1
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
2
|
Vašek D, Fikarová N, Marková VN, Honc O, Pacáková L, Porubská B, Somova V, Novotný J, Melkes B, Krulová M. Lipopolysaccharide pretreatment increases the sensitivity of the TRPV1 channel and promotes an anti-inflammatory phenotype of capsaicin-activated macrophages. J Inflamm (Lond) 2024; 21:17. [PMID: 38790047 PMCID: PMC11127439 DOI: 10.1186/s12950-024-00391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The transient receptor potential vanilloid 1 (TRPV1) is well-established in neuronal function, yet its role in immune reactions remains enigmatic. The conflicting data on its inflammatory role, suggesting both pro-inflammatory and anti-inflammatory effects upon TRPV1 stimulation in immune cells, adds complexity. To unravel TRPV1 immunomodulatory mechanisms, we investigated how the TRPV1 agonist capsaicin influences lipopolysaccharide (LPS)-induced pro-inflammatory macrophage phenotypes. RESULTS Changes in the surface molecules, cytokine production, and signaling cascades linked to the phenotype of M1 or M2 macrophages of the J774 macrophage cell line and bone marrow-derived macrophages, treated with capsaicin before or after the LPS-induced inflammatory reaction were determined. The functional capacity of macrophages was also assessed by infecting the stimulated macrophages with the intracellular parasite Leishmania mexicana. CONCLUSION Our findings reveal that TRPV1 activation yields distinct macrophage responses influenced by the inflammatory context. LPS pre-treatment followed by capsaicin activation prompted increased calcium influx, accompanied by a shift toward an anti-inflammatory M2b-like polarization state.
Collapse
Affiliation(s)
- Daniel Vašek
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Natálie Fikarová
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Vendula Nagy Marková
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Ondřej Honc
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Lenka Pacáková
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Bianka Porubská
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Veronika Somova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic
| | - Magdaléna Krulová
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 43, Czech Republic.
| |
Collapse
|
3
|
Hashimoto R, Koide H, Katoh Y. MEK inhibitors increase the mortality rate in mice with LPS-induced inflammation through IL-12-NO signaling. Cell Death Discov 2023; 9:374. [PMID: 37833247 PMCID: PMC10575927 DOI: 10.1038/s41420-023-01674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin that can cause an acute inflammatory response. Nitric oxide (NO) is one of the most important innate immune system components and is synthesized by inducible NOS (iNOS) in macrophages in response to stimulation with LPS. LPS activates the RAS-RAF-mitogen-activated protein kinase/ERK kinase (MEK)-extracellular-signal-regulated kinase (ERK) signaling cascade in macrophages. The purpose of this study was to examine how the combination of LPS and MEK inhibitors, which have been used as anticancer agents in recent years, affects inflammation. We showed that MEK inhibitors enhanced iNOS expression and NO production in LPS-stimulated mouse bone marrow-derived macrophages. A MEK inhibitor increased the mortality rate in mice with LPS-induced inflammation. The expression of the cytokine interleukin-12 (IL-12) in macrophages was enhanced by the MEK inhibitor, as shown by a cytokine array and ELISA. IL-12 enhanced iNOS expression and NO production in response to LPS. We also showed that tumor necrosis factor (TNF-α) was secreted by macrophage after stimulation with LPS and that TNF-α and IL-12 synergistically induced iNOS expression and NO production. An anti-IL-12 neutralizing antibody prevented NO production and mortality in an LPS-induced inflammation mouse model in the presence of a MEK inhibitor. These results suggest that the MEK inhibitor increases the mortality rate in mice with LPS-induced inflammation through IL-12-NO signaling.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Hiroshi Koide
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Youichi Katoh
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Juntendo University Faculty of International Liberal Arts, Hongo 2-1-1, Bunkyo-ku, Tokyo, 112-8421, Japan.
| |
Collapse
|
4
|
Almazroue H, Jin Y, Nelin LD, Barba JC, Milton AD, Trittmann JK. Human pulmonary microvascular endothelial cell DDAH1-mediated nitric oxide production promotes pulmonary smooth muscle cell apoptosis in co-culture. Am J Physiol Lung Cell Mol Physiol 2023; 325:L360-L367. [PMID: 37431589 PMCID: PMC10639007 DOI: 10.1152/ajplung.00433.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease in preterm infants, and pulmonary hypertension (PH) develops in 25%-40% of patients with BPD, increasing morbidity and mortality. BPD-PH is characterized by vasoconstriction and vascular remodeling. Nitric oxide (NO) is a pulmonary vasodilator and apoptotic mediator made in the pulmonary endothelium by NO synthase (eNOS). Asymmetric dimethylarginine (ADMA) is an endogenous eNOS inhibitor, primarily metabolized by dimethylarginine dimethylaminohydrolase-1 (DDAH1). Our hypothesis is that DDAH1 knockdown in human pulmonary microvascular endothelial cells (hPMVEC) will result in lower NO production, decreased apoptosis, and greater proliferation of human pulmonary arterial smooth muscle cells (hPASMC), whereas DDAH1 overexpression will have the opposite effect. hPMVECs were transfected with small interfering RNA targeting DDAH1 (siDDAH1)/scramble or adenoviral vector containing DDAH1 (AdDDAH1)/AdGFP for 24 h and co-cultured for 24 h with hPASMC. Analyses included Western blot for cleaved and total caspase-3, caspase-8, caspase-9, β-actin; trypan blue exclusion for viable cell numbers; terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL); and BrdU incorporation. Small interfering RNA targeting DDAH1 (siDDAH1) transfected into hPMVEC resulted in lower media nitrites, cleaved caspase-3 and caspase-8 protein expression, and TUNEL staining; and greater viable cell numbers and BrdU incorporation in co-cultured hPASMC. Adenoviral-mediated transfection of the DDAH1 gene (AdDDAH1) into hPMVEC resulted in greater cleaved caspase-3 and caspase-8 protein expression and lower viable cell numbers in co-cultured hPASMC. Partial recovery of hPASMC viable cell numbers after AdDDAH1-hPMVEC transfection was observed when media were treated with hemoglobin to sequester NO. In conclusion, hPMVEC-DDAH1-mediated NO production positively regulates hPASMC apoptosis, which may prevent/attenuate aberrant pulmonary vascular proliferation/remodeling in BPD-PH.NEW & NOTEWORTHY BPD-PH is characterized by vascular remodeling. NO is an apoptotic mediator made in the pulmonary endothelium by eNOS. ADMA is an endogenous eNOS inhibitor metabolized by DDAH1. EC-DDAH1 overexpression resulted in greater cleaved caspase-3 and caspase-8 protein expression and lower viable cell numbers in co-cultured SMC. After NO sequestration, SMC viable cell numbers partially recovered despite EC-DDAH1 overexpression. EC-DDAH1-mediated NO production positively regulates SMC apoptosis, which may prevent/attenuate aberrant pulmonary vascular proliferation/remodeling in BPD-PH.
Collapse
Affiliation(s)
- Hanadi Almazroue
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - John C Barba
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Avante D Milton
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| |
Collapse
|
5
|
Baik JS, Seo YN, Lee YC, Yi JM, Rhee MH, Park MT, Kim SD. Involvement of the p38 MAPK-NLRC4-Caspase-1 Pathway in Ionizing Radiation-Enhanced Macrophage IL-1β Production. Int J Mol Sci 2022; 23:ijms232213757. [PMID: 36430236 PMCID: PMC9698243 DOI: 10.3390/ijms232213757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Macrophages are abundant immune cells in the tumor microenvironment and are crucial in regulating tumor malignancy. We previously reported that ionizing radiation (IR) increases the production of interleukin (IL)-1β in lipopolysaccharide (LPS)-treated macrophages, contributing to the malignancy of colorectal cancer cells; however, the mechanism remained unclear. Here, we show that IR increases the activity of cysteine-aspartate-specific protease 1 (caspase-1), which is regulated by the inflammasome, and cleaves premature IL-1β to mature IL-1β in RAW264.7 macrophages. Irradiated RAW264.7 cells showed increased expression of NLRC4 inflammasome, which controls the activity of caspase-1 and IL-1β production. Silencing of NLRC4 using RNA interference inhibited the IR-induced increase in IL-1β production. Activation of the inflammasome can be regulated by mitogen-activated protein kinase (MAPK)s in macrophages. In RAW264.7 cells, IR increased the phosphorylation of p38 MAPK but not extracellular signal-regulated kinase and c-Jun N-terminal kinase. Moreover, a selective inhibitor of p38 MAPK inhibited LPS-induced IL-1β production and NLRC4 inflammasome expression in irradiated RAW264.7 macrophages. Our results indicate that IR-induced activation of the p38 MAPK-NLRC4-caspase-1 activation pathway in macrophages increases IL-1β production in response to LPS.
Collapse
Affiliation(s)
- Ji Sue Baik
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
| | - You Na Seo
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Department of Microbiology and Immunology, College of Medicine, Inge University, Busan 47392, Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inge University, Busan 47392, Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyoung Pook National University, Daegu 41566, Korea
| | - Moon-Taek Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Correspondence: (M.-T.P.); (S.D.K.); Tel.: +82-51-720-5141 (M.-T.P.); +82-53-950-5958 (S.D.K.)
| | - Sung Dae Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyoung Pook National University, Daegu 41566, Korea
- Correspondence: (M.-T.P.); (S.D.K.); Tel.: +82-51-720-5141 (M.-T.P.); +82-53-950-5958 (S.D.K.)
| |
Collapse
|
6
|
Xiao L, Huang R, Sulimai N, Yao R, Manley B, Xu P, Felder R, Jin L, Dorn HC, Li X. Amine Functionalized Trimetallic Nitride Endohedral Fullerenes: A Class of Nanoparticle to Tackle Low Back/Leg Pain. ACS APPLIED BIO MATERIALS 2022; 5:2943-2955. [PMID: 35575694 PMCID: PMC9719410 DOI: 10.1021/acsabm.2c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low back pain is the most common health problem with a prevalence of over 80% worldwide and an estimated annual cost of $100 billion in the United States. Intervertebral disc degeneration accounts for a major cause of low back pain. However, there is still a lack of safe and effective treatment to tackle this devastating condition. In this study, we synthesized four functionalized trimetallic nitride endohedral metallofullerenes (carboxyl-f-Sc3N@C80, carboxyl-f-Gd3N@C80, amino-f-Sc3N@C80, and amino-f-Gd3N@C80) and characterized them with X-ray photoelectron spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and UV-vis. Via electron paramagnetic resonance, all four metallofullerene derivatives possessed dose-dependent radical scavenging capabilities (hydroxyl radicals and superoxide anions), with the most promising radical scavenging properties shown in the amine functionalized C80 metallofullerenes. Both amino-f-Sc3N@C80 and amino-f-Gd3N@C80 at 1 μM significantly reduced lipopolysaccharide induced reactive oxygen species production and mRNA expressions of pro-inflammatory mediators (inos, tnf-α, il-1, and cox-2) in macrophages without apparent cytotoxicity through regulating activity of p38 MAPK, p65, and nuclear translocation of NF-κB. Furthermore, in an established mouse model of lumbar radiculopathy, amino-f-Sc3N@C80 and amino-f-Gd3N@C80 effectively alleviated ipsilateral mechanical hyperalgesia for up to 2 weeks. In dorsal root ganglia explant culture, we also showed that amino-f-Sc3N@C80 and amino-f-Gd3N@C80 ameliorated TNF-α elicited neuroinflammation. In summary, we presented results for a potent radical scavenging, anti-inflammatory and analgesic nanoparticle, amino-functionalized eighty-carbon metallofullerenes in vitro and in vivo. Our study provides important assets for developing pleiotropic treatment strategies to tackle the inflammation, a significant pathological hallmark in the intervertebral disc degeneration and associated pain.
Collapse
Affiliation(s)
- Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Rong Huang
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Nurul Sulimai
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Ricky Yao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Brock Manley
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Peng Xu
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Robin Felder
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Harry C Dorn
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Fralin Biomedical Research Institute, Roanoke, Virginia 24016, United States
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
7
|
Titanium Surface Characteristics Induce the Specific Reprogramming of Toll-like Receptor Signaling in Macrophages. Int J Mol Sci 2022; 23:ijms23084285. [PMID: 35457102 PMCID: PMC9030374 DOI: 10.3390/ijms23084285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Most of the research on titanium-based dental implants (Ti-discs) is focused on how they are able to stimulate the formation of new tissue and/or cytotoxic studies, with very scarce data on their effects on functional responses by immunocompetent cells. In particular, the link between the rewiring of innate immune responses and surface biomaterials properties is poorly understood. To address this, we characterize the functional response of macrophage cultures to four different dental titanium surfaces (MA: mechanical abrasion; SB + AE: sandblasting plus etching; SB: sandblasting; AE: acid etching). We use different Toll-like receptor (TLR) ligands towards cell surface receptors (bacterial lipopolysaccharide LPS for TLR4; imiquimod for TLR7; synthetic bacterial triacylated lipoprotein for TLR2/TLR1) and endosomal membrane receptor (poly I:C for TLR3) to simulate bacterial (cell wall bacterial components) or viral infections (dsRNA and ssRNA). The extracellular and total LDH levels indicate that exposure to the different Ti-surfaces is not cytotoxic for macrophages under resting or TLR-stimulated conditions, although there is a tendency towards an impairment in macrophage proliferation, viability or adhesion under TLR4, TLR3 and TLR2/1 stimulations in SB discs cultures. The secreted IL-6 and IL-10 levels are not modified upon resting macrophage exposure to the Ti-surfaces studied as well as steady state levels of iNos or ArgI mRNA. However, macrophage exposure to MA Ti-surface do display an enhanced immune response to TLR4, TLR7 or TLR2/1 compared to other Ti-surfaces in terms of soluble immune mediators secreted and M1/M2 gene expression profiling. This change of characteristics in cellular phenotype might be related to changes in cellular morphology. Remarkably, the gene expression of Tlr3 is the only TLR that is differentially affected by distinct Ti-surface exposure. These results highlight the relevance of patterned substrates in dental implants to achieve a smart manipulation of the immune responses in the context of personalized medicine, cell-based therapies, preferential lineage commitment of precursor cells or control of tissue architecture in oral biology.
Collapse
|
8
|
Cao F, Huang C, Cheng J, He Z. β-arrestin-2 alleviates rheumatoid arthritis injury by suppressing NLRP3 inflammasome activation and NF- κB pathway in macrophages. Bioengineered 2021; 13:38-47. [PMID: 34787064 PMCID: PMC8805973 DOI: 10.1080/21655979.2021.2003678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disorder that inflicts damage to the joints of the hands and wrist. The aim of this study was to investigate the protective effect of β-Arrestin-2 (βArr2) on RA in vivo and in vitro. The βArr2 adenovirus (βArr2-Ad) or the control (Con-Ad) was injected into the ankle joint cavity of collagen-induced arthritis (CIA) mice. According to the results, an improvement was shown in the symptoms and pathological injury of RA after an upregulation of βArr2. Correspondingly, the inflammatory response was attenuated, as evidenced by the decreased serum pro-inflammatory cytokines levels and NF-κB pathway-related proteins. Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3) inflammasome activation was inhibited in CIA mice treated with βArr2-Ad injection, as reflected by the diminished IL-18 level and declined protein levels of inflammasome components in the ankle joint. Likewise, the anti-inflammatory effect of macrophages was also validated by in vitro experiments. In summary, βArr2 effectively ameliorates ankle inflammation in CIA mice via NF-κB/NLRP3 inflammasome, providing theoretical and clinical basis for RA therapy.
Collapse
Affiliation(s)
- Feng Cao
- Department of Orthopedics, No. 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Cheng Huang
- Department of Orthopedics, No. 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Jiwei Cheng
- Department of Orthopedics, No. 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Zhaochun He
- Department of Rheumatoid Immunity, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Ishikawa S, Sawamoto A, Okuyama S, Nakajima M. T-Cell Activation-Inhibitory Assay to Screen Caloric Restriction Mimetics Drugs for Drug Repositioning. Biol Pharm Bull 2021; 44:550-556. [PMID: 33790105 DOI: 10.1248/bpb.b20-00889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported a screening method for caloric restriction mimetics (CRM), a group of plant-derived compounds capable of inducing good health and longevity. In the present study, we explored the possibility of using this method to screen CRM drugs for drug repositioning. The method, T-cell activation-inhibitory assay, is based on inductive logic. Most of CRM such as resveratrol have been reported to suppress T-cell activation and have anti-inflammatory functions. Here, we assessed the activity of 12 antiallergic drugs through T-cell activation-inhibitory assay and selected four that showed the lowest IC50 values-ibudilast (IC50 0.97 µM), azelastine (IC50 7.2 µM), epinastine (IC50 16 µM), and amlexanox (IC50 33 µM)-for further investigation. Because azelastine showed high cytotoxicity, we selected only the remaining three drugs to study their biological functions. We found that all the three drugs suppressed the expression of interleukin (IL)-6, an inflammatory cytokine, in lipopolysaccharide-treated macrophage cells, with ibudilast being the strongest suppressor. Ibudilast also suppressed the secretion of another inflammatory cytokine, tumor necrosis factor (TNF)-α, and the expression of an inflammatory enzyme, cyclooxygenase-2, in the cells. These results suggest that T-cell activation-inhibitory assay can be used to screen potential CRM drugs having anti-inflammatory functions for the purpose of drug repositioning.
Collapse
Affiliation(s)
- Shouma Ishikawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
10
|
Baier J, Gänsbauer M, Giessler C, Arnold H, Muske M, Schleicher U, Lukassen S, Ekici A, Rauh M, Daniel C, Hartmann A, Schmid B, Tripal P, Dettmer K, Oefner PJ, Atreya R, Wirtz S, Bogdan C, Mattner J. Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J Clin Invest 2020; 130:5703-5720. [PMID: 32721946 PMCID: PMC7598089 DOI: 10.1172/jci126923] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Arginase 1 (Arg1), which converts l-arginine into ornithine and urea, exerts pleiotropic immunoregulatory effects. However, the function of Arg1 in inflammatory bowel disease (IBD) remains poorly characterized. Here, we found that Arg1 expression correlated with the degree of inflammation in intestinal tissues from IBD patients. In mice, Arg1 was upregulated in an IL-4/IL-13- and intestinal microbiota-dependent manner. Tie2-Cre Arg1fl/fl mice lacking Arg1 in hematopoietic and endothelial cells recovered faster from colitis than Arg1-expressing (Arg1fl/fl) littermates. This correlated with decreased vessel density, compositional changes in intestinal microbiota, diminished infiltration by myeloid cells, and an accumulation of intraluminal polyamines that promote epithelial healing. The proresolving effect of Arg1 deletion was reduced by an l-arginine-free diet, but rescued by simultaneous deletion of other l-arginine-metabolizing enzymes, such as Arg2 or Nos2, demonstrating that protection from colitis requires l-arginine. Fecal microbiota transfers from Tie2-Cre Arg1fl/fl mice into WT recipients ameliorated intestinal inflammation, while transfers from WT littermates into Arg1-deficient mice prevented an advanced recovery from colitis. Thus, an increased availability of l-arginine as well as altered intestinal microbiota and metabolic products accounts for the accelerated resolution from colitis in the absence of Arg1. Consequently, l-arginine metabolism may serve as a target for clinical intervention in IBD patients.
Collapse
Affiliation(s)
- Julia Baier
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | | | - Claudia Giessler
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Harald Arnold
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Mercedes Muske
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Ulrike Schleicher
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | | | | | | | | | - Arndt Hartmann
- Pathologisches Institut, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Centre Erlangen (OICE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Dettmer
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Raja Atreya
- Medizinische Klinik 1–Gastroenterologie, Pneumologie and Endokrinologie, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1–Gastroenterologie, Pneumologie and Endokrinologie, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Pease NA, Shephard MS, Sertorio M, Waltz SE, Vinnedge LMP. DEK Expression in Breast Cancer Cells Leads to the Alternative Activation of Tumor Associated Macrophages. Cancers (Basel) 2020; 12:cancers12071936. [PMID: 32708944 PMCID: PMC7409092 DOI: 10.3390/cancers12071936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer deaths among women. DEK is a known oncoprotein that is highly expressed in over 60% of breast cancers and is an independent marker of poor prognosis. However, the molecular mechanisms by which DEK promotes tumor progression are poorly understood. To identify novel oncogenic functions of DEK, we performed RNA-Seq analysis on isogenic Dek-knockout and complemented murine BC cells. Gene ontology analyses identified gene sets associated with immune system regulation and cytokine-mediated signaling and differential cytokine and chemokine expression was confirmed across Dek-proficient versus Dek-deficient cells. By exposing murine bone marrow-derived macrophages (BMDM) to tumor cell conditioned media (TCM) to mimic a tumor microenvironment, we showed that Dek-expressing breast cancer cells produce a cytokine milieu, including up-regulated Tslp and Ccl5 and down-regulated Cxcl1, Il-6, and GM-CSF, that drives the M2 polarization of macrophages. We validated this finding in primary murine mammary tumors and show that Dek expression in vivo is also associated with increased expression of M2 macrophage markers in murine tumors. Using TCGA data, we verified that DEK expression in primary human breast cancers correlates with the expression of several genes identified by RNA-Seq in our murine model and with M2 macrophage phenotypes. Together, our data demonstrate that by regulating the production of multiple secreted factors, DEK expression in BC cells creates a potentially immune suppressed tumor microenvironment, particularly by inducing M2 tumor associated macrophage (TAM) polarization.
Collapse
Affiliation(s)
- Nicholas A. Pease
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
- Molecular and Cellular Biology Program, Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Miranda S. Shephard
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
| | - Mathieu Sertorio
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-513-636-1155
| |
Collapse
|
12
|
Gutbier S, Wanke F, Dahm N, Rümmelin A, Zimmermann S, Christensen K, Köchl F, Rautanen A, Hatje K, Geering B, Zhang JD, Britschgi M, Cowley SA, Patsch C. Large-Scale Production of Human iPSC-Derived Macrophages for Drug Screening. Int J Mol Sci 2020; 21:ijms21134808. [PMID: 32645954 PMCID: PMC7370446 DOI: 10.3390/ijms21134808] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue-resident macrophages are key players in inflammatory processes, and their activation and functionality are crucial in health and disease. Numerous diseases are associated with alterations in homeostasis or dysregulation of the innate immune system, including allergic reactions, autoimmune diseases, and cancer. Macrophages are a prime target for drug discovery due to their major regulatory role in health and disease. Currently, the main sources of macrophages used for therapeutic compound screening are primary cells isolated from blood or tissue or immortalized or neoplastic cell lines (e.g., THP-1). Here, we describe an improved method to employ induced pluripotent stem cells (iPSCs) for the high-yield, large-scale production of cells resembling tissue-resident macrophages. For this, iPSC-derived macrophage-like cells are thoroughly characterized to confirm their cell identity and thus their suitability for drug screening purposes. These iPSC-derived macrophages show strong cellular identity with primary macrophages and recapitulate key functional characteristics, including cytokine release, phagocytosis, and chemotaxis. Furthermore, we demonstrate that genetic modifications can be readily introduced at the macrophage-like progenitor stage in order to interrogate drug target-relevant pathways. In summary, this novel method overcomes previous shortcomings with primary and leukemic cells and facilitates large-scale production of genetically modified iPSC-derived macrophages for drug screening applications.
Collapse
Affiliation(s)
- Simon Gutbier
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (N.D.); (A.R.); (S.Z.); (K.C.); (C.P.)
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (F.K.); (A.R.); (K.H.); (J.D.Z.)
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Correspondence:
| | - Florian Wanke
- Roche Pharma Research and Early Development, Immunology and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (F.W.); (B.G.)
| | - Nadine Dahm
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (N.D.); (A.R.); (S.Z.); (K.C.); (C.P.)
| | - Anna Rümmelin
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (N.D.); (A.R.); (S.Z.); (K.C.); (C.P.)
- Roche Pharma Research and Early Development, Immunology and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (F.W.); (B.G.)
| | - Silke Zimmermann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (N.D.); (A.R.); (S.Z.); (K.C.); (C.P.)
| | - Klaus Christensen
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (N.D.); (A.R.); (S.Z.); (K.C.); (C.P.)
| | - Fabian Köchl
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (F.K.); (A.R.); (K.H.); (J.D.Z.)
| | - Anna Rautanen
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (F.K.); (A.R.); (K.H.); (J.D.Z.)
| | - Klas Hatje
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (F.K.); (A.R.); (K.H.); (J.D.Z.)
| | - Barbara Geering
- Roche Pharma Research and Early Development, Immunology and Infectious Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (F.W.); (B.G.)
| | - Jitao David Zhang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (F.K.); (A.R.); (K.H.); (J.D.Z.)
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Sally A. Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Christoph Patsch
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (N.D.); (A.R.); (S.Z.); (K.C.); (C.P.)
- BlueRock Therapeutics, New York, NY 10016, USA
| |
Collapse
|
13
|
Trittmann JK, Almazroue H, Jin Y, Nelin LD. DDAH1 regulates apoptosis and angiogenesis in human fetal pulmonary microvascular endothelial cells. Physiol Rep 2020; 7:e14150. [PMID: 31209995 PMCID: PMC6579941 DOI: 10.14814/phy2.14150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/17/2023] Open
Abstract
Nitric Oxide (NO) is an endogenous pulmonary vasodilator produced by endothelial NO synthase (eNOS). Asymmetric dimethyl L‐arginine (ADMA) is an endogenous inhibitor of eNOS activity. In endothelial cells, ADMA is hydrolyzed to L‐citrulline primarily by dimethylarginine dimethyl‐aminohydrolase‐1 (DDAH1). We tested the hypothesis that DDAH1 expression is essential for maintaining NO production in human fetal pulmonary microvascular endothelial cells (hfPMVEC), such that knockdown of DDAH1 expression will lead to decreased NO production resulting in less caspase‐3 activation and less tube formation. We found that hfPMVEC transfected with DDAH1 siRNA had lower NO production than control, with no difference in eNOS protein levels between groups. hfPMVEC transfected with DDAH1 siRNA had lower protein levels of cleaved caspase‐3 and ‐8 than control. Both DDAH1 siRNA‐ and ADMA‐treated hfPMVEC had greater numbers of viable cells than controls. Angiogenesis was assessed using tube formation assays in matrigel, and tube formation was lower after either DDAH1 siRNA transfection or ADMA treatment than controls. Addition of an NO donor restored cleaved caspase‐3 and ‐8 protein levels after DDAH1 siRNA transfection in hfPMVEC to essentially the levels seen in scramble control. Addition of a putative caspase‐3 inhibitor to DDAH1 siRNA transfected and NO‐donor treated cells led to greater numbers of viable cells and far less angiogenesis than in any other group studied. We conclude that in hfPMVEC, DDAH1 is central to the regulation of NO‐mediated caspase‐3 activation and the resultant apoptosis and angiogenesis. Our findings suggest that DDAH1 may be a potential therapeutic target in pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Hanadi Almazroue
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Maciuszek M, Rydz L, Świtakowska I, Verburg-van Kemenade BML, Chadzińska M. Effects of stress and cortisol on the polarization of carp macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 94:27-37. [PMID: 31465876 DOI: 10.1016/j.fsi.2019.08.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 05/02/2023]
Abstract
In teleost fish, myelopoiesis is maintained both in the head (HK) and trunk kidney (TK), but only the HK holds the endocrine cells that produce the stress hormone cortisol. We now compared the effects of prolonged restraint stress (in vivo) and cortisol (in vitro) on the polarization of HK and TK-derived carp macrophages. Monocytes/macrophages from both sources were treated in vitro with cortisol, lipopolysaccharide or with both factors combined. In vivo, fish were challenged by a prolonged restraint stress. Gene expression of several markers typical for classical M1 and alternative M2 macrophage polarization, as well as glucocorticoid receptors, were measured. Cells from both sources did not differ in the constitutive gene expression of glucocorticoid receptors, whereas they significantly differed in their response to cortisol and stress. In the LPS-stimulated HK monocytes/macrophages, cortisol in vitro counteracted the action of LPS while the effects of cortisol on the activity of TK monocytes/macrophages were less explicit. In vivo, restraint stress up-regulated gene expression of M2 markers in freshly isolated HK monocytes/macrophages, while at the same time it did not affect TK monocytes/macrophages. Moreover, LPS-stimulated HK monocytes/macrophages from stressed animals showed only minor differences in the gene expression of M1 and M2 markers, compared to LPS-treated monocytes/macrophages from control fish. In contrast, stress-induced changes in TK-derived LPS-treated cells were more pronounced. However, these changes did not clearly indicate whether in TK monocytes/macrophages stress will stimulate classical or alternative polarization. Altogether, our results imply that cortisol in vitro and stress in vivo direct HK, but not TK, monocytes/macrophages to the path of alternative polarization. These findings reveal that like in mammals, also in fish the glucocorticoids form important stimulators of alternative macrophage polarization.
Collapse
Affiliation(s)
- Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Leszek Rydz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Iga Świtakowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | | | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
15
|
Eghbalzadeh K, Georgi L, Louis T, Zhao H, Keser U, Weber C, Mollenhauer M, Conforti A, Wahlers T, Paunel-Görgülü A. Compromised Anti-inflammatory Action of Neutrophil Extracellular Traps in PAD4-Deficient Mice Contributes to Aggravated Acute Inflammation After Myocardial Infarction. Front Immunol 2019; 10:2313. [PMID: 31632398 PMCID: PMC6779806 DOI: 10.3389/fimmu.2019.02313] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
Abstract
Innate immune responses and rapid recruitment of leukocytes, which regulate inflammation and subsequent healing, play a key role in acute myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is critically involved in chromatin decondensation during the release of Neutrophil Extracellular Traps (NETs) by activated neutrophils. Alternatively, activated macrophages (M2) and accurate collagen deposition determine the repair of the infarcted heart. In this study, we investigated the impact of NETs on macrophage polarization and their role for acute cardiac inflammation and subsequent cardiac healing in a mouse model of acute MI. NETs were found to promote in vitro macrophage polarization toward a reparative phenotype. NETs suppressed pro-inflammatory macrophages (M1) under hypoxia and diminished IL-6 and TNF-α expression. Further on, NETs strongly supported M2b polarization and IL-10 expression. In cardiac fibroblasts, NETs increased TGF-ß expression under hypoxic culture conditions. PAD4-/- mice subjected to permanent ligation of the left anterior descending artery suffered from overwhelming inflammation in the acute phase of MI. Noteworthy, PAD4-/- neutrophils were unable to release NETs upon ex vivo stimulation with ionomycin or PMA, but produced significantly higher amounts of reactive oxygen species (ROS). Increased levels of circulating cell-free DNA, mitochondrial DNA and cardiac troponin were found in PAD4-/- mice in the acute phase of MI when compared to WT mice. Reduced cardiac expression of IL-6, IL-10, and M2 marker genes, as well as increased TNF-α expression, suggested a pro-inflammatory state. PAD4-/- mice displayed significantly increased cardiac MMP-2 expression under baseline conditions. At day 1, post-MI, PAD4-/- mice showed increased end-diastolic volume and increased thinning of the left ventricular wall. Interestingly, improved cardiac function, as demonstrated by significantly increased ejection fraction, was found at day 21. Altogether, our results indicate that NETs support macrophage polarization toward an M2 phenotype, thus displaying anti-inflammatory properties. PAD4 deficiency aggravates acute inflammation and increases tissue damage post-MI, partially due to the lack of NETs.
Collapse
Affiliation(s)
- Kaveh Eghbalzadeh
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Leena Georgi
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Theresa Louis
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Haizhi Zhao
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Ugur Keser
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Carolyn Weber
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Department of Cardiology, Heart Center, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Andreas Conforti
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Philipp D, Suhr L, Wahlers T, Choi YH, Paunel-Görgülü A. Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res Ther 2018; 9:286. [PMID: 30359316 PMCID: PMC6202843 DOI: 10.1186/s13287-018-1039-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022] Open
Abstract
Background During the last decade, mesenchymal stem cells (MSCs) have gained much attention in the field of regenerative medicine due to their capacity to differentiate into different cell types and to promote immunosuppressive effects. However, the underlying mechanism of MSC-mediated immunoregulation is not fully understood so far. Macrophages are distinguished in classical activated, pro-inflammatory M1 and alternatively activated M2 cells, which possess different functions and transcriptional profiles with respect to inflammatory responses. As polarization is not fixed, macrophage functional plasticity might be modulated by the microenvironment allowing them to rapidly react to danger signals and maintaining tissue homeostasis. Methods Murine MSCs were preconditioned with IL-1ß and IFN-ɣ to enhance their immunosuppressive capacity regarding macrophage polarization under M1- and M2a-polarizing conditions. Macrophage polarization was analyzed by real-time PCR, flow cytometry, and cytokine detection in culture supernatants. The role of MSC-derived nitric oxide (NO), prostaglandin E2 (PGE2), and IL-6 in this process has been evaluated using siRNA transfection and IL-6 receptor-deficient macrophages, respectively. Results Preconditioned, but not unprimed, MSCs secreted high levels of NO, IL-6, and PGE2. Co-culture with macrophages (M0) in the presence of M1 inducers (LPS + IFN-ɣ) led to significant reduction of CD86 and iNOS protein in macrophages and diminished TNF-α secretion. Additionally, CD86 and iNOS protein expression as well as NO and IL-10 secretion were markedly increased under M2a-polarizing culture conditions (IL-4). MSC-dependent macrophage polarization did not depend on direct cell-cell contact. Co-culturing in the presence of LPS and IFN-ɣ resulted in the upregulation of M2a, M2b, and M2c marker genes, whereas in the presence of IL-4 only M2b markers were significantly increased. In turn, IL-10-producing regulatory M2b cells significantly inhibited IFN-ɣ expression in CD4+ T lymphocytes. Finally, we show that MSC-mediated macrophage polarization strongly depends on IL-6, whereas a minor role for NO and PGE2 was found. Conclusions Preconditioning of MSCs highly strengthens their capacity to regulate macrophage features and to promote immunosuppression. Repression of M1 polarization during inflammation and M2b polarization under anti-inflammatory conditions strongly depend on functional IL-6 signaling in macrophages. The potential benefit of preconditioned MSCs and IL-6 should be considered for future clinical treatment. Electronic supplementary material The online version of this article (10.1186/s13287-018-1039-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise Philipp
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Laura Suhr
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Choudhury MG, Kumari S, Das KB, Saha N. Lipopolysaccharide causes NFĸB-mediated induction of inducible nitric oxide synthase gene and more production of nitric oxide in air-breathing catfish, Clarias magur (Hamilton). Gene 2018. [DOI: 10.1016/j.gene.2018.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 2018; 98:641-665. [PMID: 29412048 PMCID: PMC5966718 DOI: 10.1152/physrev.00037.2016] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.
Collapse
Affiliation(s)
- R William Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Paulo C Rodriguez
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - S Priya Narayanan
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Ruth B Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| |
Collapse
|
19
|
Trittmann JK, Velten M, Heyob KM, Almazroue H, Jin Y, Nelin LD, Rogers LK. Arginase and α-smooth muscle actin induction after hyperoxic exposure in a mouse model of bronchopulmonary dysplasia. Clin Exp Pharmacol Physiol 2018; 45:556-562. [PMID: 29266319 DOI: 10.1111/1440-1681.12909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/26/2022]
Abstract
The L-arginine/NO pathway is an important regulator of pulmonary hypertension, the leading cause of mortality in patients with the chronic lung disease of prematurity, bronchopulmonary dysplasia. L-arginine can be metabolized by NO synthase (NOS) to form L-citrulline and NO, a potent vasodilator. Alternatively, L-arginine can be metabolized by arginase to form urea and L-ornithine, a precursor to collagen and proline formation important in vascular remodelling. In the current study, we hypothesized that C3H/HeN mice exposed to prolonged hyperoxia would have increased arginase expression and pulmonary vascular wall cell proliferation. C3H/HeN mice were exposed to 14 days of 85% O2 or room air and lung homogenates analyzed by western blot for protein levels of arginase I, arginase II, endothelial NOS (eNOS), ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and α-smooth muscle actin (α-SMA). Hyperoxia did not change arginase I or eNOS protein levels. However, arginase II protein levels were 15-fold greater after hyperoxia exposure than in lungs exposed to room air. Greater protein levels of ODC and OAT were found in lungs following hyperoxic exposure than in room air animals. α-SMA protein levels were found to be 7-fold greater in the hyperoxia exposed lungs than in room air lungs. In the hyperoxia exposed lungs there was evidence of greater pulmonary vascular wall cell proliferation by α-SMA immunohistochemistry than in room air lungs. Taken together, these data are consistent with a more proliferative vascular phenotype, and may explain the propensity of patients with bronchopulmonary dysplasia to develop pulmonary hypertension.
Collapse
Affiliation(s)
- Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich-Wilhelms University, University Medical Center, Bonn, Germany
| | - Kathryn M Heyob
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Hanadi Almazroue
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Lynette K Rogers
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Hou R, Han Y, Fei Q, Gao Y, Qi R, Cai R, Qi Y. Dietary Flavone Tectochrysin Exerts Anti-Inflammatory Action by Directly Inhibiting MEK1/2 in LPS-Primed Macrophages. Mol Nutr Food Res 2017; 62. [DOI: 10.1002/mnfr.201700288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/28/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Rui Hou
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yixin Han
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Qiaoling Fei
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yuan Gao
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Ruijuan Qi
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Runlan Cai
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yun Qi
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| |
Collapse
|
21
|
Trittmann JK, Jin Y, Chicoine LG, Liu Y, Chen B, Nelin LD. An arginase-1 SNP that protects against the development of pulmonary hypertension in bronchopulmonary dysplasia enhances NO-mediated apoptosis in lymphocytes. Physiol Rep 2017; 4:4/22/e13041. [PMID: 27895230 PMCID: PMC5358007 DOI: 10.14814/phy2.13041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 11/24/2022] Open
Abstract
Arginase and nitric oxide synthase (NOS) share a common substrate, l‐arginine, and have opposing effects on vascular remodeling. Arginase is the first step in polyamine and proline synthesis necessary for cellular proliferation, while NO produced from NOS promotes apoptosis. Previously, we identified a single nucleotide polymorphism (SNP) in the arginase‐1 (ARG1) gene, rs2781666 (T‐allele) that was associated with a decreased risk for developing pulmonary hypertension (PH) in a cohort of infants with bronchopulmonary dysplasia (BPD). In this study, we utilized lymphocytes from neonates (the only readily available cells from these patients expressing the two genotypes of interest) with either the rs2781666 SNP (TT) or wild type (GG) to test the hypothesis that the protection of the ARG1 SNP against the development of PH in BPD would involve augmented NO production leading to more apoptosis. Lymphocytes were stimulated with IL‐4, IL‐13, and phorbol myristate acetate (PMA). We found that TT lymphocytes had similar levels of arginase I and arginase II expression, but there was a tendency for lower urea production (a surrogate marker of arginase activity), than in the GG lymphocytes. The TT lymphocytes also had significantly greater NO production than did GG lymphocytes despite no differences in iNOS expression between genotypes. Furthermore, the TT lymphocytes had lower numbers of viable cells, and higher levels of cleaved caspase‐3 than did GG lymphocytes. Inhibiting NOS activity using Nω‐Nitro‐l‐arginine methyl ester hydrochloride (l‐NAME) significantly decreased cleaved caspase‐3 levels in the TT lymphocytes. These data demonstrate that the TT genotype results in greater levels of NO production leading to more apoptosis, which is consistent with the concept that BPD patients with the TT genotype are protected against the development of PH by producing greater basal levels of endogenous NO.
Collapse
Affiliation(s)
- Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio
| | - Louis G Chicoine
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
22
|
Vinué Á, Navarro J, Herrero-Cervera A, García-Cubas M, Andrés-Blasco I, Martínez-Hervás S, Real JT, Ascaso JF, González-Navarro H. The GLP-1 analogue lixisenatide decreases atherosclerosis in insulin-resistant mice by modulating macrophage phenotype. Diabetologia 2017; 60:1801-1812. [PMID: 28608285 DOI: 10.1007/s00125-017-4330-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Recent clinical studies indicate that glucagon-like peptide-1 (GLP-1) analogues prevent acute cardiovascular events in type 2 diabetes mellitus but their mechanisms remain unknown. In the present study, the impact of GLP-1 analogues and their potential underlying molecular mechanisms in insulin resistance and atherosclerosis are investigated. METHODS Atherosclerosis development was evaluated in Apoe -/- Irs2 +/- mice, a mouse model of insulin resistance, the metabolic syndrome and atherosclerosis, treated with the GLP-1 analogues lixisenatide or liraglutide. In addition, studies in Apoe -/- Irs2 +/- mice and mouse-derived macrophages treated with lixisenatide were performed to investigate the potential inflammatory intracellular pathways. RESULTS Treatment of Apoe -/- Irs2 +/- mice with either lixisenatide or liraglutide improved glucose metabolism and blood pressure but this was independent of body weight loss. Both drugs significantly decreased atheroma plaque size. Compared with vehicle-treated control mice, lixisenatide treatment generated more stable atheromas, with fewer inflammatory infiltrates, reduced necrotic cores and thicker fibrous caps. Lixisenatide-treated mice also displayed diminished IL-6 levels, proinflammatory Ly6Chigh monocytes and activated T cells. In vitro analysis showed that, in macrophages from Apoe -/- Irs2 +/- mice, lixisenatide reduced the secretion of the proinflammatory cytokine IL-6 accompanied by enhanced activation of signal transducer and activator of transcription (STAT) 3, which is a determinant for M2 macrophage differentiation. STAT1 activation, which is essential for M1 phenotype, was also diminished. Furthermore, atheromas from lixisenatide-treated mice showed higher arginase I content and decreased expression of inducible nitric oxide synthase, indicating the prevalence of the M2 phenotype within plaques. CONCLUSIONS/INTERPRETATION Lixisenatide decreases atheroma plaque size and instability in Apoe -/- Irs2 +/- mice by reprogramming macrophages towards an M2 phenotype, which leads to reduced inflammation. This study identifies a critical role for this drug in macrophage polarisation inside plaques and provides experimental evidence supporting a novel mechanism of action for GLP-1 analogues in the reduction of cardiovascular risk associated with insulin resistance.
Collapse
Affiliation(s)
- Ángela Vinué
- Institute of Health Research-INCLIVA, Avda Menéndez Pelayo 4, 46010, Valencia, Spain
| | - Jorge Navarro
- Institute of Health Research-INCLIVA, Avda Menéndez Pelayo 4, 46010, Valencia, Spain
- Clinic Hospital and Department of Medicine, University of Valencia, Institute of Health Research-INCLIVA, Valencia, Spain
- CIBER Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | | | - Marta García-Cubas
- Institute of Health Research-INCLIVA, Avda Menéndez Pelayo 4, 46010, Valencia, Spain
| | - Irene Andrés-Blasco
- Institute of Health Research-INCLIVA, Avda Menéndez Pelayo 4, 46010, Valencia, Spain
| | - Sergio Martínez-Hervás
- Institute of Health Research-INCLIVA, Avda Menéndez Pelayo 4, 46010, Valencia, Spain
- Endocrinology and Nutrition Department, Clinic Hospital and Department of Medicine, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - José T Real
- Institute of Health Research-INCLIVA, Avda Menéndez Pelayo 4, 46010, Valencia, Spain
- Endocrinology and Nutrition Department, Clinic Hospital and Department of Medicine, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Juan F Ascaso
- Institute of Health Research-INCLIVA, Avda Menéndez Pelayo 4, 46010, Valencia, Spain
- Endocrinology and Nutrition Department, Clinic Hospital and Department of Medicine, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVA, Avda Menéndez Pelayo 4, 46010, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
23
|
Lyssavirus phosphoproteins increase mitochondrial complex I activity and levels of reactive oxygen species. J Neurovirol 2017; 23:756-762. [DOI: 10.1007/s13365-017-0550-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
|
24
|
Talavera MM, Nuthakki S, Cui H, Jin Y, Liu Y, Nelin LD. Immunostimulated Arginase II Expression in Intestinal Epithelial Cells Reduces Nitric Oxide Production and Apoptosis. Front Cell Dev Biol 2017; 5:15. [PMID: 28299311 PMCID: PMC5331049 DOI: 10.3389/fcell.2017.00015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023] Open
Abstract
Increased production of nitric oxide (NO) and subsequent local cytotoxicity to mucosal epithelial cells has been proposed as a putative mechanism involved in the development of necrotizing enterocolitis (NEC). Intestinal epithelial cells (IECs) metabolize L-arginine to either nitric oxide (NO) by NO synthase (NOS) or to L-ornithine and urea by arginase. L-ornithine is the first step in polyamine synthesis important for cell proliferation, while NO production can lead to apoptosis. We hypothesized that in IECs immunostimulation increases both NOS and arginase expression, and that arginase activity mitigates NO production and apoptosis. Rat intestinal epithelial cells (rIEC-6) were immunostimulated by either incubation with lipopolysaccharide (LPS) alone for 24 h or by incubation with conditioned media (CM) for 24 h. CM was obtained from RAW 264.7 cells (a macrophage cell line) treated with LPS (E. coli 0127:B8; 1 μg/ml) for 4 h. The rIEC-6 stimulated with LPS or with CM had significantly higher levels of inducible NOS (iNOS) protein, NO production, and arginase II protein than did the control cells. Direct LPS stimulation of rIEC-6 produced a less robust increase in iNOS expression and NO (represented as nitrite percent of control) than did CM stimulation. Inhibition of arginase using Nω hydroxyl-L-arginine (NOHA) further increased stimulated NO production in rIEC-6. Viable cell numbers were significantly lower in CM stimulated cells after 24 h than in controls, and inhibition of arginase activity with NOHA resulted in a further significant decrease in viable cell numbers. We conclude that immunostimulated arginase expression of rIEC-6 cells tempers cytokine-induced iNOS-derived NO production and apoptosis.
Collapse
Affiliation(s)
- Maria M Talavera
- Center for Perinatal Research, The Research Institute at Nationwide Children's HospitalColumbus, OH, USA; Department of Pediatrics, The Ohio State UniversityColumbus, OH, USA
| | - Sushma Nuthakki
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Houston, TX, USA
| | - Hongmei Cui
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
| | - Yi Jin
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's HospitalColumbus, OH, USA; Department of Pediatrics, The Ohio State UniversityColumbus, OH, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Research Institute at Nationwide Children's HospitalColumbus, OH, USA; Department of Pediatrics, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
25
|
White HA, Jin Y, Chicoine LG, Chen B, Liu Y, Nelin LD. Hypoxic proliferation requires EGFR-mediated ERK activation in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L649-L656. [PMID: 28188223 DOI: 10.1152/ajplung.00267.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that hypoxic proliferation of human pulmonary microvascular endothelial cells (hPMVECs) depends on epidermal growth factor receptor (EGFR) activation. To determine downstream signaling leading to proliferation, we tested the hypothesis that hypoxia-induced proliferation in hPMVECs would require EGFR-mediated activation of extracellular signal-regulated kinase (ERK) leading to arginase II induction. To test this hypothesis, hPMVECs were incubated in either normoxia (21% O2, 5% CO2) or hypoxia (1% O2, 5% CO2) and Western blotting was performed for EGFR, arginase II, phosphorylated-ERK (pERK), and total ERK (ERK). Hypoxia led to greater EGFR, pERK, and arginase II protein levels than did normoxia in hPMVECs. To examine the role of EGFR in these hypoxia-induced changes, hPMVECs were transfected with siRNA against EGFR or a scrambled siRNA and placed in hypoxia. Inhibition of EGFR using siRNA attenuated hypoxia-induced pERK and arginase II expression as well as the hypoxia-induced increase in viable cell numbers. hPMVECs were then treated with vehicle, an EGFR inhibitor (AG1478), or an ERK pathway inhibitor (U0126) and placed in hypoxia. Pharmacologic inhibition of EGFR significantly attenuated the hypoxia-induced increase in pERK level. Both AG1478 and U0126 also significantly attenuated the hypoxia-induced increase in viable hPMVECs numbers. hPMVECs were transfected with an adenoviral vector containing arginase II (AdArg2) and overexpression of arginase II rescued the U0126-mediated decrease in viable cell numbers in hypoxic hPMVECs. Our findings suggest that hypoxic activation of EGFR results in phosphorylation of ERK, which is required for hypoxic induction of arginase II and cellular proliferation.
Collapse
Affiliation(s)
- Hilary A White
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Louis G Chicoine
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
26
|
Keränen T, Hömmö T, Moilanen E, Korhonen R. β 2-receptor agonists salbutamol and terbutaline attenuated cytokine production by suppressing ERK pathway through cAMP in macrophages. Cytokine 2017; 94:1-7. [PMID: 28162907 DOI: 10.1016/j.cyto.2016.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/17/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023]
Abstract
β2-receptor agonists are used in the treatment of inflammatory obstructive lung diseases asthma and COPD as a symptomatic remedy, but they have been suggested to possess anti-inflammatory properties, also. β2-receptor activation is considered to lead to the activation of ERK pathway through G-protein- and cAMP-independent mechanisms. In this study, we investigated the effects of β2-receptor agonists salbutamol and terbutaline on the production of inflammatory factors in macrophages. We found that β2-receptor agonists inhibited LPS-induced ERK phosphorylation and the production of MCP-1. A chemical cAMP analog 8-Br-cAMP also inhibited ERK phosphorylation and TNF and MCP-1 release. As expected, MAPK/ERK kinase (MEK)1/2 inhibitor PD0325901 inhibited ERK phosphorylation and suppressed both TNF and MCP-1 production. In conclusion, we suggest that β2-receptor agonists salbutamol and terbutaline inhibit inflammatory gene expression partly by a mechanism dependent on cAMP leading to the inhibition of ERK signaling in macrophages. Observed anti-inflammatory effects of β2-receptor agonists may contribute to the clinical effects of these drugs.
Collapse
Affiliation(s)
- Tiina Keränen
- The Immunopharmacology Research Group, University of Tampere School of Medicine, and Tampere University Hospital, Tampere, Finland
| | - Tuija Hömmö
- The Immunopharmacology Research Group, University of Tampere School of Medicine, and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine, and Tampere University Hospital, Tampere, Finland
| | - Riku Korhonen
- The Immunopharmacology Research Group, University of Tampere School of Medicine, and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
27
|
Du J, Wang R, Zhang W, Zhang C, Li X, Shi X, Hu M, Ma F, Ma C, Wang X, Tao N, Qin Z. A polysaccharide derived from Lentinus edodes impairs the immunosuppressive function of myeloid-derived suppressor cells via the p38 pathways. RSC Adv 2017. [DOI: 10.1039/c7ra06789e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MPSSS may reverse the function of the MSC2 cells through p38 activation and ERK suppression and provide a novel anti-cancer strategy by targeting myeloid immune suppressor cells.
Collapse
|
28
|
Yang K, Wu Y, Xie H, Li M, Ming S, Li L, Li M, Wu M, Gong S, Huang X. Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production. Sci Rep 2016; 6:27326. [PMID: 27251437 PMCID: PMC4890015 DOI: 10.1038/srep27326] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/12/2016] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is a hard-to-eradicate intracellular microbe, which escapes host immune attack during latent infection. Recent studies reveal that mesenchymal stem cells (MSCs) provide a protective niche for MTB to maintain latency. However, the regulation of mycobacterial residency in MSCs in the infectious microenvironment remains largely unknown. Here, we found that macrophage-mediated inflammatory response during MTB infection facilitated the clearance of bacilli residing in mouse MSCs. Higher inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production were observed in mouse MSCs under macrophage-mediated inflammatory circumstance. Blocking NO production in MSCs increased the survival of intracellular mycobacteria, indicating NO-mediated antimycobacterial activity. Moreover, both nuclear factor κB (NF-κB) and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways were involved in iNOS expression and NO production in inflammatory microenvironment. Furthermore, pro-inflammatory cytokine interleukin-1β could trigger NO production in MSCs and exert anti-mycobacterial activity via NF-κB signaling pathway. Neutralization of interleukin-1β in macrophage-mediated inflammatory microenvironment dampened the ability of mouse MSCs to produce NO. Together, our findings demonstrated that macrophage-mediated inflammatory response during mycobacterial infection promotes the clearance of bacilli in mouse MSCs by increasing NO production, which may provide a better understanding of latent MTB infection.
Collapse
Affiliation(s)
- Kun Yang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yongjian Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Heping Xie
- Department of Traditional Chinese Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Miao Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Siqi Ming
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Liyan Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Meiyu Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Minhao Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Sitang Gong
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xi Huang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
29
|
Nelin LD, White HA, Jin Y, Trittmann JK, Chen B, Liu Y. The Src family tyrosine kinases src and yes have differential effects on inflammation-induced apoptosis in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L880-8. [PMID: 26919896 DOI: 10.1152/ajplung.00306.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/19/2016] [Indexed: 01/11/2023] Open
Abstract
Endothelial cells are essential for normal lung function: they sense and respond to circulating factors and hemodynamic alterations. In inflammatory lung diseases such as acute respiratory distress syndrome, endothelial cell apoptosis is an inciting event in pathogenesis and a prominent pathological feature. Endothelial cell apoptosis is mediated by circulating inflammatory factors, which bind to receptors on the cell surface, activating signal transduction pathways, leading to caspase-3-mediated apoptosis. We hypothesized that yes and src have differential effects on caspase-3 activation in human pulmonary microvascular endothelial cells (hPMVEC) due to differential downstream signaling effects. To test this hypothesis, hPMVEC were treated with siRNA against src (siRNAsrc), siRNA against yes (siRNAyes), or their respective scramble controls. After recovery, the hPMVEC were treated with cytomix (LPS, IL-1β, TNF-α, and IFN-γ). Treatment with cytomix induced activation of the extracellular signal-regulated kinase (ERK) pathway and caspase-3-mediated apoptosis. Treatment with siRNAsrc blunted cytomix-induced ERK activation and enhanced cleaved caspase-3 levels, while treatment with siRNAyes enhanced cytomix-induced ERK activation and attenuated levels of cleaved caspase-3. Inhibition of the ERK pathway using U0126 enhanced cytomix-induced caspase-3 activity. Treatment of hPMVEC with cytomix induced Akt activation, which was inhibited by siRNAsrc. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway using LY294002 prevented cytomix-induced ERK activation and augmented cytomix-induced caspase-3 cleavage. Together, our data demonstrate that, in hPMVEC, yes activation blunts the ERK cascade in response to cytomix, resulting in greater apoptosis, while cytomix-induced src activation induces the phosphatidylinositol 3-kinase pathway, which leads to activation of Akt and ERK and attenuation of apoptosis.
Collapse
Affiliation(s)
- Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Hilary A White
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
30
|
Chang SF, Lin SS, Yang HC, Chou YY, Gao JI, Lu SC. LPS-Induced G-CSF Expression in Macrophages Is Mediated by ERK2, but Not ERK1. PLoS One 2015; 10:e0129685. [PMID: 26114754 PMCID: PMC4483241 DOI: 10.1371/journal.pone.0129685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/12/2015] [Indexed: 01/12/2023] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) selectively stimulates proliferation and differentiation of neutrophil progenitors which play important roles in host defense against infectious agents. However, persistent G-CSF production often leads to neutrophilia and excessive inflammatory reactions. There is therefore a need to understand the mechanism regulating G-CSF expression. In this study, we showed that U0126, a MEK1/2 inhibitor, decreases lipopolysaccharide (LPS)-stimulated G-CSF promoter activity, mRNA expression and protein secretion. Using short hairpin RNA knockdown, we demonstrated that ERK2, and not ERK1, involves in LPS-induced G-CSF expression, but not LPS-regulated expression of TNF-α. Reporter assays showed that ERK2 and C/EBPβ synergistically activate G-CSF promoter activity. Further chromatin immunoprecipitation (ChIP) assays revealed that U0126 inhibits LPS-induced binding of NF-κB (p50/p65) and C/EBPβ to the G-CSF promoter, but not their nuclear protein levels. Knockdown of ERK2 inhibits LPS-induced accessibility of the G-CSF promoter region to DNase I, suggesting that chromatin remodeling may occur. These findings clarify that ERK2, rather than ERK1, mediates LPS-induced G-CSF expression in macrophages by remodeling chromatin, and stimulates C/EBPβ-dependent activation of the G-CSF promoter. This study provides a potential target for regulating G-CSF expression.
Collapse
Affiliation(s)
- Shwu-Fen Chang
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Shan Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Ching Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Yi Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jhen-I Gao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|