1
|
Abstract
PURPOSE OF REVIEW The main reason for the failure of oral preexposure prophylaxis (PrEP) regimens for HIV is poor adherence. Intramuscular cabotegravir was recently approved for PrEP, and a number of other long-acting antiretroviral formulations and products are currently in clinical development. This includes subcutaneous and intravenous injections, implants, and microarray (microneedle) patches, as well as extended duration oral drugs. The success and future uptake of these products will depend on a variety of factors. RECENT FINDINGS Long-acting delivery of antiretroviral agents for PrEP confers significant advantages over short-acting oral delivery. This is exemplified by the superior efficacy of intramuscular cabotegravir given every eight weeks as compared to daily oral co-formulated tenofovir disoproxil fumarate and emtricitabine. There is also evidence for PrEP efficacy for a broadly neutralizing monoclonal antibody given intravenously every eight weeks. One of the leading candidates for long-acting PrEP, islatravir, was being studied as a monthly oral drug or a nonerodable subcutaneous implant inserted for up to 12 months. However, clinical studies of this agent were put on hold in late 2021 because of unanticipated lymphopenia. SUMMARY Long-acting antiretroviral products have substantial promise for PrEP and have particular advantages over daily oral drugs based mainly on improved adherence. However, there are barriers to further uptake that include the need for more intensive interaction with systems of healthcare delivery, greater expense and complexity of implementation, and unexpected long-term toxicities.
Collapse
Affiliation(s)
- Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine and Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Subcutaneous implants are a promising technology to enable long-acting parenteral delivery of antiretroviral drugs (ARV) because they may be able to provide protective drugs concentrations for a year or longer following a single implant. The present review covers the current status of preclinical and clinical development of antiretroviral implants. RECENT FINDINGS Over the past three decades, subcutaneous implants have been widely used for long-acting hormonal contraception and the treatment of hormonally-driven malignancies. They are economical and scalable to manufacture, but require special procedures for insertion and removal. They are generally well tolerated, and can remain in place for up to five years. As long-acting delivery of ARV would confer significant advantages, a few investigational implants are under development for the delivery of ARV; most remain at preclinical stages of development. Islatravir, a potent nucleoside analog reverse transcriptase translocation inhibitor that shows particular promise, has entered clinical testing in implant form. Investigational implants containing tenofovir alafenamide and nevirapine, and entecavir (for hepatitis B virus) have been developed and tested in animal models, with varying degrees of success. There is also burgeoning interest in bioerodable implant formulations of established ARVs. SUMMARY LARV implants are a promising new technology, but are in early stages of clinical development. Their potential advantages include more consistent and predictable drug release than that provided by intramuscular injections, the possibility of combining several partner drugs into one implant, and the fact that implants can be removed in the case of a desire to stop treatment or the development of adverse events.
Collapse
|
3
|
Labh R, Gupta R. Emerging Trends in the Long-Acting Antiretroviral Therapy: Current Status and Therapeutic Challenges. Curr HIV Res 2021; 19:4-13. [PMID: 32838720 DOI: 10.2174/1570162x18666200824104140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/25/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Antiretroviral drug therapy has significantly improved the prognosis and life expectancy of people living with HIV over the years. But this progress comes with an important caveat that antiretroviral regimens generally require adherence to life-long, daily dosing, to keep viral multiplication under check. Non-adherence to such dosing leads to decreased efficacy and increased drug resistance against antiretroviral drugs. Besides, poor drug penetration to certain tissues like CNS and lymph nodes leads to the build-up of viral reservoirs in these sites. To combat some of these challenges and improve patient compliance, long-acting antiretroviral drugs, are a new weapon in the arsenal, in the fight against HIV. Few long-acting preparations have been approved, and several others are in various clinical and preclinical stages of development. However, long-acting formulations also have their share of clinical issues like limited drug distribution, long term adverse drug reactions, drug-drug interactions, and gradual development of drug resistance. Modern technological premises are being tested to mitigate some of these problems. One such promising approach involves nanotechnological methods, which are being used to develop ultra-long acting formulations and drug delivery systems, targeting tissues with residual HIV concentration. Long-Acting Slow Effective Release Antiretroviral Therapy aka LASER ART, also builds on nanotechnology and prodrug modifications to design preparations with tailor-made favorable pharmacokinetics and wider drug distribution. These recent advances are fueling the progression of antiretroviral therapy towards eliminating the disease.
Collapse
Affiliation(s)
- Rajpushpa Labh
- Department of Pharmacology, University College of Medical Sciences & GTB Hospital, University of Delhi, New Delhi, India
| | - Rachna Gupta
- Department of Pharmacology, University College of Medical Sciences & GTB Hospital, University of Delhi, New Delhi, India
| |
Collapse
|
4
|
Sang Y, Ding L, Zhuang C, Chen F. Design strategies for long-acting anti-HIV pharmaceuticals. Curr Opin Pharmacol 2020; 54:158-165. [PMID: 33176247 DOI: 10.1016/j.coph.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022]
Abstract
Current combination antiretroviral therapy (cART) for human immunodeficiency virus (HIV) is limited by the frequent dosing and unfavorable adherence, and the rapid appearance of resistant mutants. Thus, there is a continuous need to improve and optimize the present therapies. The clinical phase III trials of FLAIR and ATLAS, showed two-drug injectable cabotegravir (CAB) and rilpivirine (RPV) formulation is potent, safe, and tolerable in HIV-infected patients. The recent approval of cabenuva (CAB+RPV) by Health Canada is a milestone in the development of long-term therapies for HIV infection. Broadly neutralizing antibodies (bNAbs) with excellent breath and efficiency against HIV have been investigated as LA antiviral weapons. Several modern modalities capable of sustained drug release for long-term treatment and prevention of HIV infection are also in development, such as implants, vaginal rings, and nanotherapies.
Collapse
Affiliation(s)
- Yali Sang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Li Ding
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Fener Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Flexner C, Owen A, Siccardi M, Swindells S. Long-acting drugs and formulations for the treatment and prevention of HIV infection. Int J Antimicrob Agents 2020; 57:106220. [PMID: 33166693 DOI: 10.1016/j.ijantimicag.2020.106220] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/02/2020] [Accepted: 11/01/2020] [Indexed: 01/09/2023]
Abstract
Long-acting and extended-release formulations represent one of the most important approaches to improving the treatment and prevention of chronic HIV infection. Long-acting small molecules and monoclonal antibodies have demonstrated potent anti-HIV activity in early- and late-stage clinical trials. Strategies to manage toxicity and falling drug concentrations after missed doses, as well as primary and secondary resistance to current drugs and monoclonal antibodies are important considerations. Long-acting injectable nanoformulations of the integrase inhibitor cabotegravir and the non-nucleoside reverse transcriptase inhibitor rilpivirine were safe, well tolerated and efficacious in large randomised phase 3 studies. Regulatory approval for this two-drug combination for HIV maintenance therapy was granted in Canada in 2020 and is expected in the USA during 2021. 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (islatravir) is a novel nucleoside reverse transcriptase inhibitor in clinical development as a long-acting oral drug and as a long-acting subcutaneous polymer implant. GS-6207 is a novel HIV capsid inhibitor that is injected subcutaneously every 3 months. Broadly-neutralising monoclonal antibodies have potent antiviral activity in early human trials, however there is substantial baseline resistance and rapid development of resistance to these antibodies if used as monotherapy. Limitations of these antiretroviral approaches include management of toxicities and prevention of drug resistance when these drugs are discontinued and drug concentrations are slowly reduced over time. These approaches appear to be especially attractive for patients complaining of pill fatigue and for those experiencing HIV-associated stigma. As these formulations are shown to be safe, well tolerated and economical, they are likely to gain broader appeal.
Collapse
Affiliation(s)
- Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, School of Medicine and Bloomberg School of Public Health, Johns Hopkins University, Osler 525, 600 N. Wolfe Street, Baltimore, MD 21287-5554, USA.
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Centre of Excellence in Long Acting Therapeutics (CELT), University of Liverpool, Liverpool, UK
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, Centre of Excellence in Long Acting Therapeutics (CELT), University of Liverpool, Liverpool, UK
| | | |
Collapse
|
6
|
Hong CS, Chin SY, Kui Cheng C, Chua GK. Selective oxidation of glycerol to mesoxalic acid by laccase/2,2,6,6-tetramethylpiperidine-N-oxyl system: Effect of process conditions and the kinetic modeling. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1566128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chi Shein Hong
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| | - Sim Yee Chin
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
- Faculty of Chemical & Natural Resources Engineering, Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Chin Kui Cheng
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
- Faculty of Chemical & Natural Resources Engineering, Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Gek Kee Chua
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Poor adherence to oral antiretroviral formulations remains the major barrier to the success of long-term treatment and prevention strategies. Although a number of approaches have been developed for long-acting parenteral delivery of antiretroviral drugs, subcutaneous implants are a particularly promising technology as they may be able to provide protective drugs concentrations for a year or longer following a single implant. This review addresses the current status of preclinical and clinical development of antiretroviral implants. RECENT FINDINGS Subcutaneous implants have been widely used for hormonal contraception and the treatment of hormonally driven malignancies for more than 3 decades. These implants are economical to manufacture and deliver, but require special procedures for insertion and removal. They are generally well tolerated and can remain in place for as long as 5 years. A small number of investigational implants are under development for the delivery of antiretroviral drugs. The most advanced of these, containing the investigational antiretroviral MK-8591 (4'-ethynyl-2-fluoro-2'-deoxyadenosine), a potent nucleoside analog reverse transcriptase translocation inhibitor that demonstrates particular promise for subcutaneous implantation, is closest to testing in human subjects. Investigational implants containing tenofovir alafenamide and nevirapine have also been developed and tested in animal models. SUMMARY Long-acting antiretroviral implants are a promising new technology, but are in very early stages of development. Potential advantages of these systems include more consistent and predictable drug release than intramuscular injections, and the fact that implants can be removed in the case of adverse events or the desire to stop treatment.
Collapse
|
8
|
Abstract
Antiretroviral drugs have revolutionized the treatment and prevention of HIV infection; however, adherence is critical for sustained efficacy. Current HIV treatment consists of three-drug regimens, and current HIV pre-exposure prophylaxis (PrEP) consists of a two-drug regimen; both generally require adherence to once-daily dosing. Long-acting formulations are useful in the treatment and prevention of other conditions (e.g., contraceptives, antipsychotics) and help promote adherence. Newer long-acting formulations of approved and investigational antiretroviral drugs in existing and newer mechanistic classes are under study for HIV treatment and prevention, including some phase III trials. Although long-acting antiretroviral drugs hold promise, some clinical challenges exist, including managing side effects, drug-drug interactions, pregnancy, and long-lasting drug concentrations that could lead to the development of drug resistance. This review aims to summarize currently available information on long-acting antiretroviral drugs for HIV treatment and prevention.
Collapse
Affiliation(s)
- Roy M Gulick
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, Long Acting/Extended Release Antiretroviral Resource Program, School of Medicine and Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21287-5554, USA;
| |
Collapse
|
9
|
Triterpenic azines, a new class of compounds with selective cytotoxicity to leukemia cells CCRF-CEM. Future Med Chem 2018; 10:483-491. [DOI: 10.4155/fmc-2017-0171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: From betulinic acid (1a), we synthesized 30-oxobetulinic acid (2a) that is highly cytotoxic against many cancer cell lines; however, its generic toxicity is the main obstacle in further development as cytostatic. Methodology & results: From 2a, we prepared a new class of compounds – nonsymmetrical azines and tested their in vitro cytotoxicity. All new azines with a free 28-COOH group (4a–4e) were highly and selectively cytotoxic against the T-lymphoblastic leukemia cell line CCRF-CEM and exhibited dose-dependent inhibition of RNA and DNA synthesis and other cell-cycle alterations, including the M-phase block. Conclusion: The potential use of azines (4a–4e) in drug development focused on hematological cancers is significantly higher than that of previously studied acids 1a and 2a.
Collapse
|
10
|
Lacbay CM, Menni M, Bernatchez JA, Götte M, Tsantrizos YS. Pharmacophore requirements for HIV-1 reverse transcriptase inhibitors that selectively "Freeze" the pre-translocated complex during the polymerization catalytic cycle. Bioorg Med Chem 2018; 26:1713-1726. [PMID: 29478802 DOI: 10.1016/j.bmc.2018.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022]
Abstract
Reverse transcriptase (RT) is responsible for replicating the HIV-1 genome and is a validated therapeutic target for the treatment of HIV infections. During each cycle of the RT-catalyzed DNA polymerization process, inorganic pyrophosphate is released as the by-product of nucleotide incorporation. Small molecules were identified that act as bioisosteres of pyrophosphate and can selectively freeze the catalytic cycle of HIV-1 RT at the pre-translocated stage of the DNA- or RNA-template-primer-enzyme complex.
Collapse
Affiliation(s)
- Cyrus M Lacbay
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Michael Menni
- Department of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
| | - Jean A Bernatchez
- Department of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada; Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada; Department of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada.
| |
Collapse
|
11
|
Tam C, Wong JH, Cheung RCF, Zuo T, Ng TB. Therapeutic potentials of short interfering RNAs. Appl Microbiol Biotechnol 2017; 101:7091-7111. [PMID: 28791440 DOI: 10.1007/s00253-017-8433-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023]
Abstract
Short interfering RNA (siRNA) is one of the members of the family of RNA interference (RNAi). Coupled with the RNA-induced silencing complex (RISC), siRNA is able to trigger the cleavage of target RNAs which serve as a defensive system against pathogens. Meanwhile, siRNA in gene silencing opens a new avenue for the treatment of various diseases. SiRNA can effectively inhibit viral infection and replication and suppress tumorigenesis and various inflammation-associated diseases and cardiovascular diseases by inactivation of viral genes and downregulation of oncogene expression. Recently, endogenous siRNAs (endo-siRNAs) were discovered in the reproductive cells of animals which may be associated with regulation of cell division. Structural modification of siRNA enhances the delivery, specificity and efficacy and bioavailability to the target cells. There are at least five categories of siRNA delivery systems including viral vectors, lipid-based nanoparticles, peptide-based nanoparticles, polymer-based nanoparticles and inorganic small molecules like metal ions, silica and carbon. Sufficient preclinical and clinical studies supported that siRNA may be a potential medicine for targeted therapy of various diseases in the near future.
Collapse
Affiliation(s)
- Chit Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China
| | - Tao Zuo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China.
| |
Collapse
|
12
|
Das K, Balzarini J, Miller MT, Maguire AR, DeStefano JJ, Arnold E. Conformational States of HIV-1 Reverse Transcriptase for Nucleotide Incorporation vs Pyrophosphorolysis-Binding of Foscarnet. ACS Chem Biol 2016; 11:2158-64. [PMID: 27192549 DOI: 10.1021/acschembio.6b00187] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HIV-1 reverse transcriptase (RT) catalytically incorporates individual nucleotides into a viral DNA strand complementing an RNA or DNA template strand; the polymerase active site of RT adopts multiple conformational and structural states while performing this task. The states associated are dNTP binding at the N site, catalytic incorporation of a nucleotide, release of a pyrophosphate, and translocation of the primer 3'-end to the P site. Structural characterization of each of these states may help in understanding the molecular mechanisms of drug activity and resistance and in developing new RT inhibitors. Using a 38-mer DNA template-primer aptamer as the substrate mimic, we crystallized an RT/dsDNA complex that is catalytically active, yet translocation-incompetent in crystals. The ability of RT to perform dNTP binding and incorporation in crystals permitted obtaining a series of structures: (I) RT/DNA (P-site), (II) RT/DNA/AZTTP ternary, (III) RT/AZT-terminated DNA (N-site), and (IV) RT/AZT-terminated DNA (N-site)/foscarnet complexes. The stable N-site complex permitted the binding of foscarnet as a pyrophosphate mimic. The Mg(2+) ions dissociated after catalytic addition of AZTMP in the pretranslocated structure III, whereas ions A and B had re-entered the active site to bind foscarnet in structure IV. The binding of foscarnet involves chelation with the Mg(2+) (B) ion and interactions with K65 and R72. The analysis of interactions of foscarnet and the recently discovered nucleotide-competing RT inhibitor (NcRTI) α-T-CNP in two different conformational states of the enzyme provides insights for developing new classes of polymerase active site RT inhibitors.
Collapse
Affiliation(s)
- Kalyan Das
- Center
for Advanced Biotechnology and Medicine (CABM), Department of Chemistry
and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States
| | - Jan Balzarini
- Rega
Institute for Medical Research and Department of Microbiology and
Immunology, KU Leuven, B-3000 Leuven, Belgium
| | - Matthew T. Miller
- Center
for Advanced Biotechnology and Medicine (CABM), Department of Chemistry
and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States
| | - Anita R. Maguire
- Department
of Chemistry and School of Pharmacy, Analytical and Biological Chemistry
Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Jeffrey J. DeStefano
- Department
of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, United States
| | - Eddy Arnold
- Center
for Advanced Biotechnology and Medicine (CABM), Department of Chemistry
and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States
| |
Collapse
|
13
|
John J, Kim Y, Bennett N, Das K, Liekens S, Naesens L, Arnold E, Maguire AR, Götte M, Dehaen W, Balzarini J. Pronounced Inhibition Shift from HIV Reverse Transcriptase to Herpetic DNA Polymerases by Increasing the Flexibility of α-Carboxy Nucleoside Phosphonates. J Med Chem 2015; 58:8110-27. [PMID: 26450273 DOI: 10.1021/acs.jmedchem.5b01180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpha-carboxynucleoside phosphonates (α-CNPs) are novel viral DNA polymerase inhibitors that do not need metabolic conversion for enzyme inhibition. The prototype contains a cyclopentyl linker between nucleobase and α-carboxyphosphonate and preferentially (50- to 100-fold) inhibits HIV-1 RT compared with herpetic DNA polymerases. A synthesis methodology involving three steps has been developed for the synthesis of a series of novel α-CNPs, including a Rh(II)-catalyzed O-H insertion that connects the carboxyphosphonate group to a linker moiety and an attachment of a nucleobase to the other end of the linker by a Mitsunobu reaction followed by final deprotection. Replacing the cyclopentyl moiety in the prototype α-CNPs by a more flexible entity results in a selectivity shift of ∼ 100-fold in favor of the herpetic DNA polymerases when compared to selectivity for HIV-1 RT. The nature of the kinetic interaction of the acyclic α-CNPs against the herpetic DNA polymerases differs from the nature of the nucleobase-specific kinetic interaction of the cyclopentyl α-CNPs against HIV RT.
Collapse
Affiliation(s)
| | | | - Nicholas Bennett
- Department of Medical Microbiology and Immunology, University of Alberta , 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08901, United States
| | | | | | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08901, United States
| | - Anita R Maguire
- Department of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork , Cork, Ireland
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta , 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
| | | | | |
Collapse
|