1
|
Honda K, Takahashi H, Hata S, Abe R, Saito T, Saido TC, Taru H, Sobu Y, Ando K, Yamamoto T, Suzuki T. Suppression of the amyloidogenic metabolism of APP and the accumulation of Aβ by alcadein α in the brain during aging. Sci Rep 2024; 14:18471. [PMID: 39122814 PMCID: PMC11316129 DOI: 10.1038/s41598-024-69400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Generation and accumulation of amyloid-β (Aβ) protein in the brain are the primary causes of Alzheimer's disease (AD). Alcadeins (Alcs composed of Alcα, Alcβ and Alcγ family) are a neuronal membrane protein that is subject to proteolytic processing, as is Aβ protein precursor (APP), by APP secretases. Previous observations suggest that Alcs are involved in the pathophysiology of Alzheimer's disease (AD). Here, we generated new mouse AppNL-F (APP-KI) lines with either Alcα- or Alcβ-deficient background and analyzed APP processing and Aβ accumulation through the aging process. The Alcα-deficient APP-KI (APP-KI/Alcα-KO) mice enhanced brain Aβ accumulation along with increased amyloidogenic β-site cleavage of APP through the aging process whereas Alcβ-deficient APP-KI (APP-KI/Alcβ-KO) mice neither affected APP metabolism nor Aβ accumulation at any age. More colocalization of APP and BACE1 was observed in the endolysosomal pathway in neurons of APP-KI/Alcα-KO mice compared to APP-KI and APP-KI/Alcβ-KO mice. These results indicate that Alcα plays an important role in the neuroprotective function by suppressing the amyloidogenic cleavage of APP by BACE1 in the brain, which is distinct from the neuroprotective function of Alcβ, in which p3-Alcβ peptides derived from Alcβ restores the viability in neurons impaired by toxic Aβ.
Collapse
Affiliation(s)
- Keiko Honda
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, 761-0793, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Ruriko Abe
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, 351-0198, Japan
| | - Hidenori Taru
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Laboratory of Neuronal Regeneration, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, 761-0793, Japan.
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
2
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
3
|
Ding C, Wu Y, Dabas H, Hammarlund M. Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. eLife 2022; 11:73557. [PMID: 35285800 PMCID: PMC8920508 DOI: 10.7554/elife.73557] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial defects are tightly linked to axon degeneration, yet the underlying cellular mechanisms remain poorly understood. In Caenorhabditis elegans, PVQ axons that lack mitochondria degenerate spontaneously with age. Using an unbiased genetic screen, we found that cell-specific activation of CaMKII/UNC-43 suppresses axon degeneration due to loss of mitochondria. Unexpectedly, CaMKII/UNC-43 activates the conserved Sarm1/TIR-1-ASK1/NSY-1-p38 MAPK pathway and eventually the transcription factor CEBP-1 to protect against degeneration. In addition, we show that disrupting a trafficking complex composed of calsyntenin/CASY-1, Mint/LIN-10, and kinesin suppresses axon degeneration. Further analysis indicates that disruption of this trafficking complex activates the CaMKII-Sarm1-MAPK pathway through L-type voltage-gated calcium channels. Our findings identify CaMKII as a pivot point between mitochondrial defects and axon degeneration, describe how it is regulated, and uncover a surprising neuroprotective role for the Sarm1-p38 MAPK pathway in this context.
Collapse
Affiliation(s)
- Chen Ding
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States
| | - Youjun Wu
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Hadas Dabas
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Marc Hammarlund
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States,Department of Genetics, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
4
|
Gotoh N, Saito Y, Hata S, Saito H, Ojima D, Murayama C, Shigeta M, Abe T, Konno D, Matsuzaki F, Suzuki T, Yamamoto T. Amyloidogenic processing of amyloid β protein precursor (APP) is enhanced in the brains of alcadein α-deficient mice. J Biol Chem 2020; 295:9650-9662. [PMID: 32467230 PMCID: PMC7363152 DOI: 10.1074/jbc.ra119.012386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder, chiefly caused by increased production of neurotoxic β-amyloid (Aβ) peptide generated from proteolytic cleavage of β-amyloid protein precursor (APP). Except for familial AD arising from mutations in the APP and presenilin (PSEN) genes, the molecular mechanisms regulating the amyloidogenic processing of APP are largely unclear. Alcadein α/calsyntenin1 (ALCα/CLSTN1) is a neuronal type I transmembrane protein that forms a complex with APP, mediated by the neuronal adaptor protein X11-like (X11L or MINT2). Formation of the ALCα-X11L-APP tripartite complex suppresses Aβ generation in vitro, and X11L-deficient mice exhibit enhanced amyloidogenic processing of endogenous APP. However, the role of ALCα in APP metabolism in vivo remains unclear. Here, by generating ALCα-deficient mice and using immunohistochemistry, immunoblotting, and co-immunoprecipitation analyses, we verified the role of ALCα in the suppression of amyloidogenic processing of endogenous APP in vivo We observed that ALCα deficiency attenuates the association of X11L with APP, significantly enhances amyloidogenic β-site cleavage of APP, especially in endosomes, and increases the generation of endogenous Aβ in the brain. Furthermore, we noted amyloid plaque formation in the brains of human APP-transgenic mice in an ALCα-deficient background. These results unveil a potential role of ALCα in protecting cerebral neurons from Aβ-dependent pathogenicity in AD.
Collapse
Affiliation(s)
- Naoya Gotoh
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuhki Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Haruka Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Daiki Ojima
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Chiaki Murayama
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaya Abe
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Daijiro Konno
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tohru Yamamoto
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| |
Collapse
|
5
|
Hata S, Omori C, Kimura A, Saito H, Kimura N, Gupta V, Pedrini S, Hone E, Chatterjee P, Taddei K, Kasuga K, Ikeuchi T, Waragai M, Nishimura M, Hu A, Nakaya T, Meijer L, Maeda M, Yamamoto T, Masters CL, Rowe CC, Ames D, Yamamoto K, Martins RN, Gandy S, Suzuki T. Decrease in p3-Alcβ37 and p3-Alcβ40, products of Alcadein β generated by γ-secretase cleavages, in aged monkeys and patients with Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:740-750. [PMID: 31754625 PMCID: PMC6854065 DOI: 10.1016/j.trci.2019.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction Neuronal p3-Alcβ peptides are generated from the precursor protein Alcadein β (Alcβ) through cleavage by α- and γ-secretases of the amyloid β (Aβ) protein precursor (APP). To reveal whether p3-Alcβ is involved in Alzheimer's disease (AD) contributes for the development of novel therapy and/or drug targets. Methods We developed new sandwich enzyme-linked immunosorbent assay (sELISA) systems to quantitate levels of p3-Alcβ in the cerebrospinal fluid (CSF). Results In monkeys, CSF p3-Alcβ decreases with age, and the aging is also accompanied by decreased brain expression of Alcβ. In humans, CSF p3-Alcβ levels decrease to a greater extent in those with AD than in age-matched controls. Subjects carrying presenilin gene mutations show a significantly lower CSF p3-Alcβ level. A cell study with an inverse modulator of γ-secretase remarkably reduces the generation of p3-Alcβ37 while increasing the production of Aβ42. Discussion Aging decreases the generation of p3-Alcβ, and further significant decrease of p3-Alcβ caused by aberrant γ-secretase activity may accelerate pathogenesis in AD.
Collapse
Affiliation(s)
- Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Corresponding author. Tel.:+81-11-706-3250; Fax: +81-11-706-4991.
| | - Chiori Omori
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Ayano Kimura
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Haruka Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Nobuyuki Kimura
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Veer Gupta
- Centre of Excellence for Alzheimer's Disease Research and Care, Sir James McCusker Alzheimer's Disease Research Unit, Edith Cowan University, Joodalup, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Co-operative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Co-operative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Eugene Hone
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Co-operative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Pratishtha Chatterjee
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaaki Waragai
- Department of Neurology, Higashi Matsudo Municipal Hospital, Matsudo, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Anqi Hu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tadashi Nakaya
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy, Roscoff, Bretagne, France
| | - Masahiro Maeda
- Immuno-Biological Laboratories Co., Ltd. (IBL), Fujioka, Japan
| | - Tohru Yamamoto
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Colin L. Masters
- Neurodegeneration Division, The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Chris C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- Academic Unit for Psychiatry of Old age, St. George's Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Sir James McCusker Alzheimer's Disease Research Unit, Edith Cowan University, Joodalup, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Co-operative Research Centre for Mental Health, Carlton, VIC, Australia
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sam Gandy
- Mount Sinai Center for Cognitive Health and NFL Neurological Care, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Corresponding author. Tel.:+81-11-706-3250; Fax: +81-11-706-4991.
| |
Collapse
|
6
|
Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2019; 22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.
Collapse
Affiliation(s)
- Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore.,Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
7
|
Takei N, Yoneda A, Kosaka M, Sakai-Sawada K, Tamura Y. ERO1α is a novel endogenous marker of hypoxia in human cancer cell lines. BMC Cancer 2019; 19:510. [PMID: 31142270 PMCID: PMC6542132 DOI: 10.1186/s12885-019-5727-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hypoxia is an important factor that contributes to tumour aggressiveness and correlates with poor prognosis and resistance to conventional therapy. Therefore, identifying hypoxic environments within tumours is extremely useful for understanding cancer biology and developing novel therapeutic strategies. Several studies have suggested that carbonic anhydrase 9 (CA9) is a reliable biomarker of hypoxia and a potential therapeutic target, while pimonidazole has been identified as an exogenous hypoxia marker. However, other studies have suggested that CA9 expression is not directly induced by hypoxia and it is not expressed in all types of tumours. Thus, in this study, we focused on endoplasmic reticulum disulphide oxidase 1α (ERO1α), a protein that localises in the endoplasmic reticulum and is involved in the formation of disulphide bonds in proteins, to determine whether it could serve as a potential tumour-hypoxia biomarker. Methods Using quantitative real-time polymerase chain reaction, we analysed the mRNA expression of ERO1α and CA9 in different normal and cancer cell lines. We also determined the protein expression levels of ERO1α and CA9 in these cell lines by western blotting. We then investigated the hypoxia-inducible ERO1α and CA9 expression and localisation in HCT116 and HeLa cells, which express low (CA9-low) and high (CA9-high) levels of CA9, respectively. A comparative analysis was performed using pimonidazole, an exogenous hypoxic marker, as a positive control. The expression and localisation of ERO1α and CA9 in tumour spheres during hypoxia were analysed by a tumour sphere formation assay. Finally, we used a mouse model to investigate the localisation of ERO1α and CA9 in tumour xenografts using several cell lines. Results We found that ERO1α expression increased under chronic hypoxia. Our results show that ERO1α was hypoxia-induced in all the tested cancer cell lines. Furthermore, in the comparative analysis using CA9 and pimonidazole, ERO1α had a similar localisation to pimonidazole in both CA9-low and CA9-high cell lines. Conclusion ERO1α can serve as a novel endogenous chronic hypoxia marker that is more reliable than CA9 and can be used as a diagnostic biomarker and therapeutic target for cancer. Electronic supplementary material The online version of this article (10.1186/s12885-019-5727-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norio Takei
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan.
| | - Akihiro Yoneda
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Marina Kosaka
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Kaori Sakai-Sawada
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Yasuaki Tamura
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
8
|
Medoro A, Bartollino S, Mignogna D, Passarella D, Porcile C, Pagano A, Florio T, Nizzari M, Guerra G, Di Marco R, Intrieri M, Raimo G, Russo C. Complexity and Selectivity of γ-Secretase Cleavage on Multiple Substrates: Consequences in Alzheimer's Disease and Cancer. J Alzheimers Dis 2018; 61:1-15. [PMID: 29103038 DOI: 10.3233/jad-170628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The processing of the amyloid-β protein precursor (AβPP) by β- and γ-secretases is a pivotal event in the genesis of Alzheimer's disease (AD). Besides familial mutations on the AβPP gene, or upon its overexpression, familial forms of AD are often caused by mutations or deletions in presenilin 1 (PSEN1) and 2 (PSEN2) genes: the catalytic components of the proteolytic enzyme γ-secretase (GS). The "amyloid hypothesis", modified over time, states that the aberrant processing of AβPP by GS induces the formation of specific neurotoxic soluble amyloid-β (Aβ) peptides which, in turn, cause neurodegeneration. This theory, however, has recently evidenced significant limitations and, in particular, the following issues are debated: 1) the concept and significance of presenilin's "gain of function" versus "loss of function"; and 2) the presence of several and various GS substrates, which interact with AβPP and may influence Aβ formation. The latter consideration is suggestive: despite the increasing number of GS substrates so far identified, their reciprocal interaction with AβPP itself, even in the AD field, is significantly unexplored. On the other hand, GS is also an important pharmacological target in the cancer field; inhibitors or GS activity are investigated in clinical trials for treating different tumors. Furthermore, the function of AβPP and PSENs in brain development and in neuronal migration is well known. In this review, we focused on a specific subset of GS substrates that directly interact with AβPP and are involved in its proteolysis and signaling, by evaluating their role in neurodegeneration and in cell motility or proliferation, as a possible connection between AD and cancer.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genoa and Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genoa, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
9
|
Integrated microarray analysis provided a new insight of the pathogenesis of Parkinson’s disease. Neurosci Lett 2018; 662:51-58. [DOI: 10.1016/j.neulet.2017.09.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
|
10
|
Sobu Y, Furukori K, Chiba K, Nairn AC, Kinjo M, Hata S, Suzuki T. Phosphorylation of multiple sites within an acidic region of Alcadein α is required for kinesin-1 association and Golgi exit of Alcadein α cargo. Mol Biol Cell 2017; 28:3844-3856. [PMID: 29093024 PMCID: PMC5739299 DOI: 10.1091/mbc.e17-05-0301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/18/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022] Open
Abstract
Alcadein a (Alca) is reported to function as a cargo receptor when associated with kinesin-1. Phosphorylation of three serine residues in the acidic region located between the two WD motifs of Alca is required for interaction with kinesin-1 and Golgi exit of Alca cargo. Alcadein α (Alcα) is a major cargo of kinesin-1 that is subjected to anterograde transport in neuronal axons. Two tryptophan- and aspartic acid-containing (WD) motifs located in its cytoplasmic domain directly bind the tetratricopeptide repeat (TPR) motifs of the kinesin light chain (KLC), which activate kinesin-1 and recruit kinesin-1 to Alcα cargo. We found that phosphorylation of three serine residues in the acidic region located between the two WD motifs is required for interaction with KLC. Phosphorylation of these serine residues may alter the disordered structure of the acidic region to induce direct association with KLC. Replacement of these serines with Ala results in a mutant that is unable to bind kinesin-1, which impairs exit of Alcα cargo from the Golgi. Despite this deficiency, the compromised Alcα mutant was still transported, albeit improperly by vesicles following missorting of the Alcα mutant with amyloid β-protein precursor (APP) cargo. This suggests that APP partially compensates for defective Alcα in anterograde transport by providing an alternative cargo receptor for kinesin-1.
Collapse
Affiliation(s)
- Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keiko Furukori
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | - Kyoko Chiba
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
11
|
Takei N, Yoneda A, Sakai-Sawada K, Kosaka M, Minomi K, Tamura Y. Hypoxia-inducible ERO1α promotes cancer progression through modulation of integrin-β1 modification and signalling in HCT116 colorectal cancer cells. Sci Rep 2017; 7:9389. [PMID: 28839225 PMCID: PMC5571208 DOI: 10.1038/s41598-017-09976-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/02/2017] [Indexed: 11/24/2022] Open
Abstract
Endoplasmic reticulum disulphide oxidase 1α (ERO1α) is an oxidase localized in the endoplasmic reticulum that plays a role in the formation of disulphide bonds of secreted and cell-surface proteins. We previously showed that ERO1α is overexpressed in various types of cancer and we further identified ERO1α expression as a novel factor related to poor prognosis in cancer. However, the biological functions of ERO1α in cancer remain unclear. Here, we investigated the cell biological roles of ERO1α in the human colon-cancer cell line HCT116. ERO1α knockout (KO) by using CRISPR/Cas9 resulted in decreased tumourigenicity in vivo and reduced cell proliferation only under hypoxia in vitro, which suggested that ERO1α promotes cancer progression specifically in a low-oxygen environment. Thus, we evaluated the function of ERO1α in cell proliferation under hypoxia, and found that under hypoxic conditions, ERO1α KO resulted in a contact-inhibited morphology and diminished motility of cells. We further showed that ERO1α KO induced a change in integrin-β1 glycosylation and thus an attenuation of cell-surface integrin-β1 expression, which resulted in the aforementioned phenotype. Our study has established a previously unrecognized link between ERO1α expression and integrin activation, and thus provides new evidence for the effectiveness of ERO1α-targeted therapy for colorectal carcinoma.
Collapse
Affiliation(s)
- Norio Takei
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan.
| | - Akihiro Yoneda
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Kaori Sakai-Sawada
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Marina Kosaka
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan.,Research & Development Department, Nucleic Acid Medicine Business Division, Nitto Denko Corporation, Osaka, Japan
| | - Kenjiro Minomi
- Research & Development Department, Nucleic Acid Medicine Business Division, Nitto Denko Corporation, Osaka, Japan
| | - Yasuaki Tamura
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
12
|
Salminen A, Kauppinen A, Kaarniranta K. Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer's disease. J Neurochem 2017; 140:536-549. [DOI: 10.1111/jnc.13932] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Antero Salminen
- Department of Neurology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
| | - Anu Kauppinen
- School of Pharmacy; Faculty of Health Sciences; University of Eastern Finland; Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
- Department of Ophthalmology; Kuopio University Hospital; Kuopio Finland
| |
Collapse
|
13
|
APP Receptor? To Be or Not To Be. Trends Pharmacol Sci 2016; 37:390-411. [PMID: 26837733 DOI: 10.1016/j.tips.2016.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Amyloid precursor protein (APP) and its metabolites play a key role in Alzheimer's disease pathogenesis. The idea that APP may function as a receptor has gained momentum based on its structural similarities to type I transmembrane receptors and the identification of putative APP ligands. We review the recent experimental evidence in support of this notion and discuss how this concept is viewed in the field. Specifically, we focus on the structural and functional characteristics of APP as a cell surface receptor, and on its interaction with adaptors and signaling proteins. We also address the importance of APP function as a receptor in Alzheimer's disease etiology and discuss how this function might be potentially important for the development of novel therapeutic approaches.
Collapse
|
14
|
Hata S. [Molecular Pathogenesis of Sporadic Alzheimer's Disease (AD) and Pharmaceutical Research to Develop a Biomarker for AD Diagnosis]. YAKUGAKU ZASSHI 2015; 135:1023-7. [PMID: 26329547 DOI: 10.1248/yakushi.15-00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common senile dementia. One of the pathological characteristics of AD is the appearance of senile plaques composed of amyloid-β (Aβ) depositions. Aβ is generated by consecutive cleavages of Aβ precursor protein (APP) by β- and γ-secretases. The common pathogenesis for familial AD (FAD) is believed to involve misprocessing of APP by γ-secretase, resulting in increased Aβ42 peptide deposition. However, little is known about γ-secretase function in sporadic AD (SAD), which is the major type of AD. This may be because Aβ42 peptide has highly aggregative properties; therefore it is not easy to estimate the quantitative alteration of net Aβ42 in SAD patients. Alcadein is a family of neural type I membrane proteins. Processing of Alcadein by APP α- and γ-secretases results in secretion of non-aggregative peptide, p3-Alc, into CSF and blood. The C-terminuses of Aβ and p3-Alc are altered by FAD-linked genetic mutations in catalytic components of γ-secretase, in association with an increase in minor Aβ and p3-Alc species. Thus p3-Alcs are expected to behave as useful indicators of γ-secretase dysfunction in SAD brain. Quantitative and qualitative analyses of p3-Alcs raise the possibility that γ-secretase dysfunction may exist even in the absence of genetic mutations. p3-Alc peptides may be a novel biomarker for AD and an indicator of γ-secretase dysfunction for drug development.
Collapse
Affiliation(s)
- Saori Hata
- Hokkaido University, Faculty of Pharmaceutical Sciences, Laboratory of Neuroscience
| |
Collapse
|
15
|
Kimura A, Hata S, Suzuki T. Stabilization of intracellular trafficking and metabolism of amyloid β-protein precursor and Alcadein β by apolipoprotein E. FEBS Lett 2015. [PMID: 26213366 DOI: 10.1016/j.febslet.2015.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracellular metabolism of amyloid β-protein precursor (APP) is important for the pathogenesis of Alzheimer's disease (AD). Alcadeins (Alcα, Alcβ, and Alcγ) are neural membrane proteins similar to APP in their localization, metabolism, and cellular function. Isoform ε4 of apolipoprotein E (ApoE) is a major risk factor for AD. We found that ApoE expression attenuated intracellular trafficking of APP and Alcβ, resulting in metabolic stabilization of both proteins. By contrast, Alcα intracellular proteolysis was facilitated by ApoE expression, which was not due to an increase in the primary cleavage of Alcα. This difference may result from binding of ApoE to membrane proteins.
Collapse
Affiliation(s)
- Ayano Kimura
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|