valencia, 46980 Paterna, Spain
- Department of Biotechnology, Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Anna Pérez-Ràfols
- Giotto Biotech SRL, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), Department of Chemistry Ugo Schiff, Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Karl Andersson
- Ridgeview Instruments AB, 75237 Uppsala, Sweden (J.B.)
- Department of Immunology, Genetics, and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - U. Helena Danielson
- Department of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
- Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala University, 75123 Uppsala, Sweden
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), Centro Superior de Investigaciones Científicas (CSIC)—University of Valencia, 46980 Paterna, Spain
| | - Jos Buijs
- Ridgeview Instruments AB, 75237 Uppsala, Sweden (J.B.)
- Department of Immunology, Genetics, and Pathology, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
4
|
Goel K, Saraogi I. Harnessing RNA-Protein Interactions for Therapeutic Interventions. Chem Asian J 2025; 20:e202401117. [PMID: 39714962 DOI: 10.1002/asia.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Interactions between RNAs and proteins play a crucial role in various diseases, including viral infections and cancer. Hence, understanding and inhibiting these interactions are important for the development of novel therapeutics. However, the identification of drugs targeting RNA-protein interactions with high specificity and affinity is challenged by our limited molecular understanding of these interactions. Recent focus on structural and biochemical characterization, coupled with high-throughput screening technologies and computational modeling, have accelerated the identification of new RBPs and optimization of potential inhibitors. This review discusses key examples of inhibitors developed over the past decade that effectively disrupt pathogenic RNA-protein interactions. We focus on small molecule and peptide-based inhibitors that have shown promise in disrupting crucial RNA-protein interactions in eukaryotes, prokaryotes, and viruses. We also present the challenges and future directions in this field, emphasizing the need to achieve improved specificity and reduce the off-target effects of the inhibitors. This review aims to contribute to ongoing efforts towards the development of novel therapeutic agents targeting RNA-protein interactions by providing an in-depth analysis of significant developments and emerging trends in this rapidly growing field.
Collapse
Affiliation(s)
- Khushboo Goel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
5
|
Matias-Barrios VM, Radaeva M, Rosellinny G, Jia Q, Xie N, Villanueva M, Ibrahim H, Smith J, Gleave M, Lallous N, Straus SK, Cherkasov A, Dong X. Developing novel Lin28 inhibitors by computer aided drug design. Cell Death Discov 2025; 11:5. [PMID: 39800739 PMCID: PMC11725581 DOI: 10.1038/s41420-024-02281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Lin28 is a key regulator of cancer stem cell gene network that promotes therapy-resistant tumor progression in various tumors. However, no Lin28 inhibitor has been approved to treat cancer patients, urging exploration of novel compounds as candidates to be tested for clinical trials. In this contribution, we applied computer-aided drug design (CADD) in combination with quantitative biochemical and biological assays. These efforts led to the discovery of Ln268 as a drug candidate that can block Lin28 from binding to its RNA substrates and inhibit Lin28 activities. Ln268 suppressed Lin28-mediated cancer cell proliferation and spheroid growth. Results from nuclear magnetic resonance spectroscopy confirmed that Ln268 perturbs the conformation of the zinc knuckle domain of Lin28, validating the rational drug design by CADD. The inhibitory effects of Ln268 are dependent on Lin28 protein expression in cancer cells, highlighting limited off-target effects of Ln268. Moreover, Ln268 synergizes with several chemotherapy drugs to suppress tumor cell growth. In summary, Ln268 is a promising candidate for further development to target Lin28 as a cancer therapy.
Collapse
Affiliation(s)
- Victor M Matias-Barrios
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Mariia Radaeva
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Graciella Rosellinny
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Qiongqiong Jia
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ning Xie
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Monica Villanueva
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Hanadi Ibrahim
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Jason Smith
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Nada Lallous
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
6
|
Pérez-Ropero G, Pérez-Ràfols A, Martelli T, Danielson UH, Buijs J. Unraveling the Bivalent and Rapid Interactions Between a Multivalent RNA Recognition Motif and RNA: A Kinetic Approach. Biochemistry 2024; 63:2816-2829. [PMID: 39397705 PMCID: PMC11542179 DOI: 10.1021/acs.biochem.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The kinetics of the interaction between Musashi-1 (MSI1) and RNA have been characterized using surface plasmon resonance biosensor analysis. Truncated variants of human MSI1 encompassing the two homologous RNA recognition motifs (RRM1 and RRM2) in tandem (aa 1-200), and the two RRMs in isolation (aa 1-103 and aa 104-200, respectively) were produced. The proteins were injected over sensor surfaces with immobilized RNA, varying in sequence and length, and with one or two RRM binding motifs. The interactions of the individual RRMs with all RNA variants were well described by a 1:1 interaction model. The interaction between the MSI1 variant encompassing both RRM motifs was bivalent and rapid for all RNA variants. Due to difficulties in fitting this complex data using standard procedures, we devised a new method to quantify the interactions. It revealed that two RRMs in tandem resulted in a significantly longer residence time than a single RRM. It also showed that RNA with double UAG binding motifs and potential hairpin structures forms less stable bivalent complexes with MSI1 than the single UAG motif containing linear RNA. Substituting the UAG binding motif with a CAG sequence resulted in a reduction of the affinity of the individual RRMs, but for MSI1, this reduction was strongly enhanced, demonstrating the importance of bivalency for specificity. This study has provided new insights into the interaction between MSI1 and RNA and an understanding of how individual domains contribute to the overall interaction. It provides an explanation for why many RNA-binding proteins contain dual RRMs.
Collapse
Affiliation(s)
- Guillermo Pérez-Ropero
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
| | - Anna Pérez-Ràfols
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland DD1 5EH, U.K.
| | - Tommasso Martelli
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
| | - U. Helena Danielson
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Science for
Life Laboratory, Drug Discovery & Development Platform, Uppsala University, Uppsala SE 751 23, Sweden
| | - Jos Buijs
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Uppsala SE 751 85, Sweden
| |
Collapse
|
7
|
Dolcemascolo R, Ruiz R, Baldanta S, Goiriz L, Heras-Hernández M, Montagud-Martínez R, Rodrigo G. Probing the orthogonality and robustness of the mammalian RNA-binding protein Musashi-1 in Escherichia coli. J Biol Eng 2024; 18:52. [PMID: 39350178 PMCID: PMC11443895 DOI: 10.1186/s13036-024-00448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
RNA recognition motifs (RRMs) are widespread RNA-binding protein domains in eukaryotes, which represent promising synthetic biology tools due to their compact structure and efficient activity. Yet, their use in prokaryotes is limited and their functionality poorly characterized. Recently, we repurposed a mammalian Musashi protein containing two RRMs as a translation regulator in Escherichia coli. Here, employing high-throughput RNA sequencing, we explored the impact of Musashi expression on the transcriptomic and translatomic profiles of E. coli, revealing certain metabolic interference, induction of post-transcriptional regulatory processes, and spurious protein-RNA interactions. Engineered Musashi protein mutants displayed compromised regulatory activity, emphasizing the importance of both RRMs for specific and sensitive RNA binding. We found that a mutation known to impede allosteric regulation led to similar translation control activity. Evolutionary experiments disclosed a loss of function of the synthetic circuit in about 40 generations, with the gene coding for the Musashi protein showing a stability comparable to other heterologous genes. Overall, this work expands our understanding of RRMs for post-transcriptional regulation in prokaryotes and highlight their potential for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
| | - Raúl Ruiz
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
| | - Sara Baldanta
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
| | - Lucas Goiriz
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
- Pure and Applied Mathematics University Research Institute (IUMPA), Polytechnic University of Valencia, Valencia, 46022, Spain
| | - María Heras-Hernández
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
| | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain.
| |
Collapse
|
8
|
Sun K, Appadoo F, Liu Y, Müller M, Macfarlane C, Harris M, Tuplin A. A novel interaction between the 5' untranslated region of the Chikungunya virus genome and Musashi RNA binding protein is essential for efficient virus genome replication. Nucleic Acids Res 2024; 52:10654-10667. [PMID: 39087525 PMCID: PMC11417370 DOI: 10.1093/nar/gkae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, pathogenic alphavirus that is transmitted to humans by Aedesspp. mosquitoes-causing fever and debilitating joint pain, with frequent long-term health implications and high morbidity. The CHIKV replication cycle is poorly understood and specific antiviral therapeutics are lacking. In the current study, we identify host cell Musashi RNA binding protein-2 (MSI-2) as a proviral factor. MSI-2 depletion and small molecule inhibition assays demonstrated that MSI-2 is required for efficient CHIKV genome replication. Depletion of both MSI-2 and MSI-1 homologues was found to synergistically inhibit CHIKV replication, suggesting redundancy in their proviral function. Electromobility shift assay (EMSA) competition studies demonstrated that MSI-2 interacts specifically with an RNA binding motif within the 5' untranslated region (5'UTR) of CHIKV and reverse genetic analysis showed that mutation of the binding motif inhibited genome replication and blocked rescue of mutant virus. For the first time, this study identifies the proviral role of MSI RNA binding proteins in the replication of the CHIKV genome, providing important new insight into mechanisms controlling replication of this significant human pathogen and the potential of a novel therapeutic target.
Collapse
Affiliation(s)
- Kaiwen Sun
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Francesca Appadoo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Yuqian Liu
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Marietta Müller
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Catriona Macfarlane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
9
|
Wang R, Kato F, Watson RY, Beedle AM, Call JA, Tsunoda Y, Noda T, Tsuchiya T, Kashima M, Hattori A, Ito T. The RNA-binding protein Msi2 regulates autophagy during myogenic differentiation. Life Sci Alliance 2024; 7:e202302016. [PMID: 38373797 PMCID: PMC10876439 DOI: 10.26508/lsa.202302016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
Skeletal muscle development is a highly ordered process orchestrated transcriptionally by the myogenic regulatory factors. However, the downstream molecular mechanisms of myogenic regulatory factor functions in myogenesis are not fully understood. Here, we identified the RNA-binding protein Musashi2 (Msi2) as a myogenin target gene and a post-transcriptional regulator of myoblast differentiation. Msi2 knockdown in murine myoblasts blocked differentiation without affecting the expression of MyoD or myogenin. Msi2 overexpression was also sufficient to promote myoblast differentiation and myocyte fusion. Msi2 loss attenuated autophagosome formation via down-regulation of the autophagic protein MAPL1LC3/ATG8 (LC3) at the early phase of myoblast differentiation. Moreover, forced activation of autophagy effectively suppressed the differentiation defects incurred by Msi2 loss. Consistent with its functions in myoblasts in vitro, mice deficient for Msi2 exhibited smaller limb skeletal muscles, poorer exercise performance, and muscle fiber-type switching in vivo. Collectively, our study demonstrates that Msi2 is a novel regulator of mammalian myogenesis and establishes a new functional link between muscular development and autophagy regulation.
Collapse
Affiliation(s)
- Ruochong Wang
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Futaba Kato
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Rio Yasui Watson
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
- Department of Pharmaceutical Sciences, SUNY Binghamton University, New York, NY, USA
| | - Jarrod A Call
- Department of Physiology & Pharmacology, The University of Georgia, Athens, GA, USA
| | - Yugo Tsunoda
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Noda
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Institute of Medicine, and Center for Artificial Intelligence Research, University of Tsukuba, Tsukuba, Japan
| | - Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan
- Department of Molecular Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Ayuna Hattori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Takahiro Ito
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Dolcemascolo R, Heras-Hernández M, Goiriz L, Montagud-Martínez R, Requena-Menéndez A, Ruiz R, Pérez-Ràfols A, Higuera-Rodríguez RA, Pérez-Ropero G, Vranken WF, Martelli T, Kaiser W, Buijs J, Rodrigo G. Repurposing the mammalian RNA-binding protein Musashi-1 as an allosteric translation repressor in bacteria. eLife 2024; 12:RP91777. [PMID: 38363283 PMCID: PMC10942595 DOI: 10.7554/elife.91777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.
Collapse
Affiliation(s)
- Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | - María Heras-Hernández
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Lucas Goiriz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Applied Mathematics, Polytechnic University of ValenciaValenciaSpain
| | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | | | - Raúl Ruiz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Anna Pérez-Ràfols
- Giotto Biotech SRLSesto FiorentinoItaly
- Magnetic Resonance Center (CERM), Department of Chemistry Ugo Schiff, Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), University of FlorenceSesto FiorentinoItaly
| | - R Anahí Higuera-Rodríguez
- Dynamic Biosensors GmbHPlaneggGermany
- Department of Physics, Technical University of MunichGarchingGermany
| | - Guillermo Pérez-Ropero
- Ridgeview Instruments ABUppsalaSweden
- Department of Chemistry – BMC, Uppsala UniversityUppsalaSweden
| | - Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles – Vrije Universiteit BrusselBrusselsBelgium
| | | | | | - Jos Buijs
- Ridgeview Instruments ABUppsalaSweden
- Department of Immunology, Genetics, and Pathology, Uppsala UniversityUppsalaSweden
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
11
|
Soueid DM, Garner AL. Adaptation of RiPCA for the Live-Cell Detection of mRNA-Protein Interactions. Biochemistry 2023; 62:3323-3336. [PMID: 37963240 PMCID: PMC11466511 DOI: 10.1021/acs.biochem.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
RNA-binding proteins (RBPs) act as essential regulators of cell fate decisions, through their ability to bind and regulate the activity of cellular RNAs. For protein-coding mRNAs, RBPs control the localization, stability, degradation, and ultimately translation of mRNAs to impact gene expression. Disruption of the vast network of mRNA-protein interactions has been implicated in many human diseases, and accordingly, targeting these interactions has surfaced as a new frontier in RNA-targeted drug discovery. To catalyze this new field, methods are needed to enable the detection and subsequent screening of mRNA-RBP interactions, particularly in live cells. Using our laboratory's RNA-interaction with Protein-mediated Complementation Assay (RiPCA) technology, herein we describe its application to mRNA-protein interactions and present a guide for the development of future RiPCA assays for structurally diverse classes of mRNA-protein interactions.
Collapse
Affiliation(s)
- Dalia M. Soueid
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Goguen EC, Brow DA. Domains and residues of the Saccharomyces cerevisiae hnRNP protein Hrp1 important for transcriptional autoregulation and noncoding RNA termination. Genetics 2023; 225:iyad134. [PMID: 37467478 PMCID: PMC10471224 DOI: 10.1093/genetics/iyad134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Proteins that bind the nascent transcript exiting RNA polymerase II can regulate transcription elongation. The essential Saccharomyces cerevisiae hnRNP protein Hrp1 is one such protein and participates in both cleavage and polyadenylation-coupled and Nrd1-Nab3-Sen1-dependent RNA polymerase II termination. Prior evidence that Hrp1 is a positive RNA polymerase II elongation factor suggests that its release from the elongation complex promotes termination. Here we report the effects of deletions and substitutions in Hrp1 on its autoregulation via an Nrd1-Nab3-Sen1-dependent transcription attenuator in the 5'-UTR of its mRNA and on the function of an Hrp1-dependent Nrd1-Nab3-Sen1 terminator in the SNR82 snoRNA gene. Deletion of either of two central RNA recognition motifs or either of the flanking low-sequence complexity domains is lethal. Smaller, viable deletions in the amino-terminal low-sequence complexity domain cause readthrough of both the HRP1 attenuator and SNR82 terminator. Substitutions that cause readthrough localized mostly to the RNA recognition motifs, although not always to the RNA-binding face. We found that autoregulation of Hrp1 mRNA synthesis is surprisingly robust, overcoming the expected lethal effects of the start codon and frameshift mutations via overexpression of the mRNA up to 40-fold. Our results suggest a model in which binding of attenuator or terminator elements in the nascent transcript by RNA recognition motifs 1 and 2 disrupts interactions between RNA recognition motif 2 and the RNA polymerase II elongation complex, increasing its susceptibility to termination.
Collapse
Affiliation(s)
- Emma C Goguen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
13
|
Sicking M, Falke I, Löblein MT, Eich HT, Götte M, Greve B, Troschel FM. The Musashi RNA-binding proteins in female cancers: insights on molecular mechanisms and therapeutic relevance. Biomark Res 2023; 11:76. [PMID: 37620963 PMCID: PMC10463710 DOI: 10.1186/s40364-023-00516-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
RNA-binding proteins have increasingly been identified as important regulators of gene expression given their ability to bind distinct RNA sequences and regulate their fate. Mounting evidence suggests that RNA-binding proteins are involved in the onset and progression of multiple malignancies, prompting increasing interest in their potential for therapeutic intervention.The Musashi RNA binding proteins Musashi-1 and Musashi-2 were initially identified as developmental factors of the nervous system but have more recently been found to be ubiquitously expressed in physiological tissues and may be involved in pathological cell behavior. Both proteins are increasingly investigated in cancers given dysregulation in multiple tumor entities, including in female malignancies. Recent data suggest that the Musashi proteins serve as cancer stem cell markers as they contribute to cancer cell proliferation and therapy resistance, prompting efforts to identify mechanisms to target them. However, as the picture remains incomplete, continuous efforts to elucidate their role in different signaling pathways remain ongoing.In this review, we focus on the roles of Musashi proteins in tumors of the female - breast, endometrial, ovarian and cervical cancer - as we aim to summarize current knowledge and discuss future perspectives.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Isabel Falke
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Maria T Löblein
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hans Th Eich
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
14
|
Moreira ARS, Lim J, Urbaniak A, Banik J, Bronson K, Lagasse A, Hardy L, Haney A, Allensworth M, Miles TK, Gies A, Byrum SD, Wilczynska A, Boehm U, Kharas M, Lengner C, MacNicol MC, Childs GV, MacNicol AM, Odle AK. Musashi Exerts Control of Gonadotrope Target mRNA Translation During the Mouse Estrous Cycle. Endocrinology 2023; 164:bqad113. [PMID: 37477898 PMCID: PMC10402870 DOI: 10.1210/endocr/bqad113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
The anterior pituitary controls key biological processes, including growth, metabolism, reproduction, and stress responses through distinct cell types that each secrete specific hormones. The anterior pituitary cells show a remarkable level of cell type plasticity that mediates the shifts in hormone-producing cell populations that are required to meet organismal needs. The molecular mechanisms underlying pituitary cell plasticity are not well understood. Recent work has implicated the pituitary stem cell populations and specifically, the mRNA binding proteins of the Musashi family in control of pituitary cell type identity. In this study we have identified the target mRNAs that mediate Musashi function in the adult mouse pituitary and demonstrate the requirement for Musashi function in vivo. Using Musashi RNA immunoprecipitation, we identify a cohort of 1184 mRNAs that show specific Musashi binding. Identified Musashi targets include the Gnrhr mRNA, which encodes the gonadotropin-releasing hormone receptor (GnRHR), and the Fshb mRNA, encoding follicle-stimulating hormone (FSH). Reporter assays reveal that Musashi functions to exert repression of translation of the Fshb mRNA, in addition to the previously observed repression of the Gnrhr mRNA. Importantly, mice engineered to lack Musashi in gonadotropes demonstrate a failure to repress translation of the endogenous Gnrhr and Fshb mRNAs during the estrous cycle and display a significant heterogeneity in litter sizes. The range of identified target mRNAs suggests that, in addition to these key gonadotrope proteins, Musashi may exert broad regulatory control over the pituitary proteome in a cell type-specific manner.
Collapse
Affiliation(s)
- Ana Rita Silva Moreira
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Juchan Lim
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jewel Banik
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Katherine Bronson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alex Lagasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Linda Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Melody Allensworth
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tiffany K Miles
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Allen Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children's Research Institute, Arkansas Children's Hospital, Little Rock, AR 72202, USA
| | - Ania Wilczynska
- Bit.bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg 66421, Germany
| | - Michael Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
15
|
Kozlov EN, Deev RV, Tokmatcheva EV, Tvorogova A, Kachaev ZM, Gilmutdinov RA, Zhukova M, Savvateeva-Popova EV, Schedl P, Shidlovskii YV. 3'UTR of mRNA Encoding CPEB Protein Orb2 Plays an Essential Role in Intracellular Transport in Neurons. Cells 2023; 12:1717. [PMID: 37443751 PMCID: PMC10340461 DOI: 10.3390/cells12131717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Intracellular trafficking plays a critical role in the functioning of highly polarized cells, such as neurons. Transport of mRNAs, proteins, and other molecules to synaptic terminals maintains contact between neurons and ensures the transmission of nerve impulses. Cytoplasmic polyadenylation element binding (CPEB) proteins play an essential role in long-term memory (LTM) formation by regulating local translation in synapses. Here, we show that the 3'UTR of the Drosophila CPEB gene orb2 is required for targeting the orb2 mRNA and protein to synapses and that this localization is important for LTM formation. When the orb2 3'UTR is deleted, the orb2 mRNAs and proteins fail to localize in synaptic fractions, and pronounced LTM deficits arise. We found that the phenotypic effects of the orb2 3'UTR deletion were rescued by introducing the 3'UTR from the orb, another Drosophila CPEB gene. In contrast, the phenotypic effects of the 3'UTR deletion were not rescued by the 3'UTR from one of the Drosophila α-tubulin genes. Our results show that the orb2 mRNAs must be targeted to the correct locations in neurons and that proper targeting depends upon sequences in the 3'UTR.
Collapse
Affiliation(s)
- Eugene N. Kozlov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
| | - Roman V. Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
| | - Elena V. Tokmatcheva
- Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia; (E.V.T.); (E.V.S.-P.)
| | - Anna Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Zaur M. Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
| | - Rudolf A. Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
| | - Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
| | - Elena V. Savvateeva-Popova
- Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia; (E.V.T.); (E.V.S.-P.)
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.N.K.); (R.V.D.); (Z.M.K.); (R.A.G.); (M.Z.); (P.S.)
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
16
|
Chen X, Wang Y, Xu Z, Cheng ML, Ma QQ, Li RT, Wang ZJ, Zhao H, Zuo X, Li XF, Fang X, Qin CF. Zika virus RNA structure controls its unique neurotropism by bipartite binding to Musashi-1. Nat Commun 2023; 14:1134. [PMID: 36854751 PMCID: PMC9972320 DOI: 10.1038/s41467-023-36838-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Human RNA binding protein Musashi-1 (MSI1) plays a critical role in neural progenitor cells (NPCs) by binding to various host RNA transcripts. The canonical MSI1 binding site (MBS), A/GU(1-3)AG single-strand motif, is present in many RNA virus genomes, but only Zika virus (ZIKV) genome has been demonstrated to bind MSI1. Herein, we identified the AUAG motif and the AGAA tetraloop in the Xrn1-resistant RNA 2 (xrRNA2) as the canonical and non-canonical MBS, respectively, and both are crucial for ZIKV neurotropism. More importantly, the unique AGNN-type tetraloop is evolutionally conserved, and distinguishes ZIKV from other known viruses with putative MBSs. Integrated structural analysis showed that MSI1 binds to the AUAG motif and AGAA tetraloop of ZIKV in a bipartite fashion. Thus, our results not only identified an unusual viral RNA structure responsible for MSI recognition, but also revealed a role for the highly structured xrRNA in controlling viral neurotropism.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhonghe Xu
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng-Li Cheng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Qing-Qing Ma
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Zheng-Jian Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Hui Zhao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
17
|
(-)- Gossypol Inhibition of Musashi-Mediated Forgetting Improves Memory and Age-Dependent Memory Decline in Caenorhabditis elegans. Mol Neurobiol 2023; 60:820-835. [PMID: 36378468 PMCID: PMC9849318 DOI: 10.1007/s12035-022-03116-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
Abstract
Musashi RNA-binding proteins (MSIs) retain a pivotal role in stem cell maintenance, tumorigenesis, and nervous system development. Recently, we showed in C. elegans that Musashi (MSI-1) actively promotes forgetting upon associative learning via a 3'UTR-dependent translational expression of the Arp2/3 actin branching complex. Here, we investigated the evolutionary conserved role of MSI proteins and the effect of their pharmacological inhibition on memory. Expression of human Musashi 1 (MSI1) and Musashi 2 (MSI2) under the endogenous Musashi promoter fully rescued the phenotype of msi-1(lf) worms. Furthermore, pharmacological inhibition of human MSI1 and MSI2 activity using (-)- gossypol resulted in improved memory retention, without causing locomotor, chemotactic, or learning deficits. No drug effect was observed in msi-1(lf) treated worms. Using Western blotting and confocal microscopy, we found no changes in MSI-1 protein abundance following (-)- gossypol treatment, suggesting that Musashi gene expression remains unaltered and that the compound exerts its inhibitory effect post-translationally. Additionally, (-)- gossypol suppressed the previously seen rescue of the msi-1(lf) phenotype in worms expressing human MSI1 specifically in the AVA neuron, indicating that (-)- gossypol can regulate the Musashi pathway in a memory-related neuronal circuit in worms. Finally, treating aged worms with (-)- gossypol reversed physiological age-dependent memory decline. Taken together, our findings indicate that pharmacological inhibition of Musashi might represent a promising approach for memory modulation.
Collapse
|
18
|
Roca-Martínez J, Dhondge H, Sattler M, Vranken WF. Deciphering the RRM-RNA recognition code: A computational analysis. PLoS Comput Biol 2023; 19:e1010859. [PMID: 36689472 PMCID: PMC9894542 DOI: 10.1371/journal.pcbi.1010859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/02/2023] [Accepted: 01/07/2023] [Indexed: 01/24/2023] Open
Abstract
RNA recognition motifs (RRM) are the most prevalent class of RNA binding domains in eucaryotes. Their RNA binding preferences have been investigated for almost two decades, and even though some RRM domains are now very well described, their RNA recognition code has remained elusive. An increasing number of experimental structures of RRM-RNA complexes has become available in recent years. Here, we perform an in-depth computational analysis to derive an RNA recognition code for canonical RRMs. We present and validate a computational scoring method to estimate the binding between an RRM and a single stranded RNA, based on structural data from a carefully curated multiple sequence alignment, which can predict RRM binding RNA sequence motifs based on the RRM protein sequence. Given the importance and prevalence of RRMs in humans and other species, this tool could help design RNA binding motifs with uses in medical or synthetic biology applications, leading towards the de novo design of RRMs with specific RNA recognition.
Collapse
Affiliation(s)
- Joel Roca-Martínez
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels, Belgium
- Structural biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Wim F. Vranken
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels, Belgium
- Structural biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
19
|
Kameda-Smith MM, Zhu H, Luo EC, Suk Y, Xella A, Yee B, Chokshi C, Xing S, Tan F, Fox RG, Adile AA, Bakhshinyan D, Brown K, Gwynne WD, Subapanditha M, Miletic P, Picard D, Burns I, Moffat J, Paruch K, Fleming A, Hope K, Provias JP, Remke M, Lu Y, Reya T, Venugopal C, Reimand J, Wechsler-Reya RJ, Yeo GW, Singh SK. Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma. Nat Commun 2022; 13:7506. [PMID: 36473869 PMCID: PMC9726987 DOI: 10.1038/s41467-022-35118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pediatric medulloblastoma (MB) is the most common solid malignant brain neoplasm, with Group 3 (G3) MB representing the most aggressive subgroup. MYC amplification is an independent poor prognostic factor in G3 MB, however, therapeutic targeting of the MYC pathway remains limited and alternative therapies for G3 MB are urgently needed. Here we show that the RNA-binding protein, Musashi-1 (MSI1) is an essential mediator of G3 MB in both MYC-overexpressing mouse models and patient-derived xenografts. MSI1 inhibition abrogates tumor initiation and significantly prolongs survival in both models. We identify binding targets of MSI1 in normal neural and G3 MB stem cells and then cross referenced these data with unbiased large-scale screens at the transcriptomic, translatomic and proteomic levels to systematically dissect its functional role. Comparative integrative multi-omic analyses of these large datasets reveal cancer-selective MSI1-bound targets sharing multiple MYC associated pathways, providing a valuable resource for context-specific therapeutic targeting of G3 MB.
Collapse
Affiliation(s)
- Michelle M. Kameda-Smith
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Helen Zhu
- grid.419890.d0000 0004 0626 690XComputational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428University Health Network, Toronto, ON Canada ,grid.494618.6Vector Institute Toronto, Toronto, ON Canada
| | - En-Ching Luo
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Yujin Suk
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Michael G DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Agata Xella
- grid.479509.60000 0001 0163 8573Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Brian Yee
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Chirayu Chokshi
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Sansi Xing
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Frederick Tan
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Raymond G. Fox
- grid.266100.30000 0001 2107 4242Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Ashley A. Adile
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - David Bakhshinyan
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Kevin Brown
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - William D. Gwynne
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Minomi Subapanditha
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada
| | - Petar Miletic
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Daniel Picard
- grid.14778.3d0000 0000 8922 7789Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ian Burns
- grid.25073.330000 0004 1936 8227Michael G DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Jason Moffat
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kamil Paruch
- grid.10267.320000 0001 2194 0956Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic ,grid.483343.bInternational Clinical Research Center, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Adam Fleming
- grid.25073.330000 0004 1936 8227McMaster University, Departments of Pediatrics, Hematology and Oncology Division, Hamilton, Canada
| | - Kristin Hope
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - John P. Provias
- grid.25073.330000 0004 1936 8227McMaster University, Departments of Neuropathology, Hamilton, Canada
| | - Marc Remke
- grid.14778.3d0000 0000 8922 7789Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Yu Lu
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Tannishtha Reya
- grid.266100.30000 0001 2107 4242Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA USA ,grid.239585.00000 0001 2285 2675Present Address: Herbert Irving Comprehensive Cancer Center, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY USA
| | - Chitra Venugopal
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Jüri Reimand
- grid.419890.d0000 0004 0626 690XComputational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J. Wechsler-Reya
- grid.479509.60000 0001 0163 8573Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA ,grid.239585.00000 0001 2285 2675Present Address: Herbert Irving Comprehensive Cancer Center, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY USA
| | - Gene W. Yeo
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Sheila K. Singh
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227McMaster University, Department of Pediatrics, Hamilton, Canada
| |
Collapse
|
20
|
Erazo T, Evans CM, Zakheim D, Chu EL, Refermat AY, Asgari Z, Yang X, Da Silva Ferreira M, Mehta S, Russo MV, Knezevic A, Zhang XP, Chen Z, Fennell M, Garippa R, Seshan V, de Stanchina E, Barbash O, Batlevi CL, Leslie CS, Melnick AM, Younes A, Kharas MG. TP53 mutations and RNA-binding protein MUSASHI-2 drive resistance to PRMT5-targeted therapy in B-cell lymphoma. Nat Commun 2022; 13:5676. [PMID: 36167829 PMCID: PMC9515221 DOI: 10.1038/s41467-022-33137-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
To identify drivers of sensitivity and resistance to Protein Arginine Methyltransferase 5 (PRMT5) inhibition, we perform a genome-wide CRISPR/Cas9 screen. We identify TP53 and RNA-binding protein MUSASHI2 (MSI2) as the top-ranked sensitizer and driver of resistance to specific PRMT5i, GSK-591, respectively. TP53 deletion and TP53R248W mutation are biomarkers of resistance to GSK-591. PRMT5 expression correlates with MSI2 expression in lymphoma patients. MSI2 depletion and pharmacological inhibition using Ro 08-2750 (Ro) both synergize with GSK-591 to reduce cell growth. Ro reduces MSI2 binding to its global targets and dual treatment of Ro and PRMT5 inhibitors result in synergistic gene expression changes including cell cycle, P53 and MYC signatures. Dual MSI2 and PRMT5 inhibition further blocks c-MYC and BCL-2 translation. BCL-2 depletion or inhibition with venetoclax synergizes with a PRMT5 inhibitor by inducing reduced cell growth and apoptosis. Thus, we propose a therapeutic strategy in lymphoma that combines PRMT5 with MSI2 or BCL-2 inhibition.
Collapse
Affiliation(s)
- Tatiana Erazo
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chiara M Evans
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell School of Medical Sciences, New York, NY, USA
| | - Daniel Zakheim
- Gene Editing and Screening Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eren L Chu
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alice Yunsi Refermat
- Gene Editing and Screening Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zahra Asgari
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariana Da Silva Ferreira
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanjoy Mehta
- Gene Editing and Screening Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marco Vincenzo Russo
- Gene Editing and Screening Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Knezevic
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xi-Ping Zhang
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Myles Fennell
- Gene Editing and Screening Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing and Screening Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olena Barbash
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Connie Lee Batlevi
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anas Younes
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Michael G Kharas
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Matalkah F, Jeong B, Sheridan M, Horstick E, Ramamurthy V, Stoilov P. The Musashi proteins direct post-transcriptional control of protein expression and alternate exon splicing in vertebrate photoreceptors. Commun Biol 2022; 5:1011. [PMID: 36153373 PMCID: PMC9509328 DOI: 10.1038/s42003-022-03990-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The Musashi proteins, MSI1 and MSI2, are conserved RNA binding proteins with a role in the maintenance and renewal of stem cells. Contrasting with this role, terminally differentiated photoreceptor cells express high levels of MSI1 and MSI2, pointing to a role for the two proteins in vision. Combined knockout of Msi1 and Msi2 in mature photoreceptor cells abrogated the retinal response to light and caused photoreceptor cell death. In photoreceptor cells the Musashi proteins perform distinct nuclear and cytoplasmic functions. In the nucleus, the Musashi proteins promote splicing of photoreceptor-specific alternative exons. Surprisingly, conserved photoreceptor-specific alternative exons in genes critical for vision proved to be dispensable, raising questions about the selective pressures that lead to their conservation. In the cytoplasm MSI1 and MSI2 activate protein expression. Loss of Msi1 and Msi2 lead to reduction in the levels of multiple proteins including proteins required for vision and photoreceptor survival. The requirement for MSI1 and MSI2 in terminally differentiated photoreceptors alongside their role in stem cells shows that, depending on cellular context, these two proteins can control processes ranging from cell proliferation to sensory perception.
Collapse
Affiliation(s)
- Fatimah Matalkah
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Bohye Jeong
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Macie Sheridan
- Undergraduate Program in Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Eric Horstick
- Department of Biology, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Peter Stoilov
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
22
|
The Role of RNA-Binding Proteins in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23179552. [PMID: 36076951 PMCID: PMC9455611 DOI: 10.3390/ijms23179552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hematological malignancies comprise a plethora of different neoplasms, such as leukemia, lymphoma, and myeloma, plus a myriad of dysplasia, such as myelodysplastic syndromes or anemias. Despite all the advances in patient care and the development of new therapies, some of these malignancies remain incurable, mainly due to resistance and refractoriness to treatment. Therefore, there is an unmet clinical need to identify new biomarkers and potential therapeutic targets that play a role in treatment resistance and contribute to the poor outcomes of these tumors. RNA-binding proteins (RBPs) are a diverse class of proteins that interact with transcripts and noncoding RNAs and are involved in every step of the post-transcriptional processing of transcripts. Dysregulation of RBPs has been associated with the development of hematological malignancies, making them potential valuable biomarkers and potential therapeutic targets. Although a number of dysregulated RBPs have been identified in hematological malignancies, there is a critical need to understand the biology underlying their contribution to pathology, such as the spatiotemporal context and molecular mechanisms involved. In this review, we emphasize the importance of deciphering the regulatory mechanisms of RBPs to pinpoint novel therapeutic targets that could drive or contribute to hematological malignancy biology.
Collapse
|
23
|
Darai N, Mahalapbutr P, Wolschann P, Lee VS, Wolfinger MT, Rungrotmongkol T. Theoretical studies on RNA recognition by Musashi 1 RNA-binding protein. Sci Rep 2022; 12:12137. [PMID: 35840700 PMCID: PMC9287312 DOI: 10.1038/s41598-022-16252-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/07/2022] [Indexed: 01/12/2023] Open
Abstract
The Musashi (MSI) family of RNA-binding proteins, comprising the two homologs Musashi-1 (MSI1) and Musashi-2 (MSI2), typically regulates translation and is involved in cell proliferation and tumorigenesis. MSI proteins contain two ribonucleoprotein-like RNA-binding domains, RBD1 and RBD2, that bind single-stranded RNA motifs with a central UAG trinucleotide with high affinity and specificity. The finding that MSI also promotes the replication of Zika virus, a neurotropic Flavivirus, has triggered further investigations of the biochemical principles behind MSI–RNA interactions. However, a detailed molecular understanding of the specificity of MSI RBD1/2 interaction with RNA is still missing. Here, we performed computational studies of MSI1–RNA association complexes, investigating different RNA pentamer motifs using molecular dynamics simulations with binding free energy calculations based on the solvated interaction energy method. Simulations with Alphafold2 suggest that predicted MSI protein structures are highly similar to experimentally determined structures. The binding free energies show that two out of four RNA pentamers exhibit a considerably higher binding affinity to MSI1 RBD1 and RBD2, respectively. The obtained structural information on MSI1 RBD1 and RBD2 will be useful for a detailed functional and mechanistic understanding of this type of RNA–protein interactions.
Collapse
Affiliation(s)
- Nitchakan Darai
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peter Wolschann
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria. .,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Währinger Strasse 29, 1090, Vienna, Austria.
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
25
|
Karmakar S, Ramirez O, Paul KV, Gupta AK, Kumari V, Botti V, de Los Mozos IR, Neuenkirchen N, Ross RJ, Karanicolas J, Neugebauer KM, Pillai MM. Integrative genome-wide analysis reveals EIF3A as a key downstream regulator of translational repressor protein Musashi 2 (MSI2). NAR Cancer 2022; 4:zcac015. [PMID: 35528200 PMCID: PMC9070473 DOI: 10.1093/narcan/zcac015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 01/29/2023] Open
Abstract
Musashi 2 (MSI2) is an RNA binding protein (RBP) that regulates asymmetric cell division and cell fate decisions in normal and cancer stem cells. MSI2 appears to repress translation by binding to 3′ untranslated regions (3′UTRs) of mRNA, but the identity of functional targets remains unknown. Here, we used individual nucleotide resolution cross-linking and immunoprecipitation (iCLIP) to identify direct RNA binding partners of MSI2 and integrated these data with polysome profiling to obtain insights into MSI2 function. iCLIP revealed specific MSI2 binding to thousands of mRNAs largely in 3′UTRs, but translational differences were restricted to a small fraction of these transcripts, indicating that MSI2 regulation is not triggered by simple binding. Instead, the functional targets identified here were bound at higher density and contain more ‘UAG’ motifs compared to targets bound nonproductively. To further distinguish direct and indirect targets, MSI2 was acutely depleted. Surprisingly, only 50 transcripts were found to undergo translational induction on acute loss. Using complementary approaches, we determined eukaryotic translation initiation factor 3A (EIF3A) to be an immediate, direct target. We propose that MSI2 downregulation of EIF3A amplifies these effects on translation. Our results also underscore the challenges in defining functional targets of RBPs since mere binding does not imply a discernible functional interaction.
Collapse
Affiliation(s)
| | - Oscar Ramirez
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Kiran V Paul
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Abhishek K Gupta
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Vandana Kumari
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Igor Ruiz de Los Mozos
- Institute of Neurology, University College London and The Francis Crick Institute, London NW1 1AT, UK
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Robert J Ross
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Manoj M Pillai
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| |
Collapse
|
26
|
Adeniyi JN, Adeniyi AA, Moodley R, Nlooto M, Ngcobo M, Gomo E, Conradie J. Unravelling the drugability of MSI2 RNA recognition motif (RRM) protein and the prediction of their effective antileukemia inhibitors from traditional herb concoctions. J Biomol Struct Dyn 2022; 40:2516-2529. [DOI: 10.1080/07391102.2020.1840442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Joy Nkechinyere Adeniyi
- Traditional Medicine Laboratory, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adebayo A. Adeniyi
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Industrial Chemistry, Federal University Oye Ekiti, Ekiti, Nigeria
| | - Roshila Moodley
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Manimbulu Nlooto
- Department of Pharmacy, School of Health Care Sciences, University of Limpopo, Sovenga, South Africa
| | - Mlungisi Ngcobo
- Traditional Medicine Laboratory, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Exnevia Gomo
- Traditional Medicine Laboratory, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
27
|
Yamanaka Y, Ishizuka T, Fujita KI, Fujiwara N, Kurata M, Masuda S. CHERP Regulates the Alternative Splicing of pre-mRNAs in the Nucleus. Int J Mol Sci 2022; 23:ijms23052555. [PMID: 35269695 PMCID: PMC8910253 DOI: 10.3390/ijms23052555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Calcium homeostasis endoplasmic reticulum protein (CHERP) is colocalized with the inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum or perinuclear region, and has been involved in intracellular calcium signaling. Structurally, CHERP carries the nuclear localization signal and arginine/serine-dipeptide repeats, like domain, and interacts with the spliceosome. However, the exact function of CHERP in the nucleus remains unknown. Here, we showed that poly(A)+ RNAs accumulated in the nucleus of CHERP-depleted U2OS cells. Our global analysis revealed that CHERP regulated alternative mRNA splicing events by interaction with U2 small nuclear ribonucleoproteins (U2 snRNPs) and U2 snRNP-related proteins. Among the five alternative splicing patterns analyzed, intron retention was the most frequently observed event. This was in accordance with the accumulation of poly(A)+ RNAs in the nucleus. Furthermore, intron retention and cassette exon choices were influenced by the strength of the 5′ or 3′ splice site, the branch point site, GC content, and intron length. In addition, CHERP depletion induced anomalies in the cell cycle progression into the M phase, and abnormal cell division. These results suggested that CHERP is involved in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Yasutaka Yamanaka
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Takaki Ishizuka
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Ken-ichi Fujita
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Naoko Fujiwara
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Masashi Kurata
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Seiji Masuda
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Correspondence: ; Tel.: +81-742-43-1713
| |
Collapse
|
28
|
Yang W, Yang L, Wang J, Zhang Y, Li S, Yin Q, Suo J, Ma R, Ye Y, Cheng H, Li J, Hui J, Hu P. Msi2-mediated MiR7a-1 processing repression promotes myogenesis. J Cachexia Sarcopenia Muscle 2022; 13:728-742. [PMID: 34877814 PMCID: PMC8818652 DOI: 10.1002/jcsm.12882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 10/02/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Most of the microRNAs (MiRs) involved in myogenesis are transcriptional regulated. The role of MiR biogenesis in myogenesis has not been characterized yet. RNA-binding protein Musashi 2 (Msi2) is considered to be one of the major drivers for oncogenesis and stem cell proliferation. The functions of Msi2 in myogenesis have not been explored yet. We sought to investigate Msi2-regulated biogenesis of MiRs in myogenesis and muscle stem cell (MuSC) ageing. METHODS We detected the expression of Msi2 in MuSCs and differentiated myotubes by quantitative reverse transcription PCR (RT-qPCR) and western blot. Msi2-binding partner human antigen R (HuR) was identified by immunoprecipitation followed by mass spectrometry analysis. The cooperative binding of Msi2 and HuR on MiR7a-1 was analysed by RNA immunoprecipitation and electrophoresis mobility shift assays. The inhibition of the processing of pri-MiR7a-1 mediated by Msi2 and HuR was shown by Msi2 and HuR knockdown. Immunofluorescent staining, RT-qPCR and immunoblotting were used to characterize the function of MiR7a-1 in myogenesis. Msi2 and HuR up-regulate cryptochrome circadian regulator 2 (Cry2) via MiR7a-1 was confirmed by the luciferase assay and western blot. The post-transcriptional regulatory cascade was further confirmed by RNAi and overexpressing of Msi2 and HuR in MuSCs, and the in vivo function was characterized by histopathological and molecular biological methods in Msi2 knockout mice. RESULTS We identified a post-transcription regulatory cascade governed by a pair of RNA-binding proteins Msi2 and HuR. Msi2 is enriched in differentiated muscle cells and promotes MuSC differentiation despite its pro-proliferation functions in other cell types. Msi2 works synergistically with another RNA-binding protein HuR to repress the biogenesis of MiR7a-1 in an Msi2 dose-dependent manner to regulate the translation of the key component of the circadian core oscillator complex Cry2. Down-regulation of Cry2 (0.6-fold, vs. control, P < 0.05) mediated by MiR7a-1 represses MuSC differentiation. The disruption of this cascade leads to differentiation defects of MuSCs. In aged muscles, Msi2 (0.3-fold, vs. control, P < 0.01) expression declined, and the Cry2 protein level also decreases (0.5-fold, vs. control, P < 0.05), suggesting that the disruption of the Msi2-mediated post-transcriptional regulatory cascade could attribute to the declined ability of muscle regeneration in aged skeletal muscle. CONCLUSIONS Our findings have identified a new post-transcriptional cascade regulating myogenesis. The cascade is disrupted in skeletal muscle ageing, which leads to declined muscle regeneration ability.
Collapse
Affiliation(s)
- Wenjun Yang
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lele Yang
- Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China
| | - Jianhua Wang
- Department of Orthopaedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuanyuan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Li
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qi Yin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jinlong Suo
- Department of Orthopedic Surgery and Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth 's Hospital, Shanghai, China
| | - Ruimiao Ma
- Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China
| | - Yuzhen Ye
- Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ping Hu
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Landínez-Macías M, Urwyler O. The Fine Art of Writing a Message: RNA Metabolism in the Shaping and Remodeling of the Nervous System. Front Mol Neurosci 2021; 14:755686. [PMID: 34916907 PMCID: PMC8670310 DOI: 10.3389/fnmol.2021.755686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023] Open
Abstract
Neuronal morphogenesis, integration into circuits, and remodeling of synaptic connections occur in temporally and spatially defined steps. Accordingly, the expression of proteins and specific protein isoforms that contribute to these processes must be controlled quantitatively in time and space. A wide variety of post-transcriptional regulatory mechanisms, which act on pre-mRNA and mRNA molecules contribute to this control. They are thereby critically involved in physiological and pathophysiological nervous system development, function, and maintenance. Here, we review recent findings on how mRNA metabolism contributes to neuronal development, from neural stem cell maintenance to synapse specification, with a particular focus on axon growth, guidance, branching, and synapse formation. We emphasize the role of RNA-binding proteins, and highlight their emerging roles in the poorly understood molecular processes of RNA editing, alternative polyadenylation, and temporal control of splicing, while also discussing alternative splicing, RNA localization, and local translation. We illustrate with the example of the evolutionary conserved Musashi protein family how individual RNA-binding proteins are, on the one hand, acting in different processes of RNA metabolism, and, on the other hand, impacting multiple steps in neuronal development and circuit formation. Finally, we provide links to diseases that have been associated with the malfunction of RNA-binding proteins and disrupted post-transcriptional regulation.
Collapse
Affiliation(s)
- María Landínez-Macías
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Olivier Urwyler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Wang J, Lan L, Wu X, Xu L, Miao Y. Mechanism of RNA recognition by a Musashi RNA-binding protein. Curr Res Struct Biol 2021; 4:10-20. [PMID: 34988468 PMCID: PMC8695263 DOI: 10.1016/j.crstbi.2021.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/31/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
The Musashi RNA-binding proteins (RBPs) regulate translation of target mRNAs and maintenance of cell stemness and tumorigenesis. Musashi-1 (MSI1), long considered as an intestinal and neural stem cell marker, has been more recently found to be over expressed in many cancers. It has served as an important drug target for treating acute myeloid leukemia and solid tumors such as ovarian, colorectal and bladder cancer. One of the reported binding targets of MSI1 is Numb, a negative regulator of the Notch signaling. However, the dynamic mechanism of Numb RNA binding to MSI1 remains unknown, largely hindering effective drug design targeting this critical interaction. Here, we have performed extensive all-atom microsecond-timescale simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method, which successfully captured multiple times of spontaneous and highly accurate binding of the Numb RNA from bulk solvent to the MSI1 protein target site. GaMD simulations revealed that Numb RNA binding to MSI1 involved largely induced fit in both the RNA and protein. The simulations also identified important low-energy intermediate conformational states during RNA binding, in which Numb interacted mainly with the β2-β3 loop and C terminus of MSI1. The mechanistic understanding of RNA binding obtained from our GaMD simulations is expected to facilitate rational structure-based drug design targeting MSI1 and other RBPs.
Collapse
Affiliation(s)
- Jinan Wang
- Center for Computational Biology, University of Kansas, Lawrence, KS, 66047, USA
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Yinglong Miao
- Center for Computational Biology, University of Kansas, Lawrence, KS, 66047, USA
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| |
Collapse
|
31
|
The RNA-binding protein Musashi controls axon compartment-specific synaptic connectivity through ptp69D mRNA poly(A)-tailing. Cell Rep 2021; 36:109713. [PMID: 34525368 DOI: 10.1016/j.celrep.2021.109713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
Synaptic targeting with subcellular specificity is essential for neural circuit assembly. Developing neurons use mechanisms to curb promiscuous synaptic connections and to direct synapse formation to defined subcellular compartments. How this selectivity is achieved molecularly remains enigmatic. Here, we discover a link between mRNA poly(A)-tailing and axon collateral branch-specific synaptic connectivity within the CNS. We reveal that the RNA-binding protein Musashi binds to the mRNA encoding the receptor protein tyrosine phosphatase Ptp69D, thereby increasing poly(A) tail length and Ptp69D protein levels. This regulation specifically promotes synaptic connectivity in one axon collateral characterized by a high degree of arborization and strong synaptogenic potential. In a different compartment of the same axon, Musashi prevents ectopic synaptogenesis, revealing antagonistic, compartment-specific functions. Moreover, Musashi-dependent Ptp69D regulation controls synaptic connectivity in the olfactory circuit. Thus, Musashi differentially shapes synaptic connectivity at the level of individual subcellular compartments and within different developmental and neuron type-specific contexts.
Collapse
|
32
|
Sabater-Arcis M, Bargiela A, Moreno N, Poyatos-Garcia J, Vilchez JJ, Artero R. Musashi-2 contributes to myotonic dystrophy muscle dysfunction by promoting excessive autophagy through miR-7 biogenesis repression. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:652-667. [PMID: 34589284 PMCID: PMC8463325 DOI: 10.1016/j.omtn.2021.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Skeletal muscle symptoms strongly contribute to mortality of myotonic dystrophy type 1 (DM1) patients. DM1 is a neuromuscular genetic disease caused by CTG repeat expansions that, upon transcription, sequester the Muscleblind-like family of proteins and dysregulate alternative splicing of hundreds of genes. However, mis-splicing does not satisfactorily explain muscle atrophy and wasting, and several other contributing factors have been suggested, including hyperactivated autophagy leading to excessive catabolism. MicroRNA (miR)-7 has been demonstrated to be necessary and sufficient to repress the autophagy pathway in cell models of the disease, but the origin of its low levels in DM1 was unknown. We have found that the RNA-binding protein Musashi-2 (MSI2) is upregulated in patient-derived myoblasts and biopsy samples. Because it has been previously reported that MSI2 controls miR-7 biogenesis, we tested the hypothesis that excessive MSI2 was repressing miR-7 maturation. Using gene-silencing strategies (small interfering RNAs [siRNAs] and gapmers) and the small molecule MSI2-inhibitor Ro 08-2750, we demonstrate that reducing MSI2 levels or activity boosts miR-7 expression, represses excessive autophagy, and downregulates atrophy-related genes of the UPS system. We also detect a significant upregulation of MBNL1 upon MSI2 silencing. Taken together, we propose MSI2 as a new therapeutic target to treat muscle dysfunction in DM1.
Collapse
Affiliation(s)
- Maria Sabater-Arcis
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Valencia, Spain
- INCLIVA Biomedical Research Institute, 46100 Burjasot, Valencia, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Valencia, Spain
- INCLIVA Biomedical Research Institute, 46100 Burjasot, Valencia, Spain
- Corresponding author: Ariadna Bargiela, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.
| | - Nerea Moreno
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Valencia, Spain
- INCLIVA Biomedical Research Institute, 46100 Burjasot, Valencia, Spain
| | - Javier Poyatos-Garcia
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain
- Neuromuscular Research Unit, Neurology Department, Instituto de Investigación Sanitaria la Fe, Hospital Universitari i Politécnic La Fe, 46026 Valencia, Spain
| | - Juan J. Vilchez
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain
- Neuromuscular Research Unit, Neurology Department, Instituto de Investigación Sanitaria la Fe, Hospital Universitari i Politécnic La Fe, 46026 Valencia, Spain
| | - Ruben Artero
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Valencia, Spain
- INCLIVA Biomedical Research Institute, 46100 Burjasot, Valencia, Spain
| |
Collapse
|
33
|
Yiming R, Takeuchi Y, Nishimura T, Li M, Wang Y, Meguro-Horike M, Kohno T, Horike SI, Nakata A, Gotoh N. MUSASHI-2 confers resistance to third-generation EGFR-tyrosine kinase inhibitor osimertinib in lung adenocarcinoma. Cancer Sci 2021; 112:3810-3821. [PMID: 34145929 PMCID: PMC8409425 DOI: 10.1111/cas.15036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR‐TKIs) are effective in patients with non–small‐cell lung cancer (NSCLC) harboring EGFR mutations. However, due to acquired resistance to EGFR‐TKIs, even patients on third‐generation osimertinib have a poor prognosis. Resistance mechanisms are still not fully understood. Here, we demonstrate that the increased expression of MUSASHI‐2 (MSI2), an RNA‐binding protein, is a novel mechanism for resistance to EGFR‐TKIs. We found that after a long‐term exposure to gefitinib, the first‐generation EGFR‐TKI lung cancer cells harboring the EGFR‐TKI‐sensitive mutations became resistant to both gefitinib and osimertinib. Although other mutations in EGFR were not found, expression levels of Nanog, a stemness core protein, and activities of aldehyde dehydrogenase (ALDH) were increased, suggesting that cancer stem‐like properties were increased. Transcriptome analysis revealed that MSI2 was among the stemness‐related genes highly upregulated in EGFR‐TKI‐resistant cells. Knockdown of MSI2 reduced cancer stem‐like properties, including the expression levels of Nanog, a core stemness factor. We demonstrated that knockdown of MSI2 restored sensitivity to osimertinib or gefitinib in EGFR‐TKI‐resistant cells to levels similar to those of parental cells in vitro. An RNA immunoprecipitation (RIP) assay revealed that antibodies against MSI2 were bound to Nanog mRNA, suggesting that MSI2 increases Nanog expression by binding to Nanog mRNA. Moreover, overexpression of MSI2 or Nanog conferred resistance to osimertinib or gefitinib in parental cells. Finally, MSI2 knockdown greatly increased the sensitivity to osimertinib in vivo. Collectively, our findings provide proof of principle that targeting the MSI2‐Nanog axis in combination with EGFR‐TKIs would effectively prevent the emergence of acquired resistance.
Collapse
Affiliation(s)
- Reheman Yiming
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Yasuto Takeuchi
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Mengjiao Li
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Yuming Wang
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Makiko Meguro-Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa City, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Shin-Ichi Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa City, Japan
| | - Asuka Nakata
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| |
Collapse
|
34
|
Palacios F, Yan XJ, Ferrer G, Chen SS, Vergani S, Yang X, Gardner J, Barrientos JC, Rock P, Burack R, Kolitz JE, Allen SL, Kharas MG, Abdel-Wahab O, Rai KR, Chiorazzi N. Musashi 2 influences chronic lymphocytic leukemia cell survival and growth making it a potential therapeutic target. Leukemia 2021; 35:1037-1052. [PMID: 33504942 PMCID: PMC8024198 DOI: 10.1038/s41375-020-01115-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
Progression of chronic lymphocytic leukemia (CLL) results from the expansion of a small fraction of proliferating leukemic B cells. When comparing the global gene expression of recently divided CLL cells with that of previously divided cells, we found higher levels of genes involved in regulating gene expression. One of these was the oncogene Musashi 2 (MSI2), an RNA-binding protein that induces or represses translation. While there is an established role for MSI2 in normal and malignant stem cells, much less is known about its expression and role in CLL. Here we report for the first time ex vivo and in vitro experiments that MSI2 protein levels are higher in dividing and recently divided leukemic cells and that downregulating MSI2 expression or blocking its function eliminates primary human and murine CLL and mature myeloid cells. Notably, mature T cells and hematopoietic stem and progenitor cells are not affected. We also confirm that higher MSI2 levels correlate with poor outcome markers, shorter time-to-first-treatment, and overall survival. Thus, our data highlight an important role for MSI2 in CLL-cell survival and proliferation and associate MSI2 with poor prognosis in CLL patients. Collectively, these findings pinpoint MSI2 as a potentially valuable therapeutic target in CLL.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents
- Apoptosis/drug effects
- Biomarkers, Tumor
- Caspase 3/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Survival/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Disease Models, Animal
- Gene Expression
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- Humans
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Molecular Targeted Therapy
- Prognosis
- RNA, Small Interfering
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Xiao-Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Stefano Vergani
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey Gardner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaqueline C Barrientos
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Philip Rock
- Department of Pathology, University of Rochester, Rochester, NY, USA
| | - Richard Burack
- Department of Pathology, University of Rochester, Rochester, NY, USA
| | - Jonathan E Kolitz
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Steven L Allen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kanti R Rai
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA.
| |
Collapse
|
35
|
Sun J, Sheng W, Ma Y, Dong M. Potential Role of Musashi-2 RNA-Binding Protein in Cancer EMT. Onco Targets Ther 2021; 14:1969-1980. [PMID: 33762829 PMCID: PMC7982713 DOI: 10.2147/ott.s298438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Local invasion and distant metastasis are the key hallmarks in the aggressive progression of malignant tumors, including the ability of cancer cells to detach from the extracellular matrix overcome apoptosis, and disseminate into distant sites. It is generally believed that this malignant behavior is stimulated by epithelial-mesenchymal transition (EMT). Musashi (MSI) RNA-binding proteins, belonging to the evolutionarily conserved RNA-binding proteins (RBP) family, were originally discovered to regulate asymmetric cell division during embryonic development. Recently, Musashi-2 (MSI2), as a key member of MSI family, has been prevalently reported to be tightly associated with the advanced clinical stage of several cancers. Multiple oncogenic signaling pathways mediated by MSI2 play vital roles in EMT. Here, we systematically reviewed the detailed role and signal networks of MSI2 in regulating cancer development, especially in EMT signal transduction, involving EGF, TGF-β, Notch, and Wnt pathways.
Collapse
Affiliation(s)
- Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
36
|
Guo QQ, Gao J, Wang XW, Yin XL, Zhang SC, Li X, Chi LL, Zhou XM, Wang Z, Zhang QY. RNA-Binding Protein MSI2 Binds to miR-301a-3p and Facilitates Its Distribution in Mitochondria of Endothelial Cells. Front Mol Biosci 2021; 7:609828. [PMID: 33553241 PMCID: PMC7859344 DOI: 10.3389/fmolb.2020.609828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/11/2020] [Indexed: 01/17/2023] Open
Abstract
Numerous miRNAs have been detected in mitochondria, which play important roles in many physiological and pathophysiological processes. However, the dynamic changes of miRNA distribution in mitochondria and their mechanisms in reactive oxygen species (ROS)-induced endothelial injury remain unclear. Therefore, miRNA levels in whole cells and mitochondria of H2O2-treated endothelial cells were analyzed by small RNA sequencing in the present study. The results showed that H2O2 significantly reduced the relative mitochondrial distribution of dozens of miRNAs in human umbilical vein endothelial cells (HUVECs). Among the high-abundance miRNAs, miR-301a-3p has the most significant changes in the redistribution between cytosol and mitochondria confirmed by absolute quantitative polymerase chain reaction (qPCR). To unravel the mechanism of miR-301a-3p distribution in mitochondria, RNA pull-down followed by label-free quantitative proteomic analysis was performed, and RNA-binding protein Musashi RNA binding protein 2 (MSI2) was found to specifically bind to miR-301a-3p. Western blotting and immunofluorescence colocalization assay showed that MSI2 was located in mitochondria of various cell types. H2O2 significantly downregulated MSI2 expression in whole endothelial cells, promoted the distribution of MSI2 in cytosol and decreased its distribution in the mitochondria. Moreover, overexpression of MSI2 increased the mitochondrial distribution of miR-301a-3p, whereas inhibition of MSI2 decreased its distribution in mitochondria. Thus, MSI2 might be responsible for the distribution of miR-301a-3p between cytosol and mitochondria in endothelial cells. Our findings revealed for the first time that MSI2 was involved in the regulation of miRNA distribution in mitochondria and provided valuable insight into the mechanism of mitochondrial distribution of miRNAs.
Collapse
Affiliation(s)
- Qian Qian Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese National Health Commission, Shandong University, Jinan, China.,Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese National Health Commission, Shandong University, Jinan, China.,Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, China
| | - Xiao Wei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese National Health Commission, Shandong University, Jinan, China.,Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, China
| | - Xian Lun Yin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese National Health Commission, Shandong University, Jinan, China.,Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, China
| | - Shu Cui Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese National Health Commission, Shandong University, Jinan, China.,Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, China
| | - Xue Li
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lian Li Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Xiao Ming Zhou
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
| | - Zhe Wang
- Division of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Division of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qun Ye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese National Health Commission, Shandong University, Jinan, China.,Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
37
|
Possible role played by the SINE2 element in gene regulation, as demonstrated by differential processing and polyadenylation in avirulent strains of E. histolytica. Antonie van Leeuwenhoek 2021; 114:209-221. [PMID: 33394209 DOI: 10.1007/s10482-020-01504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Entamoeba histolytica represents a useful model in parasitic organisms due to its complex genomic organization and survival mechanisms. To counteract pathogenic organisms, it is necessary to characterize their molecular biology to design new strategies to combat them. In this report, we investigated a less-known genetic element, short interspersed nuclear element 2 (SINE2), that is present in this ameba and is highly transcribed and polyadenylated. In this study, we show that in two different nonvirulent strains of E. histolytica, SINE2 is differentially processed into two transcript fragments, that is, a full-length 560-nt fragment and a shorter 393-nt fragment bearing an approximately 18-nt polyadenylation tail. Sequence analysis of the SINE2 transcript showed that a Musashi-like protein may bind to it. Also, two putative Musashi-like sequences were identified on the transcript. Semiquantitative expression analysis of the two Musashi-like proteins identified in the E. histolytica genome (XP_648918 and XP_649094) showed that XP_64094 is overexpressed in the nonvirulent strains tested. The information available in the literature and the results presented in this report indicate that SINE2 may affect other genes, as observed with the epigenetic silencing of the G3 strain, by an antisense mechanism or via RNA-protein interactions that may ultimately be involved in the phenotype of nonvirulent strains of E. histolytica.
Collapse
|
38
|
Spinler K, Bajaj J, Ito T, Zimdahl B, Hamilton M, Ahmadi A, Koechlein CS, Lytle N, Kwon HY, Anower-E-Khuda F, Sun H, Blevins A, Weeks J, Kritzik M, Karlseder J, Ginsberg MH, Park PW, Esko JD, Reya T. A stem cell reporter based platform to identify and target drug resistant stem cells in myeloid leukemia. Nat Commun 2020; 11:5998. [PMID: 33243988 PMCID: PMC7691523 DOI: 10.1038/s41467-020-19782-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Intratumoral heterogeneity is a common feature of many myeloid leukemias and a significant reason for treatment failure and relapse. Thus, identifying the cells responsible for residual disease and leukemia re-growth is critical to better understanding how they are regulated. Here, we show that a knock-in reporter mouse for the stem cell gene Musashi 2 (Msi2) allows identification of leukemia stem cells in aggressive myeloid malignancies, and provides a strategy for defining their core dependencies. Specifically, we carry out a high throughput screen using Msi2-reporter blast crisis chronic myeloid leukemia (bcCML) and identify several adhesion molecules that are preferentially expressed in therapy resistant bcCML cells and play a key role in bcCML. In particular, we focus on syndecan-1, whose deletion triggers defects in bcCML growth and propagation and markedly improves survival of transplanted mice. Further, live imaging reveals that the spatiotemporal dynamics of leukemia cells are critically dependent on syndecan signaling, as loss of this signal impairs their localization, migration and dissemination to distant sites. Finally, at a molecular level, syndecan loss directly impairs integrin β7 function, suggesting that syndecan exerts its influence, at least in part, by coordinating integrin activity in bcCML. These data present a platform for delineating the biological underpinnings of leukemia stem cell function, and highlight the Sdc1-Itgβ7 signaling axis as a key regulatory control point for bcCML growth and dissemination.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Blast Crisis/genetics
- Blast Crisis/pathology
- Blast Crisis/therapy
- Chemoradiotherapy/methods
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Gene Knock-In Techniques
- Gene Knockout Techniques
- Genes, Reporter/genetics
- Green Fluorescent Proteins/chemistry
- Green Fluorescent Proteins/genetics
- High-Throughput Screening Assays
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Integrin beta Chains/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice, Transgenic
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/radiation effects
- RNA-Binding Proteins/genetics
- RNA-Seq
- Signal Transduction/drug effects
- Syndecan-1/antagonists & inhibitors
- Syndecan-1/genetics
- Syndecan-1/metabolism
Collapse
Affiliation(s)
- Kyle Spinler
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Jeevisha Bajaj
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Takahiro Ito
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Bryan Zimdahl
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Michael Hamilton
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Armin Ahmadi
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Claire S Koechlein
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Nikki Lytle
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Hyog Young Kwon
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Ferdous Anower-E-Khuda
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Allen Blevins
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Joi Weeks
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Marcie Kritzik
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | | | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pyong Woo Park
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Tannishtha Reya
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
39
|
Chiremba TT, Neufeld KL. Constitutive Musashi1 expression impairs mouse postnatal development and intestinal homeostasis. Mol Biol Cell 2020; 32:28-44. [PMID: 33175598 PMCID: PMC8098822 DOI: 10.1091/mbc.e20-03-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Evolutionarily conserved RNA-binding protein Musashi1 (Msi1) can regulate developmentally relevant genes. Here we report the generation and characterization of a mouse model that allows inducible Msi1 overexpression in a temporal and tissue-specific manner. We show that ubiquitous Msi1 induction in ∼5-wk-old mice delays overall growth, alters organ-to-body proportions, and causes premature death. Msi1-overexpressing mice had shortened intestines, diminished intestinal epithelial cell (IEC) proliferation, and decreased growth of small intestine villi and colon crypts. Although Lgr5-positive intestinal stem cell numbers remained constant in Msi1-overexpressing tissue, an observed reduction in Cdc20 expression provided a potential mechanism underlying the intestinal growth defects. We further demonstrated that Msi1 overexpression affects IEC differentiation in a region-specific manner, with ileum tissue being influenced the most. Ilea of mutant mice displayed increased expression of enterocyte markers, but reduced expression of the goblet cell marker Mucin2 and fewer Paneth cells. A higher hairy and enhancer of split 1:mouse atonal homolog 1 ratio in ilea from Msi1-overexpressing mice implicated Notch signaling in inducing enterocyte differentiation. Together, this work implicates Msi1 in mouse postnatal development of multiple organs, with Notch signaling alterations contributing to intestinal defects. This new mouse model will be a useful tool to further elucidate the role of Msi1 in other tissue settings.
Collapse
Affiliation(s)
- Thelma T Chiremba
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
40
|
Sharma A, Akagi K, Pattavina B, Wilson KA, Nelson C, Watson M, Maksoud E, Harata A, Ortega M, Brem RB, Kapahi P. Musashi expression in intestinal stem cells attenuates radiation-induced decline in intestinal permeability and survival in Drosophila. Sci Rep 2020; 10:19080. [PMID: 33154387 PMCID: PMC7644626 DOI: 10.1038/s41598-020-75867-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022] Open
Abstract
Exposure to genotoxic stress by environmental agents or treatments, such as radiation therapy, can diminish healthspan and accelerate aging. We have developed a Drosophila melanogaster model to study the molecular effects of radiation-induced damage and repair. Utilizing a quantitative intestinal permeability assay, we performed an unbiased GWAS screen (using 156 strains from the Drosophila Genetic Reference Panel) to search for natural genetic variants that regulate radiation-induced gut permeability in adult D. melanogaster. From this screen, we identified an RNA binding protein, Musashi (msi), as one of the possible genes associated with changes in intestinal permeability upon radiation. The overexpression of msi promoted intestinal stem cell proliferation, which increased survival after irradiation and rescued radiation-induced intestinal permeability. In summary, we have established D. melanogaster as an expedient model system to study the effects of radiation-induced damage to the intestine in adults and have identified msi as a potential therapeutic target.
Collapse
Affiliation(s)
- Amit Sharma
- SENS Research Foundation, 110 Pioneer Way, Suite J, Mountain View, CA, 94041, USA.
| | - Kazutaka Akagi
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan.
| | - Blaine Pattavina
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Christopher Nelson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Mark Watson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Elie Maksoud
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Ayano Harata
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Mauricio Ortega
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.
| |
Collapse
|
41
|
Evolutionary analysis of the Musashi family: What can it tell us about Zika? INFECTION GENETICS AND EVOLUTION 2020; 84:104364. [DOI: 10.1016/j.meegid.2020.104364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
|
42
|
Dar SA, Chatterjee A, Rather MA, Chetia D, Srivastava PP, Gupta S. Identification, functional characterization and expression profiling of cytochrome p450 1A (CYP1A) gene in Labeo rohita against emamectin benzoate. Int J Biol Macromol 2020; 158:S0141-8130(20)33081-6. [PMID: 32437798 DOI: 10.1016/j.ijbiomac.2020.04.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/01/2023]
Abstract
The cytochrome p450 1A (CYP1A) plays vital role in detoxification of xenobiotic compounds in living organisms. In the present study, full-length CYP1A gene was sequenced from liver of Labeo rohita and mRNA expression analysis were carried out at 0, 2, 4, 8, 12, 24, 48, 72, 96 and 120 h (h) time points after emamectin benzoate treatment. The full-length cDNA sequence of CYP1A was 1741 bp which consist of open reading frame (ORF) of 1618 bp, 5'-untranslated region (UTR) 48 bp and 75 bp 3'-UTR respectively. ORF encodes 526 amino acids with a molecular mass a 59.05 kDa and an isoelectric point of 8.74. The subcellular localization confirmed presence of the CYP1A protein was higher in plasma membrane (45.8%), followed by the mitochondrial region (13.9%) and nuclear region (9.2%). The CYP1A protein interaction was found to intermingle more with other CYP family proteins. Analysis of tissue distribution revealed that CYP1A gene was predominantly expressed in the liver compared to other tissues kidney, gills, muscle and intestine. Furthermore, present study reveals that CYP1A mRNA level in emamectin benzoate treated group @ 20 mgkg-1 body was significantly (p < 0.05) higher compared with the control. The CYP1A mRNA expression levels were found upregulating with time and highest expression levels at 24 h. Histological examination found that emamectin benzoate treated liver revealed vacuolisation, hepatocyte infiltrations, cytoplasmic degeneration of hepatocytes compared to control. Overall, present results lay a strong basis for CYP1A is important biomarker for drug detoxification in aquatic animals.
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- Department of Aqualife Medicine, Chonnam National University, South Korea
| | - Arunava Chatterjee
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India
| | - Diganta Chetia
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Prem P Srivastava
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Subodh Gupta
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India.
| |
Collapse
|
43
|
Nguyen DTT, Lu Y, Chu EL, Yang X, Park SM, Choo ZN, Chin CR, Prieto C, Schurer A, Barin E, Savino AM, Gourkanti S, Patel P, Vu LP, Leslie CS, Kharas MG. HyperTRIBE uncovers increased MUSASHI-2 RNA binding activity and differential regulation in leukemic stem cells. Nat Commun 2020; 11:2026. [PMID: 32332729 PMCID: PMC7181745 DOI: 10.1038/s41467-020-15814-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/25/2020] [Indexed: 01/16/2023] Open
Abstract
The cell-context dependency for RNA binding proteins (RBPs) mediated control of stem cell fate remains to be defined. Here we adapt the HyperTRIBE method using an RBP fused to a Drosophila RNA editing enzyme (ADAR) to globally map the mRNA targets of the RBP MSI2 in mammalian adult normal and malignant stem cells. We reveal a unique MUSASHI-2 (MSI2) mRNA binding network in hematopoietic stem cells that changes during transition to multipotent progenitors. Additionally, we discover a significant increase in RNA binding activity of MSI2 in leukemic stem cells compared with normal hematopoietic stem and progenitor cells, resulting in selective regulation of MSI2's oncogenic targets. This provides a basis for MSI2 increased dependency in leukemia cells compared to normal cells. Moreover, our study provides a way to measure RBP function in rare cells and suggests that RBPs can achieve differential binding activity during cell state transition independent of gene expression.
Collapse
Affiliation(s)
- Diu T T Nguyen
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yuheng Lu
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Blavatnik Institute of System Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Eren L Chu
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell School of Medical Sciences, New York, NY, 10065, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sun-Mi Park
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Zi-Ning Choo
- Weill Cornell School of Medical Sciences, New York, NY, 10065, USA
| | | | - Camila Prieto
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ersilia Barin
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Angela M Savino
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Saroj Gourkanti
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Payal Patel
- Weill Cornell School of Medical Sciences, New York, NY, 10065, USA
| | - Ly P Vu
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, V5A 1S6, Canada
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
44
|
RNA-Targeted Therapies and High-Throughput Screening Methods. Int J Mol Sci 2020; 21:ijms21082996. [PMID: 32340368 PMCID: PMC7216119 DOI: 10.3390/ijms21082996] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are involved in regulating all aspects of RNA metabolism, including processing, transport, translation, and degradation. Dysregulation of RNA metabolism is linked to a plethora of diseases, such as cancer, neurodegenerative diseases, and neuromuscular disorders. Recent years have seen a dramatic shift in the knowledge base, with RNA increasingly being recognised as an attractive target for precision medicine therapies. In this article, we are going to review current RNA-targeted therapies. Furthermore, we will scrutinise a range of drug discoveries targeting protein-RNA interactions. In particular, we will focus on the interplay between Lin28 and let-7, splicing regulatory proteins and survival motor neuron (SMN) pre-mRNA, as well as HuR, Musashi, proteins and their RNA targets. We will highlight the mechanisms RBPs utilise to modulate RNA metabolism and discuss current high-throughput screening strategies. This review provides evidence that we are entering a new era of RNA-targeted medicine.
Collapse
|
45
|
ASCOT identifies key regulators of neuronal subtype-specific splicing. Nat Commun 2020; 11:137. [PMID: 31919425 PMCID: PMC6952364 DOI: 10.1038/s41467-019-14020-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Public archives of next-generation sequencing data are growing exponentially, but the difficulty of marshaling this data has led to its underutilization by scientists. Here, we present ASCOT, a resource that uses annotation-free methods to rapidly analyze and visualize splice variants across tens of thousands of bulk and single-cell data sets in the public archive. To demonstrate the utility of ASCOT, we identify novel cell type-specific alternative exons across the nervous system and leverage ENCODE and GTEx data sets to study the unique splicing of photoreceptors. We find that PTBP1 knockdown and MSI1 and PCBP2 overexpression are sufficient to activate many photoreceptor-specific exons in HepG2 liver cancer cells. This work demonstrates how large-scale analysis of public RNA-Seq data sets can yield key insights into cell type-specific control of RNA splicing and underscores the importance of considering both annotated and unannotated splicing events.
Collapse
|
46
|
Woo YM, Kwak Y, Namkoong S, Kristjánsdóttir K, Lee SH, Lee JH, Kwak H. TED-Seq Identifies the Dynamics of Poly(A) Length during ER Stress. Cell Rep 2019; 24:3630-3641.e7. [PMID: 30257221 DOI: 10.1016/j.celrep.2018.08.084] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/02/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
Post-transcriptional RNA processing is a core mechanism of gene expression control in cell stress response. The poly(A) tail influences mRNA translation and stability, but it is unclear whether there are global roles of poly(A)-tail lengths in cell stress. To address this, we developed tail-end displacement sequencing (TED-seq) for an efficient transcriptome-wide profiling of poly(A) lengths and applied it to endoplasmic reticulum (ER) stress in human cells. ER stress induced increases in the poly(A) lengths of certain mRNAs, including known ER stress regulators, XBP1, DDIT3, and HSPA5. Importantly, the mRNAs with increased poly(A) lengths are both translationally de-repressed and stabilized. Furthermore, mRNAs in stress-induced RNA granules have shorter poly(A) tails than in the cytoplasm, supporting the view that RNA processing is compartmentalized. In conclusion, TED-seq reveals that poly(A) length is dynamically regulated upon ER stress, with potential consequences for both translation and mRNA turnover.
Collapse
Affiliation(s)
- Yu Mi Woo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yeonui Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Sim Namkoong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katla Kristjánsdóttir
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Seung Ha Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
47
|
Lan L, Xing M, Kashipathy M, Douglas J, Gao P, Battaile K, Hanzlik R, Lovell S, Xu L. Crystal and solution structures of human oncoprotein Musashi-2 N-terminal RNA recognition motif 1. Proteins 2019; 88:573-583. [PMID: 31603583 PMCID: PMC7079100 DOI: 10.1002/prot.25836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/16/2019] [Accepted: 09/28/2019] [Indexed: 01/03/2023]
Abstract
Musashi‐2 (MSI2) belongs to Musashi family of RNA binding proteins (RBP). Like Musashi‐1 (MSI1), it is overexpressed in a variety of cancers and is a promising therapeutic target. Both MSI proteins contain two N‐terminal RNA recognition motifs and play roles in posttranscriptional regulation of target mRNAs. Previously, we have identified several inhibitors of MSI1, all of which bind to MSI2 as well. In order to design MSI2‐specific inhibitors and compare the differences of binding mode of the inhibitors, we set out to solve the structure of MSI2‐RRM1, the key motif that is responsible for the binding. Here, we report the crystal structure and the first NMR solution structure of MSI2‐RRM1, and compare these to the structures of MSI1‐RBD1 and other RBPs. A high degree of structural similarity was observed between the crystal and solution NMR structures. MSI2‐RRM1 shows a highly similar overall folding topology to MSI1‐RBD1 and other RBPs. The structural information of MSI2‐RRM1 will be helpful for understanding MSI2‐RNA interaction and for guiding rational drug design of MSI2‐specific inhibitors.
Collapse
Affiliation(s)
- Lan Lan
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Minli Xing
- Bio-NMR Core Facility, NIH COBRE in Protein Structure and Function, The University of Kansas, Lawrence, Kansas
| | - Maithri Kashipathy
- Protein Structure Laboratory, NIH COBRE in Protein Structure and Function, The University of Kansas, Lawrence, Kansas
| | - Justin Douglas
- Bio-NMR Core Facility, NIH COBRE in Protein Structure and Function, The University of Kansas, Lawrence, Kansas
| | - Philip Gao
- Protein Production Group, NIH COBRE in Protein Structure and Function, The University of Kansas, Lawrence, Kansas
| | - Kevin Battaile
- IMCA-CAT, Hauptman Woodward Medical Research Institute, Argonne, Illinois
| | - Robert Hanzlik
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas
| | - Scott Lovell
- Protein Structure Laboratory, NIH COBRE in Protein Structure and Function, The University of Kansas, Lawrence, Kansas
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas.,Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
48
|
Koul A, Sharma D, Kaul S, Dhar MK. Identification and in silico characterization of cis-acting elements of genes involved in carotenoid biosynthesis in tomato. 3 Biotech 2019; 9:287. [PMID: 31297303 DOI: 10.1007/s13205-019-1798-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Carotenoids, the widespread and structurally diverse class of pigments, accumulate in the fruits of tomato plants in a tissue specific manner. The carotenoid biosynthetic pathway genes have been cloned and characterized in tomato and other plants, however, its regulation is still obscure. We collected and analyzed forty different accessions of tomato for the present study. HPLC analysis revealed differential accumulation of major carotenoids (lycopene and ß-carotene) in the ripe fruit tissue. In order to understand the underlying regulatory mechanisms in carotenoid biosynthesis and accumulation, we sequenced the cis-acting elements i.e. promoter, 5' and 3' untranslated regions of the carotenoid pathway genes, in all accessions, followed by their in silico validation. Major differences observed in the CAAT Box, Opaque-2 Box and L-box in the promoters of carotenoid isomerase and lycopene-beta cyclase genes, respectively, along with the variations in musashi binding element of 5' untranslated regions of the carotenoid isomerase gene, suggest their differential role in regulating the carotenogenesis process in tomato. The binding sites for various transcription factors namely RIN, AGAMOUS, CRY, RAP2.2 and PIF1 on the promoters of important carotenoid pathway genes were predicted in silico. We propose that expression of carotenoid genes and also the formation of protein product in ripe tomato fruits, is regulated efficiently by the binding of these transcription factors at selected sites in the promoter region. Finally, the differential expression of the above-mentioned genes in different developmental tissues supports the possible involvement of promoters and untranslated regions in carotenoid biosynthesis and accumulation process. The present study has generated significant information concerning regulatory players involved in the carotenoid biosynthesis in tomato.
Collapse
|
49
|
Minuesa G, Albanese SK, Xie W, Kazansky Y, Worroll D, Chow A, Schurer A, Park SM, Rotsides CZ, Taggart J, Rizzi A, Naden LN, Chou T, Gourkanti S, Cappel D, Passarelli MC, Fairchild L, Adura C, Glickman JF, Schulman J, Famulare C, Patel M, Eibl JK, Ross GM, Bhattacharya S, Tan DS, Leslie CS, Beuming T, Patel DJ, Goldgur Y, Chodera JD, Kharas MG. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat Commun 2019; 10:2691. [PMID: 31217428 PMCID: PMC6584500 DOI: 10.1038/s41467-019-10523-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
The MUSASHI (MSI) family of RNA binding proteins (MSI1 and MSI2) contribute to a wide spectrum of cancers including acute myeloid leukemia. We find that the small molecule Ro 08-2750 (Ro) binds directly and selectively to MSI2 and competes for its RNA binding in biochemical assays. Ro treatment in mouse and human myeloid leukemia cells results in an increase in differentiation and apoptosis, inhibition of known MSI-targets, and a shared global gene expression signature similar to shRNA depletion of MSI2. Ro demonstrates in vivo inhibition of c-MYC and reduces disease burden in a murine AML leukemia model. Thus, we identify a small molecule that targets MSI's oncogenic activity. Our study provides a framework for targeting RNA binding proteins in cancer.
Collapse
Affiliation(s)
- Gerard Minuesa
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Steven K Albanese
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Wei Xie
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yaniv Kazansky
- Weill Cornell Medical College, Tri-Institutional MD-PhD Program, Rockefeller University and Sloan Kettering Institute, New York, NY, 10065, USA
| | - Daniel Worroll
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Arthur Chow
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Sun-Mi Park
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Christina Z Rotsides
- Chemical Biology Program, Sloan Kettering Institute and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - James Taggart
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrea Rizzi
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Levi N Naden
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Timothy Chou
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Saroj Gourkanti
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Maria C Passarelli
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medical College, Tri-Institutional MD-PhD Program, Rockefeller University and Sloan Kettering Institute, New York, NY, 10065, USA
| | - Lauren Fairchild
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Carolina Adura
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - Jessica Schulman
- Hematologic Oncology Tissue Bank, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christopher Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Minal Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph K Eibl
- Northern Ontario School of Medicine, Sudbury, ON, P3E 2C6, Canada
| | - Gregory M Ross
- Northern Ontario School of Medicine, Sudbury, ON, P3E 2C6, Canada
| | | | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Thijs Beuming
- Schrödinger, Inc., 120 West 45th Street, New York, NY, 10036, USA
| | - Dinshaw J Patel
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
50
|
Tsujino T, Sugito N, Taniguchi K, Honda R, Komura K, Yoshikawa Y, Takai T, Minami K, Kuranaga Y, Shinohara H, Tokumaru Y, Heishima K, Inamoto T, Azuma H, Akao Y. MicroRNA-143/Musashi-2/KRAS cascade contributes positively to carcinogenesis in human bladder cancer. Cancer Sci 2019; 110:2189-2199. [PMID: 31066120 PMCID: PMC6609826 DOI: 10.1111/cas.14035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 12/16/2022] Open
Abstract
It has been well established that microRNA (miR)‐143 is downregulated in human bladder cancer (BC). Recent precision medicine has shown that mutations in BC are frequently observed in FGFR3, RAS and PIK3CA genes, all of which correlate with RAS signaling networks. We have previously shown that miR‐143 suppresses cell growth by inhibiting RAS signaling networks in several cancers including BC. In the present study, we showed that synthetic miR‐143 negatively regulated the RNA‐binding protein Musashi‐2 (MSI2) in BC cell lines. MSI2 is an RNA‐binding protein that regulates the stability of certain mRNAs and their translation by binding to the target sequences of the mRNAs. Of note, the present study clarified that MSI2 positively regulated KRAS expression through directly binding to the target sequence of KRASmRNA and promoting its translation, thus contributing to the maintenance of KRAS expression. Thus, miR‐143 silenced KRAS and MSI2, which further downregulated KRAS expression through perturbation of the MSI2/KRAS cascade.
Collapse
Affiliation(s)
- Takuya Tsujino
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical College, Osaka, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kazumasa Komura
- Department of Urology, Osaka Medical College, Osaka, Japan.,Translational Research Program, Osaka Medical College, Osaka, Japan
| | - Yuki Yoshikawa
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Tomoaki Takai
- Department of Urology, Osaka Medical College, Osaka, Japan
| | | | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|