1
|
Konstantinou A, Varga JK, Córdova-Pérez A, Simonetti L, Gomez-Lucas L, Schueler-Furman O, Davey NE, Kulathu Y, Ivarsson Y. Elucidation of short linear motif-based interactions of the MIT and rhodanese domains of the ubiquitin-specific protease 8. Biol Direct 2025; 20:59. [PMID: 40329301 PMCID: PMC12057046 DOI: 10.1186/s13062-025-00638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/18/2025] [Indexed: 05/08/2025] Open
Abstract
Ubiquitin-specific protease 8 (USP8) is a deubiquitinating enzyme with essential functions in protein trafficking and stability. It is a multidomain protein, with an N-terminal MIT (microtubule interacting and trafficking) domain, followed by a non-catalytic rhodanese (Rhod) domain, a long intrinsically disordered region, and a C-terminal catalytic domain. The N-terminal MIT domain of USP8 is known to mediate protein-protein interactions through binding to short linear motifs. The non-catalytic Rhod domain is also involved in protein-protein interactions, however detailed insights into these interactions remain limited. In this study we explore the short linear motif-based interactions of the MIT and Rhod domains of USP8 using a combination of proteomic peptide-phage display, peptide arrays and deep mutational scanning. We show that the MIT domain can bind ligands with a general [DE][LIF]x{2,3}R[FYIL]xxL[LV] consensus motif. We uncover that the rhodanese domain of USP8 is a peptide-binding domain, and define two distinct binding motifs (Rx[LI]xGxxxPxxL and G[LV][DE][IM]WExKxxxLxE) for this domain by deep mutational scanning of two different peptide ligands. Using the motif information, we predict binding sites within known USP8 interactors and substrates and validate interactions through peptide array analysis. Our findings demonstrate that both the USP8 MIT and rhodanese domains are peptide-binding domains that can be bound by degenerate and distinct binding motifs. The detailed information on the peptide binding preference of the two N-terminal domains of USP8 provide novel insights into the molecular recognition events that underlie the function of this essential deubiquitinating enzyme.
Collapse
Affiliation(s)
| | - Julia K Varga
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alicia Córdova-Pérez
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Leandro Simonetti
- Department of Chemistry-BMC, Uppsala University, Box 576, Uppsala, 751 23, Sweden
| | - Lidia Gomez-Lucas
- Department of Chemistry-BMC, Uppsala University, Box 576, Uppsala, 751 23, Sweden
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Box 576, Uppsala, 751 23, Sweden.
| |
Collapse
|
2
|
Park J, Kim J, Park H, Kim T, Lee S. ESCRT-III: a versatile membrane remodeling machinery and its implications in cellular processes and diseases. Anim Cells Syst (Seoul) 2024; 28:367-380. [PMID: 39070887 PMCID: PMC11275535 DOI: 10.1080/19768354.2024.2380294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) machinery is an evolutionarily conserved cytosolic protein complex that plays a crucial role in membrane remodeling and scission events across eukaryotes. Initially discovered for its function in multivesicular body (MVB) formation, the ESCRT complex has since been implicated in a wide range of membrane-associated processes, including endocytosis, exocytosis, cytokinesis, and autophagy. Recent advances have elucidated the ESCRT assembly pathway and highlighted the distinct functions of the various ESCRT complexes and their associated partners. Among the ESCRT complexes, ESCRT-III stands out as a critical player in membrane remodeling, with its subunits assembled into higher-order multimers capable of bending and severing membranes. This review focuses on the ESCRT-III complex, exploring its diverse functions in cellular processes beyond MVB biogenesis. We delve into the molecular mechanisms underlying ESCRT-III-mediated membrane remodeling and highlight its emerging roles in processes such as viral budding, autophagosome closure, and cytokinetic abscission. We also discuss the implications of ESCRT-III dysregulation in neurodegenerative diseases. The versatile membrane remodeling capabilities of ESCRT-III across diverse cellular processes underscore its importance in maintaining proper cellular function. Furthermore, we highlight the promising potential of ESCRT-III as a therapeutic target for neurodegenerative diseases, offering insights into the treatments of the diseases and the technical applications in related research fields.
Collapse
Affiliation(s)
- Jisoo Park
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Jongyoon Kim
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Hyungsun Park
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Taewan Kim
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Seongju Lee
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Department of Anatomy, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
3
|
Paine EL, Skalicky JJ, Whitby FG, Mackay DR, Ullman KS, Hill CP, Sundquist WI. The Calpain-7 protease functions together with the ESCRT-III protein IST1 within the midbody to regulate the timing and completion of abscission. eLife 2023; 12:e84515. [PMID: 37772788 PMCID: PMC10586806 DOI: 10.7554/elife.84515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/28/2023] [Indexed: 09/30/2023] Open
Abstract
The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery mediates the membrane fission step that completes cytokinetic abscission and separates dividing cells. Filaments composed of ESCRT-III subunits constrict membranes of the intercellular bridge midbody to the abscission point. These filaments also bind and recruit cofactors whose activities help execute abscission and/or delay abscission timing in response to mitotic errors via the NoCut/Abscission checkpoint. We previously showed that the ESCRT-III subunit IST1 binds the cysteine protease Calpain-7 (CAPN7) and that CAPN7 is required for both efficient abscission and NoCut checkpoint maintenance (Wenzel et al., 2022). Here, we report biochemical and crystallographic studies showing that the tandem microtubule-interacting and trafficking (MIT) domains of CAPN7 bind simultaneously to two distinct IST1 MIT interaction motifs. Structure-guided point mutations in either CAPN7 MIT domain disrupted IST1 binding in vitro and in cells, and depletion/rescue experiments showed that the CAPN7-IST1 interaction is required for (1) CAPN7 recruitment to midbodies, (2) efficient abscission, and (3) NoCut checkpoint arrest. CAPN7 proteolytic activity is also required for abscission and checkpoint maintenance. Hence, IST1 recruits CAPN7 to midbodies, where its proteolytic activity is required to regulate and complete abscission.
Collapse
Affiliation(s)
- Elliott L Paine
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Frank G Whitby
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
4
|
Wang M, Luo S, Fan B, Zhu C, Chen Z. LIP5, a MVB biogenesis regulator, is required for rice growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1103028. [PMID: 36733718 PMCID: PMC9887185 DOI: 10.3389/fpls.2023.1103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
LYST-INTERACTING PROTEIN5 (LIP5) is a conserved regulator of multivesicular body (MVB) biogenesis in eukaryotes. In Arabidopsis, AtLIP5 is a target of stress-responsive MITOGEN-ACTIVATED PROTEIN KINASE3 and 6 and mediates stress-induced MVB biogenesis to promote stress responses. However, Arabidopsis atlip5 knockout mutants are normal in growth and development. Here we report that rice OsLIP5 gene could fully restore both the disease resistance and salt tolerance of the Arabidopsis oslip5 mutant plants to the wild-type levels. Unlike Arabidopsis atlip5 mutants, rice oslip5 mutants were severely stunted, developed necrotic lesions and all died before flowering. Unlike in Arabidopsis, LIP5 regulated endocytosis under both stress and normal conditions in rice. These findings indicate that there is strong evolutionary divergence among different plants in the role of the conserved LIP5-regulated MVB pathway in normal plant growth.
Collapse
Affiliation(s)
- Mengxue Wang
- College of Life Science and Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Shuwei Luo
- College of Life Science and Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Cheng Zhu
- College of Life Science and Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Zhixiang Chen
- College of Life Science and Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Pepe A, Colucci A, Carucci M, Nazzaro L, Bucci C, Ranucci G, Di Giorgio A, Vajro P, Mandato C. Case Report: Add-on treatment with odevixibat in a new subtype of progressive familial intrahepatic cholestasis broadens the therapeutic horizon of genetic cholestasis. Front Pediatr 2023; 11:1061535. [PMID: 36865697 PMCID: PMC9974160 DOI: 10.3389/fped.2023.1061535] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Odevixibat, an ileal bile acid transporter (IBAT) inhibitor, is effective for the treatment of pruritus in children diagnosed with progressive familial intrahepatic cholestasis (PFIC) type 1 and 2. There are no studies showing the efficacy of Odevixibat in children with different subtypes of PFIC. We describe the case of a 6-year-old girl with chronic cholestatic jaundice. In the last 12 months laboratory data showed high serum levels of bilirubin (total bilirubin x 2.5 ULN; direct bilirubin x 1.7 ULN) and bile acids (sBA x 70 ULN), elevated transaminases (x 3-4 ULN), and preserved synthetic liver function. Genetic testing showed homozygous mutation in ZFYVE19 gene, which is not included among the classic causative genes of PFIC and determined a new non-syndromic phenotype recently classified as PFIC9 (OMIM # 619849). Due to the persistent intensity of itching [score of 5 (very severe) at the Caregiver Global Impression of Severity (CaGIS)] and sleep disturbances not responsive to rifampicin and ursodeoxycholic acid (UDCA), Odevixibat treatment was started. After treatment with odevixibat we observed: (i) reduction in sBA from 458 to 71 μmol/L (absolute change from baseline: -387 μmol/L), (ii) reduction in CaGIS from 5 to 1, and (iii) resolution of sleep disturbances. The BMI z-score progressively increased from -0.98 to +0.56 after 3 months of treatment. No adverse drug events were recorded. Treatment with IBAT inhibitor was effective and safe in our patient suggesting that Odevixibat may be potentially considered for the treatment of cholestatic pruritus also in children with rare subtypes of PFIC. Further studies on a larger scale could lead to the increasing of patients eligible for this treatment.
Collapse
Affiliation(s)
- Angela Pepe
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Pediatrics Section, University of Salerno, Baronissi (Salerno), Italy
| | - Angelo Colucci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Pediatrics Section, University of Salerno, Baronissi (Salerno), Italy
| | - Martina Carucci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Pediatrics Section, University of Salerno, Baronissi (Salerno), Italy
| | - Lucia Nazzaro
- Pediatric Unit, University Hospital "San Giovanni di Dio e Ruggi d"Aragona", Salerno, Italy
| | - Cristina Bucci
- Department of Gastroenterology, AORN Santobono- Pausilipon Children Hospital, Naples, Italy
| | - Giusy Ranucci
- Pediatric Department, AORN Santobono- Pausilipon Children Hospital, Naples, Italy
| | - Angelo Di Giorgio
- Department of Pediatric Gastroenterology Hepatology and Transplantation, Pediatric Hepatology, Gastroenterology and Transplantation, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Pediatrics Section, University of Salerno, Baronissi (Salerno), Italy
| | - Claudia Mandato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Pediatrics Section, University of Salerno, Baronissi (Salerno), Italy
| |
Collapse
|
6
|
Wenzel DM, Mackay DR, Skalicky JJ, Paine EL, Miller MS, Ullman KS, Sundquist WI. Comprehensive analysis of the human ESCRT-III-MIT domain interactome reveals new cofactors for cytokinetic abscission. eLife 2022; 11:e77779. [PMID: 36107470 PMCID: PMC9477494 DOI: 10.7554/elife.77779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The 12 related human ESCRT-III proteins form filaments that constrict membranes and mediate fission, including during cytokinetic abscission. The C-terminal tails of polymerized ESCRT-III subunits also bind proteins that contain Microtubule-Interacting and Trafficking (MIT) domains. MIT domains can interact with ESCRT-III tails in many different ways to create a complex binding code that is used to recruit essential cofactors to sites of ESCRT activity. Here, we have comprehensively and quantitatively mapped the interactions between all known ESCRT-III tails and 19 recombinant human MIT domains. We measured 228 pairwise interactions, quantified 60 positive interactions, and discovered 18 previously unreported interactions. We also report the crystal structure of the SPASTIN MIT domain in complex with the IST1 C-terminal tail. Three MIT enzymes were studied in detail and shown to: (1) localize to cytokinetic midbody membrane bridges through interactions with their specific ESCRT-III binding partners (SPASTIN-IST1, KATNA1-CHMP3, and CAPN7-IST1), (2) function in abscission (SPASTIN, KATNA1, and CAPN7), and (3) function in the 'NoCut' abscission checkpoint (SPASTIN and CAPN7). Our studies define the human MIT-ESCRT-III interactome, identify new factors and activities required for cytokinetic abscission and its regulation, and provide a platform for analyzing ESCRT-III and MIT cofactor interactions in all ESCRT-mediated processes.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Elliott L Paine
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Matthew S Miller
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
7
|
Costa AC, Sousa MM. The Role of Spastin in Axon Biology. Front Cell Dev Biol 2022; 10:934522. [PMID: 35865632 PMCID: PMC9294387 DOI: 10.3389/fcell.2022.934522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurons are highly polarized cells with elaborate shapes that allow them to perform their function. In neurons, microtubule organization—length, density, and dynamics—are essential for the establishment of polarity, growth, and transport. A mounting body of evidence shows that modulation of the microtubule cytoskeleton by microtubule-associated proteins fine tunes key aspects of neuronal cell biology. In this respect, microtubule severing enzymes—spastin, katanin and fidgetin—a group of microtubule-associated proteins that bind to and generate internal breaks in the microtubule lattice, are emerging as key modulators of the microtubule cytoskeleton in different model systems. In this review, we provide an integrative view on the latest research demonstrating the key role of spastin in neurons, specifically in the context of axonal cell biology. We focus on the function of spastin in the regulation of microtubule organization, and axonal transport, that underlie its importance in the intricate control of axon growth, branching and regeneration.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| | - Monica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| |
Collapse
|
8
|
Ranches G, Zeidler M, Kessler R, Hoelzl M, Hess MW, Vosper J, Perco P, Schramek H, Kummer KK, Kress M, Krogsdam A, Rudnicki M, Mayer G, Huettenhofer A. Exosomal mitochondrial tRNAs and miRNAs as potential predictors of inflammation in renal proximal tubular epithelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:794-813. [PMID: 35664695 PMCID: PMC9136061 DOI: 10.1016/j.omtn.2022.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/28/2022] [Indexed: 12/02/2022]
Abstract
Exosomes have emerged as a valuable repository of novel biomarkers for human diseases such as chronic kidney disease (CKD). From a healthy control group, we performed microRNA (miRNA) profiling of urinary exosomes and compared it with a cell culture model of renal proximal tubular epithelial cells (RPTECs). Thereby, a large fraction of abundant urinary exosomal miRNAs could also be detected in exosomes derived from RPTECs, indicating them as a suitable model system for investigation of CKD. We subsequently analyzed exosomes from RPTECs in pro-inflammatory and pro-fibrotic states, mimicking some aspects of CKD. Following cytokine treatment, we observed a significant increase in exosome release and identified 30 dysregulated exosomal miRNAs, predominantly associated with the regulation of pro-inflammatory and pro-fibrotic-related pathways. In addition to miRNAs, we also identified 16 dysregulated exosomal mitochondrial RNAs, highlighting a pivotal role of mitochondria in sensing renal inflammation. Inhibitors of exosome biogenesis and release significantly altered the abundance of selected candidate miRNAs and mitochondrial RNAs, thus suggesting distinct sorting mechanisms of different non-coding RNA (ncRNA) species into exosomes. Hence, these two exosomal ncRNA species might be employed as potential indicators for predicting the pathogenesis of CKD and also might enable effective monitoring of the efficacy of CKD treatment.
Collapse
Affiliation(s)
- Glory Ranches
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Roman Kessler
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Martina Hoelzl
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Michael W. Hess
- Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Jonathan Vosper
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Paul Perco
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Herbert Schramek
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Anne Krogsdam
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Michael Rudnicki
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Alexander Huettenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
9
|
Kumar M, Michael S, Alvarado-Valverde J, Mészáros B, Sámano‐Sánchez H, Zeke A, Dobson L, Lazar T, Örd M, Nagpal A, Farahi N, Käser M, Kraleti R, Davey N, Pancsa R, Chemes L, Gibson T. The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Res 2022; 50:D497-D508. [PMID: 34718738 PMCID: PMC8728146 DOI: 10.1093/nar/gkab975] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023] Open
Abstract
Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano‐Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Biomedical Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Laszlo Dobson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mihkel Örd
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Anurag Nagpal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa 403726, India
| | - Nazanin Farahi
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Melanie Käser
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Ramya Kraleti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Justus Liebig University Giessen, Ludwigstraße 23, 35390 Gießen, Germany
| | - Norman E Davey
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Rita Pancsa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
10
|
Liu Q, Zhang G, Ji Z, Lin H. Molecular and cellular mechanisms of spastin in neural development and disease (Review). Int J Mol Med 2021; 48:218. [PMID: 34664680 PMCID: PMC8547542 DOI: 10.3892/ijmm.2021.5051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Spastin is a microtubule (MT)‑severing enzyme identified from mutations of hereditary spastic paraplegia in 1999 and extensive studies indicate its vital role in various cellular activities. In the past two decades, efforts have been made to understand the underlying molecular mechanisms of how spastin is linked to neural development and disease. Recent studies on spastin have unraveled the mechanistic processes of its MT‑severing activity and revealed that spastin acts as an MT amplifier to mediate its remodeling, thus providing valuable insight into the molecular roles of spastin under physiological conditions. In addition, recent research has revealed multiple novel molecular mechanisms of spastin in cellular biological pathways, including endoplasmic reticulum shaping, calcium trafficking, fatty acid trafficking, as well as endosomal fission and trafficking. These processes are closely involved in axonal and dendritic development and maintenance. The current review presents recent biological advances regarding the molecular mechanisms of spastin at the cellular level and provides insight into how it affects neural development and disease.
Collapse
Affiliation(s)
- Qiuling Liu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
11
|
Toupenet Marchesi L, Leblanc M, Stevanin G. Current Knowledge of Endolysosomal and Autophagy Defects in Hereditary Spastic Paraplegia. Cells 2021; 10:cells10071678. [PMID: 34359848 PMCID: PMC8307360 DOI: 10.3390/cells10071678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of neurological disorders involving the degeneration of motor neurons. Due to their clinical and genetic heterogeneity, finding common effective therapeutics is difficult. Therefore, a better understanding of the common pathological mechanisms is necessary. The role of several HSP genes/proteins is linked to the endolysosomal and autophagic pathways, suggesting a functional convergence. Furthermore, impairment of these pathways is particularly interesting since it has been linked to other neurodegenerative diseases, which would suggest that the nervous system is particularly sensitive to the disruption of the endolysosomal and autophagic systems. In this review, we will summarize the involvement of HSP proteins in the endolysosomal and autophagic pathways in order to clarify their functioning and decipher some of the pathological mechanisms leading to HSP.
Collapse
Affiliation(s)
- Liriopé Toupenet Marchesi
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Marion Leblanc
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
- Correspondence:
| |
Collapse
|
12
|
Lu MS, Drubin DG. Cdc42 GTPase regulates ESCRTs in nuclear envelope sealing and ER remodeling. J Cell Biol 2021; 219:151867. [PMID: 32556066 PMCID: PMC7401818 DOI: 10.1083/jcb.201910119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/11/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
Small GTPases of the Rho family are binary molecular switches that regulate a variety of processes including cell migration and oriented cell divisions. Known Cdc42 effectors include proteins involved in cytoskeletal remodeling and kinase-dependent transcription induction, but none are involved in the maintenance of nuclear envelope integrity or ER morphology. Maintenance of nuclear envelope integrity requires the EndoSomal Complexes Required for Transport (ESCRT) proteins, but how they are regulated in this process remains unknown. Here, we show by live-cell imaging a novel Cdc42 localization with ESCRT proteins at sites of nuclear envelope and ER fission and, by genetic analysis of cdc42 mutant yeast, uncover a unique Cdc42 function in regulation of ESCRT proteins at the nuclear envelope and sites of ER tubule fission. Our findings implicate Cdc42 in nuclear envelope sealing and ER remodeling, where it regulates ESCRT disassembly to maintain nuclear envelope integrity and proper ER architecture.
Collapse
Affiliation(s)
- Michelle Seiko Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
13
|
Wong GL, Abu Jalboush S, Lo HW. Exosomal MicroRNAs and Organotropism in Breast Cancer Metastasis. Cancers (Basel) 2020; 12:E1827. [PMID: 32646059 PMCID: PMC7408921 DOI: 10.3390/cancers12071827] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent malignancy for women in which one in eight women will be diagnosed with the disease in their lifetime. Despite advances made in treating primary breast cancer, there is still no effective treatment for metastatic breast cancer. Consequently, metastatic breast cancer is responsible for 90% of breast cancer-related deaths while only accounting for approximately one third of all breast cancer cases. To help develop effective treatments for metastatic breast cancer, it is important to gain a deeper understanding of the mechanisms by which breast cancer metastasizes, particularly, those underlying organotropism towards brain, bone, and lungs. In this review, we will primarily focus on the roles that circulating exosomal microRNAs (miRNAs) play in organotropism of breast cancer metastasis. Exosomes are extracellular vesicles that play critical roles in intercellular communication. MicroRNAs can be encapsulated in exosomes; cargo-loaded exosomes can be secreted by tumor cells into the tumor microenvironment to facilitate tumor-stroma interactions or released to circulation to prime distant organs for subsequent metastasis. Here, we will summarize our current knowledge on the biogenesis of exosomes and miRNAs, mechanisms of cargo sorting into exosomes, the exosomal miRNAs implicated in breast cancer metastasis, and therapeutic exosomal miRNAs.
Collapse
Affiliation(s)
- Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
| | - Sara Abu Jalboush
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
14
|
Ferruz N, Lobos F, Lemm D, Toledo-Patino S, Farías-Rico JA, Schmidt S, Höcker B. Identification and Analysis of Natural Building Blocks for Evolution-Guided Fragment-Based Protein Design. J Mol Biol 2020; 432:3898-3914. [PMID: 32330481 PMCID: PMC7322520 DOI: 10.1016/j.jmb.2020.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Natural evolution has generated an impressively diverse protein universe via duplication and recombination from a set of protein fragments that served as building blocks. The application of these concepts to the design of new proteins using subdomain-sized fragments from different folds has proven to be experimentally successful. To better understand how evolution has shaped our protein universe, we performed an all-against-all comparison of protein domains representing all naturally existing folds and identified conserved homologous protein fragments. Overall, we found more than 1000 protein fragments of various lengths among different folds through similarity network analysis. These fragments are present in very different protein environments and represent versatile building blocks for protein design. These data are available in our web server called F(old P)uzzle (fuzzle.uni-bayreuth.de), which allows to individually filter the dataset and create customized networks for folds of interest. We believe that our results serve as an invaluable resource for structural and evolutionary biologists and as raw material for the design of custom-made proteins.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Francisco Lobos
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dominik Lemm
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Saacnicteh Toledo-Patino
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Steffen Schmidt
- Max Planck Institute for Developmental Biology, Tübingen, Germany; Computational Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
15
|
Feng Q, Luo Y, Zhang XN, Yang XF, Hong XY, Sun DS, Li XC, Hu Y, Li XG, Zhang JF, Li X, Yang Y, Wang Q, Liu GP, Wang JZ. MAPT/Tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III complex formation: a vicious cycle in Alzheimer neurodegeneration. Autophagy 2019; 16:641-658. [PMID: 31223056 DOI: 10.1080/15548627.2019.1633862] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Macroautophagy/autophagy deficit induces intracellular MAPT/tau accumulation, the hallmark pathology in Alzheimer disease (AD) and other tauopathies; however, the reverse role of MAPT accumulation in autophagy and neurodegeneration is not clear. Here, we found that overexpression of human wild-type full-length MAPT, which models MAPT pathologies as seen in sporadic AD patients, induced autophagy deficits via repression of autophagosome-lysosome fusion leading to significantly increased LC3 (microtubule-associated protein 1 light chain 3)-II and SQSTM1/p62 (sequestosome 1) protein levels with autophagosome accumulation. At the molecular level, intracellular MAPT aggregation inhibited expression of IST1 (IST1 factor associated with ESCRT-III), a positive modulator for the formation of ESCRT (the Endosomal Sorting Complex Required for Transport) complex that is required for autophagosome-lysosome fusion. Upregulating IST1 in human MAPT transgenic mice attenuated autophagy deficit with reduced MAPT aggregation and ameliorated synaptic plasticity and cognitive functions, while downregulating IST1 per se induced autophagy deficit with impaired synapse and cognitive function in naïve mice. IST1 can facilitate association of CHMP2B (charged multivesicular body protein 2B) and CHMP4B/SNF7-2 to form ESCRT-III complex, while lack of IST1 impeded the complex formation. Finally, we demonstrate that MAPT accumulation suppresses IST1 transcription with the mechanisms involving the ANP32A-regulated mask of histone acetylation. Our findings suggest that the AD-like MAPT accumulation can repress autophagosome-lysosome fusion by deregulating ANP32A-INHAT-IST1-ESCRT-III pathway, which also reveals a vicious cycle of MAPT accumulation and autophagy deficit in the chronic course of AD neurodegeneration.Abbreviations: AAV: adeno-associated virus; Aβ: β-amyloid; aCSF: artificial cerebrospinal fluid; AD: Alzheimer disease; ANP32A: acidic nuclear phosphoprotein 32 family member A; ATG: autophagy related; AVs: autophagic vacuoles; CEBPB: CCAAT enhancer binding protein beta; CHMP: charged multivesicular body protein; DMEM: Dulbecco's modified eagle's medium; EBSS: Earle's balanced salt solution; EGFR: epidermal growth factor receptor; ESCRT: endosomal sorting complex required for transport; fEPSPs: field excitatory postsynaptic potentials; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GSK3B: glycogen synthase kinase 3 beta; HAT: histone acetyl transferase; HDAC: histone deacetylase; INHAT: inhibitor of histone acetyl transferase; IST1: IST1 factor associated with ESCRT-III; LAMP2: lysosomal associated membrane protein 2; LTP: long-term potentiation; MAP1LC3: microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MVB: multivesicular bodies; MWM: Morris water maze; PBS: phosphate-buffered saline solution; RAB7: member RAS oncogene family; SNAREs: soluble N-ethylmaleimide-sensitive factor attachment protein receptors; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Qiong Feng
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Luo
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xi-Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao-Yue Hong
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Shen Sun
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia-Chun Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Fei Zhang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
| |
Collapse
|
16
|
Zhang X, Chen W, Yin N, Dong L, Fu M, Zhan Q, Tong T. Regulation of OLC1 protein expression by the anaphase-promoting complex. Oncol Lett 2019; 17:2639-2646. [PMID: 30854039 PMCID: PMC6366124 DOI: 10.3892/ol.2019.9881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
Abstract
Overexpressed in lung cancer 1 (OLC1) is a potential oncogene overexpressed in human lung cancer and in other types of malignant tumor. The elevated expression of OLC1 contributes to tumor genesis and progression. However, the mechanisms regulating the expression of OLC1 remain unclear. In the present study, using lung and esophageal cancer cell lines, it was demonstrated that OLC1 was a short-lived, cell cycle-dependent protein regulated through the anaphase-promoting complex/cyclosome (APC/c)-ubiquitin pathway by directly interacting with the APC2 subunit. Through the action of two co activator proteins, cadherin 1 (Cdh1) and cell-division cycle protein 20 (Cdc20), the OLC1 protein was ubiquitinated and degraded. Following treatment with a proteasome inhibitor, OLC1 protein levels were elevated. Inversely, the upregulation of Cdh1 and Cdc20 facilitated OLC1 degradation. By inducing point mutations of the assumed degradation motif of OLC1, it was revealed that an intact destruction (D)-box was necessary. As expected, the D-box-mutated OLC1 exhibited a higher capacity for promoting cell growth and clone formation. Collectively, these findings indicate that the expression of the candidate oncogene OLC1 is cell cycle-dependent and is regulated by an APC/c mediated ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Xiaojing Zhang
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China.,Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Wei Chen
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| | - Ning Yin
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| | - Lijia Dong
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| | - Ming Fu
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| | - Tong Tong
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| |
Collapse
|
17
|
Crespo-Yàñez X, Aguilar-Gurrieri C, Jacomin AC, Journet A, Mortier M, Taillebourg E, Soleilhac E, Weissenhorn W, Fauvarque MO. CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis. PLoS Genet 2018; 14:e1007456. [PMID: 29933386 PMCID: PMC6033466 DOI: 10.1371/journal.pgen.1007456] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 07/05/2018] [Accepted: 05/30/2018] [Indexed: 11/29/2022] Open
Abstract
Integration and down-regulation of cell growth and differentiation signals rely on plasma membrane receptor endocytosis and sorting towards either recycling vesicles or degradative lysosomes via multivesicular bodies (MVB). In this process, the endosomal sorting complex-III required for transport (ESCRT-III) controls membrane deformation and scission triggering intraluminal vesicle (ILV) formation at early endosomes. Here, we show that the ESCRT-III member CHMP1B can be ubiquitinated within a flexible loop known to undergo conformational changes during polymerization. We demonstrate further that CHMP1B is deubiquitinated by the ubiquitin specific protease USP8 (syn. UBPY) and found fully devoid of ubiquitin in a ~500 kDa large complex that also contains its ESCRT-III partner IST1. Moreover, EGF stimulation induces the rapid and transient accumulation of ubiquitinated forms of CHMP1B on cell membranes. Accordingly, CHMP1B ubiquitination is necessary for CHMP1B function in both EGF receptor trafficking in human cells and wing development in Drosophila. Based on these observations, we propose that CHMP1B is dynamically regulated by ubiquitination in response to EGF and that USP8 triggers CHMP1B deubiquitination possibly favoring its subsequent assembly into a membrane-associated ESCRT-III polymer. In multicellular organisms, the interpretation and transmission of cell growth and differentiation signals strongly rely on plasma membrane receptors. Once activated by their ligands, these receptors activate downstream signaling cascades and are rapidly internalized into intracellular vesicles that fuse inside the cell to form the endosomal compartment. From there, the receptors are sorted towards either recycling vesicles or degradative lysosomes via multivesicular bodies. Receptors sorting therefore plays a crucial role in the integration and regulation of intracellular signals during development and numerous physio-pathological processes. It requires extensive membrane remodeling and scission events at the level of the endosomal compartment by so-called ESCRT proteins, including CHMP1B. In this study, we provide evidence for dynamic regulation of CHMP1B function and subcellular localization by ubiquitin linkage. We also show the contribution of the ubiquitin specific protease USP8 in this regulation, which is a known actor of intracellular trafficking and Cushing’s disease.
Collapse
Affiliation(s)
- Xènia Crespo-Yàñez
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Carmen Aguilar-Gurrieri
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Anne-Claire Jacomin
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Agnès Journet
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Magda Mortier
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Emmanuel Taillebourg
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Emmanuelle Soleilhac
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Marie-Odile Fauvarque
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
- * E-mail:
| |
Collapse
|
18
|
Abstract
Interactions between microtubule (MT) interacting and trafficking (MIT) domains and their binding proteins are important for the accurate progression of many cellular processes that require the AAA+ ATPase machinery. Therefore, knowledge on the structural basis of MIT domain interactions is crucial for understanding the molecular mechanisms underlying AAA+ ATPase function. Katanin is a MT-severing AAA+ ATPase that consists of p60 and p80 subunits. Although, the hexameric p60 subunit is active alone, its association with the p80 subunit greatly enhances both the MT-binding and -severing activities of katanin. However, the molecular mechanism of how the p80 subunit contributes to katanin function is currently unknown. Here, we structurally and functionally characterized the interaction between the two katanin subunits that is mediated by the p60-MIT domain and the p80 C-terminal domain (p80-CTD). We show that p60-MIT and p80-CTD form a tight heterodimeric complex, whose high-resolution structure we determined by X-ray crystallography. Based on the crystal structure, we identified two conserved charged residues that are important for p60-MIT:p80-CTD complex formation and katanin function. Moreover, p60-MIT was compared with other MIT domain structures and similarities are discussed.
Collapse
|
19
|
Roche JV, Törnroth-Horsefield S. Aquaporin Protein-Protein Interactions. Int J Mol Sci 2017; 18:ijms18112255. [PMID: 29077056 PMCID: PMC5713225 DOI: 10.3390/ijms18112255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1) interactions between aquaporin tetramers; (2) interactions between aquaporin monomers within a tetramer (hetero-tetramerization); and (3) transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.
Collapse
Affiliation(s)
- Jennifer Virginia Roche
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
20
|
Roche JV, Survery S, Kreida S, Nesverova V, Ampah-Korsah H, Gourdon M, Deen PMT, Törnroth-Horsefield S. Phosphorylation of human aquaporin 2 (AQP2) allosterically controls its interaction with the lysosomal trafficking protein LIP5. J Biol Chem 2017; 292:14636-14648. [PMID: 28710278 DOI: 10.1074/jbc.m117.788364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
The interaction between the renal water channel aquaporin-2 (AQP2) and the lysosomal trafficking regulator-interacting protein LIP5 targets AQP2 to multivesicular bodies and facilitates lysosomal degradation. This interaction is part of a process that controls AQP2 apical membrane abundance in a vasopressin-dependent manner, allowing for urine volume adjustment. Vasopressin regulates phosphorylation at four sites within the AQP2 C terminus (Ser256, Ser261, Ser264, and Thr269), of which Ser256 is crucial and sufficient for AQP2 translocation from storage vesicles to the apical membrane. However, whether AQP2 phosphorylation modulates AQP2-LIP5 complex affinity is unknown. Here we used far-Western blot analysis and microscale thermophoresis to show that the AQP2 binds LIP5 in a phosphorylation-dependent manner. We constructed five phospho-mimicking mutants (S256E, S261E, S264E, T269E, and S256E/T269E) and a C-terminal truncation mutant (ΔP242) that lacked all phosphorylation sites but retained a previously suggested LIP5-binding site. CD spectroscopy indicated that wild-type AQP2 and the phospho-mimicking mutants had similar overall structure but displayed differences in melting temperatures possibly arising from C-terminal conformational changes. Non-phosphorylated AQP2 bound LIP5 with the highest affinity, whereas AQP2-ΔP242 had 20-fold lower affinity as determined by microscale thermophoresis. AQP2-S256E, S261E, T269E, and S256E/T269E all had reduced affinity. This effect was most prominent for AQP2-S256E, which fits well with its role in apical membrane targeting. AQP2-S264E had affinity similar to non-phosphorylated AQP2, possibly indicating a role in exosome excretion. Our data suggest that AQP2 phosphorylation allosterically controls its interaction with LIP5, illustrating how altered affinities to interacting proteins form the basis for regulation of AQP2 trafficking by post-translational modifications.
Collapse
Affiliation(s)
- Jennifer Virginia Roche
- From the Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden and
| | - Sabeen Survery
- From the Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden and
| | - Stefan Kreida
- From the Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden and
| | - Veronika Nesverova
- From the Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden and
| | - Henry Ampah-Korsah
- From the Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden and
| | - Maria Gourdon
- From the Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden and
| | - Peter M T Deen
- the Department of Physiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | |
Collapse
|
21
|
Monroe N, Han H, Shen PS, Sundquist WI, Hill CP. Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase. eLife 2017; 6. [PMID: 28379137 PMCID: PMC5413351 DOI: 10.7554/elife.24487] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 12/18/2022] Open
Abstract
Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP·BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 ‘walks’ along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases. DOI:http://dx.doi.org/10.7554/eLife.24487.001 Membranes surround multiple compartments within cells as well as the cell itself. In living cells, these membranes are remodeled continuously. This allows cells to divide, move molecules between different compartments and perform other essential activities. One important remodeling event is known as fission, which splits a membrane into separate parts. Large repeating structures (or polymers) of ESCRT-III proteins play a crucial role in membrane fission. Breaking apart ESCRT-III polymers triggers membrane fission and also recycles the ESCRT-III proteins so that they can be used again. An enzyme called Vps4 converts chemical energy (stored in the form of a molecule called ATP) into the mechanical force that breaks apart the ESCRT-III polymers. The active form of Vps4 consists of six Vps4 subunits working together to form a complex that includes a cofactor protein called Vta1. Monroe et al. have now used a technique called cryo-electron microscopy to determine the structure of an active yeast Vps4-Vta1 complex while it is bound to a segment of an ESCRT-III protein. This revealed that four of the six Vps4 subunits form a helix (which resembles a spiral staircase) that binds ESCRT-III in its central pore. The structure implies that binding of ATP causes the Vps4 helix to grow at one end and that converting ATP into a molecule called ADP (to release energy) causes disassembly at the other end. The two additional Vps4 subunits move from the disassembling end to the growing end of the helix. In this manner, Vps4 ‘walks’ along ESCRT-III, thereby pulling it through the pore at the center of the Vps4 complex and triggering breakdown of the ESCRT-III polymer. Further work is now needed to understand exactly how this activity leads to membrane fission. DOI:http://dx.doi.org/10.7554/eLife.24487.002
Collapse
Affiliation(s)
- Nicole Monroe
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Han Han
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Peter S Shen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
22
|
Ren W, Hou X, Wang Y, Badgery W, Li X, Ding Y, Guo H, Wu Z, Hu N, Kong L, Chang C, Jiang C, Zhang J. Overgrazing induces alterations in the hepatic proteome of sheep ( Ovis aries): an iTRAQ-based quantitative proteomic analysis. Proteome Sci 2017; 15:2. [PMID: 28149202 PMCID: PMC5267464 DOI: 10.1186/s12953-016-0111-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Background The degradation of the steppe of Inner Mongolia, due to overgrazing, has resulted in ecosystem damage as well as extensive reductions in sheep production. The growth performance of sheep is greatly reduced because of overgrazing, which triggers massive economic losses every year. The liver is an essential organ that has very important roles in multiple functions, such as nutrient metabolism, immunity and others, which are closely related to animal growth. However, to our knowledge, no detailed studies have evaluated hepatic metabolism adaption in sheep due to overgrazing. The molecular mechanisms that underlie these effects remain unclear. Methods In the present study, our group applied isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis to investigate changes in the protein profiles of sheep hepatic tissues when nutrition was reduced due to overgrazing (12.0 sheep/ha), with the goal of characterizing the molecular mechanisms of hepatic metabolism adaption in sheep in an overgrazing condition. Results The body weight daily gain of sheep was greatly decreased due to overgrazing. Overall, 41 proteins were found to be differentially abundant in the hepatic tissue between a light grazing group and an overgrazing group. Most of the differentially expressed proteins identified are involved in protein metabolism, transcriptional and translational regulation, and immune response. In particular, the altered abundance of kynureninase (KYNU) and HAL (histidine ammonia-lyase) involved in protein metabolic function, integrated with the changes of serum levels of blood urea nitrogen (BUN) and glucose (GLU), suggest that overgrazing triggers a shift in energy resources from carbohydrates to proteins, causing poorer nitrogen utilization efficiency. Altogether, these results suggest that the reductions in animal growth induced by overgrazing are associated with liver proteomic changes, especially the proteins involved in nitrogen compounds metabolism and immunity. Conclusions This provides new information that can be used for nutritional supplementation to improve the growth performance of sheep in an overgrazing condition. Electronic supplementary material The online version of this article (doi:10.1186/s12953-016-0111-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weibo Ren
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Xiangyang Hou
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Yuqing Wang
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Warwick Badgery
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800 Australia
| | - Xiliang Li
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Yong Ding
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Huiqin Guo
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010019 Inner Mongolia China
| | - Zinian Wu
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Ningning Hu
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Lingqi Kong
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Chun Chang
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Chao Jiang
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Jize Zhang
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| |
Collapse
|
23
|
Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends Biochem Sci 2017; 42:42-56. [DOI: 10.1016/j.tibs.2016.08.016] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
24
|
Abstract
The narrow membrane necks formed during viral, exosomal and intra-endosomal budding from membranes, as well as during cytokinesis and related processes, have interiors that are contiguous with the cytosol. Severing these necks involves action from the opposite face of the membrane as occurs during the well-characterized formation of coated vesicles. This 'reverse' (or 'inverse')-topology membrane scission is carried out by the endosomal sorting complex required for transport (ESCRT) proteins, which form filaments, flat spirals, tubes and conical funnels that are thought to direct membrane remodelling and scission. Their assembly, and their disassembly by the ATPase vacuolar protein sorting-associated 4 (VPS4) have been intensively studied, but the mechanism of scission has been elusive. New insights from cryo-electron microscopy and various types of spectroscopy may finally be close to rectifying this situation.
Collapse
|
25
|
Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast. J Mol Biol 2016; 428:2392-2404. [DOI: 10.1016/j.jmb.2016.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 02/02/2023]
|
26
|
Buono RA, Paez-Valencia J, Miller ND, Goodman K, Spitzer C, Spalding EP, Otegui MS. Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development. PLANT PHYSIOLOGY 2016; 171:251-64. [PMID: 26983994 PMCID: PMC4854716 DOI: 10.1104/pp.16.00240] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 05/19/2023]
Abstract
SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1-12). Within the ISTL1-6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Julio Paez-Valencia
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nathan D Miller
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kaija Goodman
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Christoph Spitzer
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Edgar P Spalding
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
27
|
Monroe N, Hill CP. Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines. J Mol Biol 2015; 428:1897-911. [PMID: 26555750 DOI: 10.1016/j.jmb.2015.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
Meiotic clade AAA ATPases (ATPases associated with diverse cellular activities), which were initially grouped on the basis of phylogenetic classification of their AAA ATPase cassette, include four relatively well characterized family members, Vps4, spastin, katanin and fidgetin. These enzymes all function to disassemble specific polymeric protein structures, with Vps4 disassembling the ESCRT-III polymers that are central to the many membrane-remodeling activities of the ESCRT (endosomal sorting complexes required for transport) pathway and spastin, katanin p60 and fidgetin affecting multiple aspects of cellular dynamics by severing microtubules. They share a common domain architecture that features an N-terminal MIT (microtubule interacting and trafficking) domain followed by a single AAA ATPase cassette. Meiotic clade AAA ATPases function as hexamers that can cycle between the active assembly and inactive monomers/dimers in a regulated process, and they appear to disassemble their polymeric substrates by translocating subunits through the central pore of their hexameric ring. Recent studies with Vps4 have shown that nucleotide-induced asymmetry is a requirement for substrate binding to the pore loops and that recruitment to the protein lattice via MIT domains also relieves autoinhibition and primes the AAA ATPase cassettes for substrate binding. The most striking, unifying feature of meiotic clade AAA ATPases may be their MIT domain, which is a module that is found in a wide variety of proteins that localize to ESCRT-III polymers. Spastin also displays an adjacent microtubule binding sequence, and the presence of both ESCRT-III and microtubule binding elements may underlie the recent findings that the ESCRT-III disassembly function of Vps4 and the microtubule-severing function of spastin, as well as potentially katanin and fidgetin, are highly coordinated.
Collapse
Affiliation(s)
- Nicole Monroe
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.
| |
Collapse
|
28
|
Tan J, Davies BA, Payne JA, Benson LM, Katzmann DJ. Conformational Changes in the Endosomal Sorting Complex Required for the Transport III Subunit Ist1 Lead to Distinct Modes of ATPase Vps4 Regulation. J Biol Chem 2015; 290:30053-65. [PMID: 26515066 DOI: 10.1074/jbc.m115.665604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/06/2022] Open
Abstract
Intralumenal vesicle formation of the multivesicular body is a critical step in the delivery of endocytic cargoes to the lysosome for degradation. Endosomal sorting complex required for transport III (ESCRT-III) subunits polymerize on endosomal membranes to facilitate membrane budding away from the cytoplasm to generate these intralumenal vesicles. The ATPase Vps4 remodels and disassembles ESCRT-III, but the manner in which Vps4 activity is coordinated with ESCRT-III function remains unclear. Ist1 is structurally homologous to ESCRT-III subunits and has been reported to inhibit Vps4 function despite the presence of a microtubule-interacting and trafficking domain-interacting motif (MIM) capable of stimulating Vps4 in the context of other ESCRT-III subunits. Here we report that Ist1 inhibition of Vps4 ATPase activity involves two elements in Ist1: the MIM itself and a surface containing a conserved ELYC sequence. In contrast, the MIM interaction, in concert with a more open conformation of the Ist1 core, resulted in stimulation of Vps4. Addition of the ESCRT-III subunit binding partner of Ist1, Did2, also converted Ist1 from an inhibitor to a stimulator of Vps4 ATPase activity. Finally, distinct regulation of Vps4 by Ist1 corresponded with altered ESCRT-III disassembly in vitro. Together, these data support a model in which Ist1-Did2 interactions during ESCRT-III polymerization coordinate Vps4 activity with the timing of ESCRT-III disassembly.
Collapse
Affiliation(s)
- Jason Tan
- From the Biochemistry and Molecular Biology Department, Mayo Graduate School, and
| | | | | | - Linda M Benson
- Mayo Medical Genome Facility Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905
| | | |
Collapse
|
29
|
Caballe A, Wenzel DM, Agromayor M, Alam SL, Skalicky JJ, Kloc M, Carlton JG, Labrador L, Sundquist WI, Martin-Serrano J. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. eLife 2015; 4:e06547. [PMID: 26011858 PMCID: PMC4475061 DOI: 10.7554/elife.06547] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/23/2015] [Indexed: 11/13/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. In this study, we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains, and thereby, delays abscission in response to lagging chromosomes, nuclear pore defects, and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations. DOI:http://dx.doi.org/10.7554/eLife.06547.001 Our cells multiply by dividing into two. Many proteins are involved in this process, including a group called the ESCRT-III complex. This group is required to complete the final stage of cell division when the single membrane that surrounds the two new daughter cells separates. Before the cell divides, its DNA—which is packaged in structures called chromosomes—is copied, and the two sets of chromosomes are pulled to opposite ends of the cell. This ensures that each daughter cell will have a complete set of DNA. If the cell divides before the chromosomes have finished moving to opposite ends of the cell, the daughter cells may end up with the wrong number of chromosomes. This can lead to cancer or other diseases. To prevent this, cells have evolved a quality control system called the ‘abscission checkpoint’, which delays cell division until the chromosomes have properly separated. Previous studies have shown that when the checkpoint is active, an ESCRT-III complex protein called CHMP4C is inactivated by an enzyme, which prevents the cell from dividing. Other signals that indicate that the new daughter cells are not yet ready to separate can also delay cell division, but it is not clear how those defects are detected by the checkpoint. Here, Caballe, Wenzel et al. found that a protein called ULK3 can bind to several proteins in the ESCRT-III complex, including one called IST1. In doing so, ULK3 is able to delay cell division if the chromosomes have not finished separating, if there are defects in the nucleus of the cell, or if the cell is experiencing high levels of mechanical tension at the site where the membrane will separate. The experiments also show that ULK3 needs to bind to and regulate the activity of IST1 to sustain the abscission checkpoint, and that CHMP4C is required for this process. Caballe, Wenzel et al.'s findings reveal that ULK3 plays an essential role in controlling when a cell divides and imply that there may be additional proteins involved that release cells from the checkpoint delay imposed by ULK3. The next challenges will be to identify these proteins and to understand how all checkpoint proteins work together to regulate cell division. DOI:http://dx.doi.org/10.7554/eLife.06547.002
Collapse
Affiliation(s)
- Anna Caballe
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Dawn M Wenzel
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Monica Agromayor
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Steven L Alam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Magdalena Kloc
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Jeremy G Carlton
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Leticia Labrador
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan Martin-Serrano
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| |
Collapse
|