1
|
Duran T, Balikci I, Buyukkosucu B, Gunes IF, Pekgonul HK, Vardar N, Yilmaz MD, Ak G, Zengin G. Biological Characterization of One Oxadiazole Derivative (5(4-Hydroxyphenyl)-2-(N-Phenyl Amino)-1,3,4-Oxadiazole): In Vitro, In Silico, and Network Pharmacological Approaches. Chem Biol Drug Des 2025; 105:e70038. [PMID: 39757393 DOI: 10.1111/cbdd.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Oxadiazole compounds are of great interest because they have a range of biological activities ranging from antioxidants to anticancer agents. Against this background, we wanted to demonstrate the antioxidant, enzyme inhibitory, and anticancer effects of 5(4-hydroxyphenyl)-2-(N-phenylamino)-1,3,4-oxadiazole (Hppo). Antioxidant abilities were measured through free radical scavenging and reducing power tests. Enzyme inhibitory effects were studied by cholinesterases, tyrosinase, amylase, and glucosidase. The anticancer effect was tested on pancreatic cancer cell lines (PANC-1, CRL-169) and on HEK293 cell lines. The compound showed significant antioxidant activity (particularly in the CUPRAC (cupric acid-reducing antioxidant capacity) assay) and enzyme inhibitory properties (particularly glucosidase inhibition). In the anticancer test, the compound showed strong anticancer activity in pancreatic cancer with apoptotic signaling pathways. These results were confirmed by molecular modeling and bioinformatics tools. Thus, our findings can provide novel and versatile compounds for the development of multidirectional drugs in the pharmaceutical industry.
Collapse
Affiliation(s)
- Tugce Duran
- Department of Medical Genetics, Faculty of Medicine, KTO Karatay University, Konya, Turkey
- Department of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Irem Balikci
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| | - Busra Buyukkosucu
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| | - Ibrahim Furkan Gunes
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| | - Hatice Kubra Pekgonul
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| | - Necati Vardar
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
- Department of Metallurgy and Materials Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| | - Mahmut Deniz Yilmaz
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey
- BITAM-Science and Technology Research and Application Center, Necmettin Erbakan University, Konya, Turkey
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| |
Collapse
|
2
|
Luo JF, Wang S, Fu J, Xu P, Shao N, Lu JH, Ming C. Integration of transcriptional and epigenetic regulation of TFEB reveals its dual functional roles in Pan-cancer. NAR Cancer 2024; 6:zcae043. [PMID: 39554489 PMCID: PMC11567160 DOI: 10.1093/narcan/zcae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Transcription factor EB (TFEB) mainly regulates the autophagy-lysosomal pathway, associated with many diseases, including cancer. However, the role of TFEB in pan-cancer has not been investigated systematically. In this study, we comprehensively analyzed TFEB targets under three stresses in Hela cells by cross-validation of RNA-seq and ChIP-seq. 1712 novel TFEB targets have not been reported in the Gene Set Enrichment Analysis and ChIP Enrichment Analysis databases. We further investigated their distributions and roles among the pan-cancer co-expression networks across 32 cancers constructed by multiscale embedded gene co-expression network analysis (MEGENA) based on the Cancer Genome Atlas (TCGA) cohort. Specifically, TFEB might serve as a hidden player with multifaceted functions in regulating pan-cancer risk factors, e.g. CXCL2, PKMYT1 and BUB1, associated with cell cycle and immunosuppression. TFEB might also regulate protective factors, e.g. CD79A, related to immune promotion in the tumor microenvironment. We further developed a Shiny app website to present the comprehensive regulatory targets of TFEB under various stimuli, intending to support further research on TFEB functions. Summarily, we provided references for the TFEB downstream targets responding to three stresses and the dual roles of TFEB and its targets in pan-cancer, which are promising anticancer targets that warrant further exploration.
Collapse
Affiliation(s)
- Jing-Fang Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR999078, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
| | - Shijia Wang
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
| | - Jiajing Fu
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
| | - Peng Xu
- Centre of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Ningyi Shao
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR999078, China
| | - Chen Ming
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
3
|
Thiruvengadam R, Dareowolabi BO, Moon EY, Kim JH. Nanotherapeutic strategy against glioblastoma using enzyme inhibitors. Biomed Pharmacother 2024; 181:117713. [PMID: 39615164 DOI: 10.1016/j.biopha.2024.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Glioblastoma is the most aggressive brain cancer and thus patients with glioblastoma have a severely low 5-year survival rate (<5 %). Glioblastoma damages neural centers, causing severe depression, anxiety, and cognitive disorders. Glioblastoma is highly resistant to most of available anti-tumor medications, due to heterogeneity of glioblastoma as well as the presence of stem-like cells. To overcome the challenges in the current medications against glioblastoma, novel medications that are effective in treating the aggressive and heterogenous glioblastoma should be developed. Enzyme inhibitor and nanomedicine have been getting attention because of effective anticancer efficacies of enzyme inhibitors and a role of nanomedicine as effective carrier of chemotherapeutic drugs by targeting specific tumor areas. Furthermore, a tumor-initiating neuroinflammatory microenvironment, which is crucial for glioblastoma progression, was linked with several carcinogenesis pathways. Therefore, in this review, first we summarize neuroinflammation and glioblastoma-related neuropathways. Second, we discuss the importance of enzyme inhibitors targeting specific proteins in relation with neuroinflammation and glioblastoma-related molecular mechanisms. Third, we summarize recent findings on the significance of nanotherapeutic anticancer drugs developed using natural or synthetic enzyme inhibitors against glioblastoma as well as currently available Food and Drug Administration (FDA)-approved drugs against glioblastoma.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | | | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
4
|
Münchhalfen M, Görg R, Haberl M, Löber J, Willenbrink J, Schwarzt L, Höltermann C, Ickes C, Hammermann L, Kus J, Chapuy B, Ballabio A, Reichardt SD, Flügel A, Engels N, Wienands J. TFEB activation hallmarks antigenic experience of B lymphocytes and directs germinal center fate decisions. Nat Commun 2024; 15:6971. [PMID: 39138218 PMCID: PMC11322606 DOI: 10.1038/s41467-024-51166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Ligation of the B cell antigen receptor (BCR) initiates humoral immunity. However, BCR signaling without appropriate co-stimulation commits B cells to death rather than to differentiation into immune effector cells. How BCR activation depletes potentially autoreactive B cells while simultaneously primes for receiving rescue and differentiation signals from cognate T lymphocytes remains unknown. Here, we use a mass spectrometry-based proteomic approach to identify cytosolic/nuclear shuttling elements and uncover transcription factor EB (TFEB) as a central BCR-controlled rheostat that drives activation-induced apoptosis, and concurrently promotes the reception of co-stimulatory rescue signals by supporting B cell migration and antigen presentation. CD40 co-stimulation prevents TFEB-driven cell death, while enhancing and prolonging TFEB's nuclear residency, which hallmarks antigenic experience also of memory B cells. In mice, TFEB shapes the transcriptional landscape of germinal center B cells. Within the germinal center, TFEB facilitates the dark zone entry of light-zone-residing centrocytes through regulation of chemokine receptors and, by balancing the expression of Bcl-2/BH3-only family members, integrates antigen-induced apoptosis with T cell-provided CD40 survival signals. Thus, TFEB reprograms antigen-primed germinal center B cells for cell fate decisions.
Collapse
Affiliation(s)
- Matthias Münchhalfen
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Richard Görg
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Haberl
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Löber
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Jakob Willenbrink
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Schwarzt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Charlotte Höltermann
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Ickes
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Leonard Hammermann
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Kus
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Chapuy
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, USA
| | - Sybille D Reichardt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Feng J, Wang ZX, Bin JL, Chen YX, Ma J, Deng JH, Huang XW, Zhou J, Lu GD. Pharmacological approaches for targeting lysosomes to induce ferroptotic cell death in cancer. Cancer Lett 2024; 587:216728. [PMID: 38431036 DOI: 10.1016/j.canlet.2024.216728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Lysosomes are crucial organelles responsible for the degradation of cytosolic materials and bulky organelles, thereby facilitating nutrient recycling and cell survival. However, lysosome also acts as an executioner of cell death, including ferroptosis, a distinctive form of regulated cell death that hinges on iron-dependent phospholipid peroxidation. The initiation of ferroptosis necessitates three key components: substrates (membrane phospholipids enriched with polyunsaturated fatty acids), triggers (redox-active irons), and compromised defence mechanisms (GPX4-dependent and -independent antioxidant systems). Notably, iron assumes a pivotal role in ferroptotic cell death, particularly in the context of cancer, where iron and oncogenic signaling pathways reciprocally reinforce each other. Given the lysosomes' central role in iron metabolism, various strategies have been devised to harness lysosome-mediated iron metabolism to induce ferroptosis. These include the re-mobilization of iron from intracellular storage sites such as ferritin complex and mitochondria through ferritinophagy and mitophagy, respectively. Additionally, transcriptional regulation of lysosomal and autophagy genes by TFEB enhances lysosomal function. Moreover, the induction of lysosomal iron overload can lead to lysosomal membrane permeabilization and subsequent cell death. Extensive screening and individually studies have explored pharmacological interventions using clinically available drugs and phytochemical agents. Furthermore, a drug delivery system involving ferritin-coated nanoparticles has been specifically tailored to target cancer cells overexpressing TFRC. With the rapid advancements in understandings the mechanistic underpinnings of ferroptosis and iron metabolism, it is increasingly evident that lysosomes represent a promising target for inducing ferroptosis and combating cancer.
Collapse
Affiliation(s)
- Ji Feng
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Zi-Xuan Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Jin-Lian Bin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Yong-Xin Chen
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China; Department of Physiology, School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, 530200, PR China
| | - Jing Ma
- Department of Physiology, School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, 530200, PR China
| | - Jing-Huan Deng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiao-Wei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, Guangxi Province, 530021, PR China.
| |
Collapse
|
6
|
Pileggi S, Colombo EA, Ancona S, Quadri R, Bernardelli C, Colapietro P, Taiana M, Fontana L, Miozzo M, Lesma E, Sirchia SM. Dysfunction in IGF2R Pathway and Associated Perturbations in Autophagy and WNT Processes in Beckwith-Wiedemann Syndrome Cell Lines. Int J Mol Sci 2024; 25:3586. [PMID: 38612397 PMCID: PMC11011696 DOI: 10.3390/ijms25073586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is an imprinting disorder characterized by overgrowth, stemming from various genetic and epigenetic changes. This study delves into the role of IGF2 upregulation in BWS, focusing on insulin-like growth factor pathways, which are poorly known in this syndrome. We examined the IGF2R, the primary receptor of IGF2, WNT, and autophagy/lysosomal pathways in BWS patient-derived lymphoblastoid cell lines, showing different genetic and epigenetic defects. The findings reveal a decreased expression and mislocalization of IGF2R protein, suggesting receptor dysfunction. Additionally, our results point to a dysregulation in the AKT/GSK-3/mTOR pathway, along with imbalances in autophagy and the WNT pathway. In conclusion, BWS cells, regardless of the genetic/epigenetic profiles, are characterized by alteration of the IGF2R pathway that is associated with the perturbation of the autophagy and lysosome processes. These alterations seem to be a key point of the molecular pathogenesis of BWS and potentially contribute to BWS's characteristic overgrowth and cancer susceptibility. Our study also uncovers alterations in the WNT pathway across all BWS cell lines, consistent with its role in growth regulation and cancer development.
Collapse
Affiliation(s)
- Silvana Pileggi
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| | - Elisa A. Colombo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| | - Silvia Ancona
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Roberto Quadri
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Clara Bernardelli
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Patrizia Colapietro
- Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Laura Fontana
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Elena Lesma
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Silvia M. Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| |
Collapse
|
7
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Thapa R, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Saleem S, Khan R, Altwaijry N, Dureja H, Singh SK, Dua K. A review of Glycogen Synthase Kinase-3 (GSK3) inhibitors for cancers therapies. Int J Biol Macromol 2023; 253:127375. [PMID: 37839597 DOI: 10.1016/j.ijbiomac.2023.127375] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The intricate molecular pathways governing cancer development and progression have spurred intensive investigations into novel therapeutic targets. Glycogen Synthase Kinase-3 (GSK3), a complex serine/threonine kinase, has emerged as a key player with intricate roles in various cellular processes, including cell proliferation, differentiation, apoptosis, and metabolism. Harnessing GSK3 inhibitors as potential candidates for cancer therapy has garnered significant interest due to their ability to modulate key signalling pathways that drive oncogenesis. The review encompasses a thorough examination of the molecular mechanisms underlying GSK3's involvement in cancer progression, shedding light on its interaction with critical pathways such as Wnt/β-catenin, PI3K/AKT, and NF-κB. Through these interactions, GSK3 exerts influence over tumour growth, invasion, angiogenesis, and metastasis, rendering it an attractive target for therapeutic intervention. The discussion includes preclinical and clinical studies, showcasing the inhibitors efficacy across a spectrum of cancer types, including pancreatic, ovarian, lung, and other malignancies. Insights from recent studies highlight the potential synergistic effects of combining GSK3 inhibitors with conventional chemotherapeutic agents or targeted therapies, opening avenues for innovative combinatorial approaches. This review provides a comprehensive overview of the current state of research surrounding GSK3 inhibitors as promising agents for cancer treatment.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
9
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Zoncu R, Perera RM. Emerging roles of the MiT/TFE factors in cancer. Trends Cancer 2023; 9:817-827. [PMID: 37400313 DOI: 10.1016/j.trecan.2023.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
The microphthalmia/transcription factor E (MiT/TFE) transcription factors (TFs; TFEB, TFE3, MITF, and TFEC) play a central role in cellular catabolism and quality control and are subject to extensive layers of regulation that influence their localization, stability, and activity. Recent studies have highlighted a broader role for these TFs in driving diverse stress-adaptation pathways, which manifest in a context- and tissue-dependent manner. Several human cancers upregulate the MiT/TFE factors to survive extreme fluctuations in nutrients, energy, and pharmacological challenges. Emerging data suggest that reduced activity of the MiT/TFE factors can also promote tumorigenesis. Here, we outline recent findings relating to novel mechanisms of regulation and activity of MiT/TFE proteins across some of the most aggressive human cancers.
Collapse
Affiliation(s)
- Roberto Zoncu
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Rushika M Perera
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Tang Q, Liu M, Zhao H, Chen L. Glycogen-binding protein STBD1: Molecule and role in pathophysiology. J Cell Physiol 2023; 238:2010-2025. [PMID: 37435888 DOI: 10.1002/jcp.31078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
Starch-binding domain-containing protein 1 (STBD1) is a glycogen-binding protein discovered in skeletal muscle gene differential expression that is pivotal to cellular energy metabolism. Recent studies have indicated that STBD1 is involved in many physiological processes, such as glycophagy, glycogen accumulation, and lipid droplet formation. Moreover, dysregulation of STBD1 causes multiple diseases, including cardiovascular disease, metabolic disease, and even cancer. Deletions and/or mutations in STBD1 promote tumorigenesis. Therefore, STBD1 has garnered considerable interest in the pathology community. In this review, we first summarized the current understanding of STBD1, including its structure, subcellular localization, tissue distribution, and biological functions. Next, we examined the roles and molecular mechanisms of STBD1 in related diseases. Based on available research, we discussed the novel function and future of STBD1, including its potential application as a therapeutic target in glycogen-related diseases. Given the significance of STBD1 in energy metabolism, an in-depth understanding of the protein is crucial for understanding physiological processes and developing therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Qiannan Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Meiqing Liu
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Hong Zhao
- Nursing College, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
12
|
Hu JH, Li SY, Yu LH, Guan ZR, Jiang YP, Hu D, Wang HJ, Zhao LP, Zhou ZH, Yan YX, Xie T, Huang ZH, Lou JS. TFEB: a double-edged sword for tumor metastasis. J Mol Med (Berl) 2023; 101:917-929. [PMID: 37328669 DOI: 10.1007/s00109-023-02337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Transcription factor EB, a member of the microphthalmia-associated transcription factor (MiTF/TFE) family, is a master regulator of autophagy, lysosome biogenesis, and TAMs. Metastasis is one of the main reasons for the failure of tumor therapy. Studies on the relationship between TFEB and tumor metastasis are contradictory. On the positive side, TFEB mainly affects tumor cell metastasis via five aspects, including autophagy, epithelial-mesenchymal transition (EMT), lysosomal biogenesis, lipid metabolism, and oncogenic signaling pathways; on the negative side, TFEB mainly affects tumor cell metastasis in two aspects, including tumor-associated macrophages (TAMs) and EMT. In this review, we described the detailed mechanism of TFEB-mediated regulation of metastasis. In addition, we also described the activation and inactivation of TFEB in several aspects, including the mTORC1 and Rag GTPase systems, ERK2, and AKT. However, the exact process by which TFEB regulates tumor metastasis remains unclear in some pathways, which requires further studies.
Collapse
Affiliation(s)
- Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shou-Ye Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang, 311258, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhen-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Zhi-Hui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
13
|
Wang T, Qin Y, Ye Z, Jing DS, Fan GX, Liu MQ, Zhuo QF, Ji SR, Chen XM, Yu XJ, Xu XW, Li Z. A new glance at autophagolysosomal-dependent or -independent function of transcriptional factor EB in human cancer. Acta Pharmacol Sin 2023; 44:1536-1548. [PMID: 37012494 PMCID: PMC10374590 DOI: 10.1038/s41401-023-01078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023]
Abstract
Autophagy-lysosome system plays a variety of roles in human cancers. In addition to being implicated in metabolism, it is also involved in tumor immunity, remodeling the tumor microenvironment, vascular proliferation, and promoting tumor progression and metastasis. Transcriptional factor EB (TFEB) is a major regulator of the autophagy-lysosomal system. With the in-depth studies on TFEB, researchers have found that it promotes various cancer phenotypes by regulating the autophagolysosomal system, and even in an autophagy-independent way. In this review, we summarize the recent findings about TFEB in various types of cancer (melanoma, pancreatic ductal adenocarcinoma, renal cell carcinoma, colorectal cancer, breast cancer, prostate cancer, ovarian cancer and lung cancer), and shed some light on the mechanisms by which it may serve as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - De-Sheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Gui-Xiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Meng-Qi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qi-Feng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shun-Rong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xue-Min Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiao-Wu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Shirono Y, Bilim V, Anraku T, Kuroki H, Kazama A, Murata M, Hiruma K, Tomita Y. Targeting Pro-Survival Autophagy Enhanced GSK-3β Inhibition-Induced Apoptosis and Retarded Proliferation in Bladder Cancer Cells. Curr Oncol 2023; 30:5350-5365. [PMID: 37366889 DOI: 10.3390/curroncol30060406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Advanced bladder cancer (BC) (local invasive and/or metastatic) is not curable even with cytotoxic chemotherapy, immune checkpoint inhibitors, and targeted treatment. Targeting GSK-3β is a promising novel approach in advanced BC. The induction of autophagy is a mechanism of secondary resistance to various anticancer treatments. Our objectives are to investigate the synergistic effects of GSK-3β in combination with autophagy inhibitors to evade GSK-3β drug resistance. Small molecule GSK-3β inhibitors and GSK-3β knockdown using siRNA promote the expression of autophagy-related proteins. We further investigated that GSK-3β inhibition induced the nucleus translocation of transcription factor EB (TFEB). Compared to the GSK-3β inhibition alone, its combination with chloroquine (an autophagy inhibitor) significantly reduced BC cell growth. These results suggest that targeting autophagy potentiates GSK-3β inhibition-induced apoptosis and retarded proliferation in BC cells.
Collapse
Affiliation(s)
- Yuko Shirono
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Vladimir Bilim
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Department of Urology, Kameda Daiichi Hospital, Niigata 950-0165, Japan
| | - Tsutomu Anraku
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hiroo Kuroki
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Department of Urology, Sado General Hospital, Sado 952-1209, Japan
| | - Akira Kazama
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Masaki Murata
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Kaede Hiruma
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yoshihiko Tomita
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
15
|
Ajzashokouhi AH, Rezaee R, Omidkhoda N, Karimi G. Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury. Cell Cycle 2023; 22:741-757. [PMID: 36593695 PMCID: PMC10026916 DOI: 10.1080/15384101.2022.2161959] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The PI3K/Akt/GSK3β pathway is crucial in regulating cardiomyocyte growth and survival. It has been shown that activation of this pathway alleviates the negative impact of ischemia-reperfusion. Glycogen synthase kinase-3 (GSK3β) induces apoptosis through stimulation of transcription factors, and its phosphorylation has been suggested as a new therapeutic target for myocardial ischemia-reperfusion injury (MIRI). GSK3β regulatory role is mediated by the reperfusion injury salvage kinase (RISK) pathway, and its inhibition by Akt activation blocks mitochondrial permeability transition pore (mPTP) opening and enhances myocardial survival. The present article discusses the involvement of the PI3K/Akt/GSK3β pathway in cardioprotective effects of natural products against MIRI.Abbreviations: Akt: protein kinase B; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; Bad: bcl2-associated agonist of cell death; Bax: bcl2-associated x protein; Bcl-2: B-cell lymphoma 2; CK-MB: Creatine kinase-MB; CRP: C-reactive-protein; cTnI: cardiac troponin I; EGCG: Epigallocatechin-3-gallate; Enos: endothelial nitric oxide synthase; ER: endoplasmic reticulum; ERK ½: extracellular signal‑regulated protein kinase ½; GSK3β: glycogen synthase kinase-3; GSRd: Ginsenoside Rd; GSH: glutathione; GSSG: glutathione disulfide; HO-1: heme oxygenase-1; HR: hypoxia/reoxygenation; HSYA: Hydroxysafflor Yellow A; ICAM-1: Intercellular Adhesion Molecule 1; IKK-b: IκB kinase; IL: interleukin; IPoC: Ischemic postconditioning; IRI: ischemia-reperfusion injury; JNK: c-Jun N-terminal kinase; Keap1: kelch-like ECH-associated protein- 1; LDH: lactate dehydrogenase; LVEDP: left ventricular end diastolic pressure; LVP: left ventricle pressure; LVSP: left ventricular systolic pressure; MAPK: mitogen-activated protein kinase; MDA: malondialdehyde; MIRI: myocardial ischemia-reperfusion injury; MnSOD: manganese superoxide dismutase; mPTP: mitochondrial permeability transition pore; mtHKII: mitochondria-bound hexokinase II; Nrf-1: nuclear respiratory factor 1; Nrf2: nuclear factor erythroid 2-related factor; NO: nitric oxide; PGC-1α: peroxisome proliferator‑activated receptor γ coactivator‑1α; PI3K: phosphoinositide 3-kinases; RISK: reperfusion injury salvage kinase; ROS: reactive oxygen species; RSV: Resveratrol; SOD: superoxide dismutase; TFAM: transcription factor A mitochondrial; TNF-α: tumor necrosis factor-alpha; VEGF-B: vascular endothelial growth factor B.
Collapse
Affiliation(s)
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Marchand B, Poulin MA, Lawson C, Tai LH, Jean S, Boucher MJ. Gemcitabine promotes autophagy and lysosomal function through ERK- and TFEB-dependent mechanisms. Cell Death Dis 2023; 9:45. [PMID: 36746928 PMCID: PMC9902516 DOI: 10.1038/s41420-023-01342-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023]
Abstract
Gemcitabine is a first-line treatment agent for pancreatic ductal adenocarcinoma (PDAC). Contributing to its cytotoxicity, this chemotherapeutic agent is primarily a DNA replication inhibitor that also induces DNA damage. However, its therapeutic effects are limited owing to chemoresistance. Evidence in the literature points to a role for autophagy in restricting the efficacy of gemcitabine. Autophagy is a catabolic process in which intracellular components are delivered to degradative organelles lysosomes. Interfering with this process sensitizes PDAC cells to gemcitabine. It is consequently inferred that autophagy and lysosomal function need to be tightly regulated to maintain homeostasis and provide resistance to environmental stress, such as those imposed by chemotherapeutic drugs. However, the mechanism(s) through which gemcitabine promotes autophagy remains elusive, and the impact of gemcitabine on lysosomal function remains largely unexplored. Therefore, we applied complementary approaches to define the mechanisms triggered by gemcitabine that support autophagy and lysosome function. We found that gemcitabine elicited ERK-dependent autophagy in PDAC cells, but did not stimulate ERK activity or autophagy in non-tumoral human pancreatic epithelial cells. Gemcitabine also promoted transcription factor EB (TFEB)-dependent lysosomal function in PDAC cells. Indeed, treating PDAC cells with gemcitabine caused expansion of the lysosomal network, as revealed by Lysosome associated membrane protein-1 (LAMP1) and LysoTracker staining. More specific approaches have shown that gemcitabine promotes the activity of cathepsin B (CTSB), a cysteine protease playing an active role in lysosomal degradation. We showed that lysosomal function induced by gemcitabine depends on TFEB, the master regulator of autophagy and lysosomal biogenesis. Interfering with TFEB function considerably limited the clonogenic growth of PDAC cells and hindered the capacity of TFEB-depleted PDAC cells to develop orthotopic tumors.
Collapse
Affiliation(s)
- Benoît Marchand
- grid.86715.3d0000 0000 9064 6198Department of Medicine, Gastroenterology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Marc-Antoine Poulin
- grid.86715.3d0000 0000 9064 6198Department of Medicine, Gastroenterology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Christine Lawson
- grid.86715.3d0000 0000 9064 6198Department of Immunology and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Lee-Hwa Tai
- grid.86715.3d0000 0000 9064 6198Department of Immunology and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada ,grid.86715.3d0000 0000 9064 6198Member of the Centre de Recherche du CHUS and the Institut de recherche sur le cancer de l’Université de Sherbrooke, Sherbrooke, Canada
| | - Steve Jean
- grid.86715.3d0000 0000 9064 6198Department of Immunology and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada ,grid.86715.3d0000 0000 9064 6198Member of the Centre de Recherche du CHUS and the Institut de recherche sur le cancer de l’Université de Sherbrooke, Sherbrooke, Canada
| | - Marie-Josée Boucher
- Department of Medicine, Gastroenterology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada. .,Member of the Centre de Recherche du CHUS and the Institut de recherche sur le cancer de l'Université de Sherbrooke, Sherbrooke, Canada.
| |
Collapse
|
17
|
Martina JA, Jeong E, Puertollano R. p38 MAPK-dependent phosphorylation of TFEB promotes monocyte-to-macrophage differentiation. EMBO Rep 2023; 24:e55472. [PMID: 36507874 PMCID: PMC9900348 DOI: 10.15252/embr.202255472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
The transcription factor EB (TFEB) regulates energy homeostasis and cellular response to a wide variety of stress conditions, including nutrient deprivation, oxidative stress, organelle damage, and pathogens. Here we identify S401 as a novel phosphorylation site within the TFEB proline-rich domain. Phosphorylation of S401 increases significantly in response to oxidative stress, UVC light, growth factors, and LPS, whereas this increase is prevented by p38 MAPK inhibition or depletion, revealing a new role for p38 MAPK in TFEB regulation. Mutation of S401 in THP1 cells demonstrates that the p38 MAPK/TFEB pathway plays a particularly relevant role during monocyte differentiation into macrophages. TFEB-S401A monocytes fail to upregulate the expression of multiple immune genes in response to PMA-induced differentiation, including critical cytokines, chemokines, and growth factors. Polarization of M0 macrophages into M1 inflammatory macrophages is also aberrant in TFEB-S401A cells. These results indicate that TFEB-S401 phosphorylation links differentiation signals to the transcriptional control of monocyte differentiation.
Collapse
Affiliation(s)
- José A Martina
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Eutteum Jeong
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Rosa Puertollano
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
18
|
Inase A, Maimaitili Y, Kimbara S, Mizutani Y, Miyata Y, Ohata S, Matsumoto H, Kitao A, Sakai R, Kawaguchi K, Higashime A, Nagao S, Kurata K, Goto H, Kawamoto S, Yakushijin K, Minami H, Matsuoka H. GSK3 inhibitor enhances gemtuzumab ozogamicin-induced apoptosis in primary human leukemia cells by overcoming multiple mechanisms of resistance. EJHAEM 2023; 4:153-164. [PMID: 36819180 PMCID: PMC9928658 DOI: 10.1002/jha2.600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
In acute myeloid leukemia (AML), the heterogeneity of genetic and epigenetic characteristics makes treatment difficult. The prognosis for AML is therefore poor, and there is an urgent need for new treatments for this condition. Gemtuzumab ozogamicin (GO), the first antibody-drug conjugate (ADC), targets the CD33 antigen expressed in over 90% of AML cases. GO therefore has the potential to counter the heterogeneity of AML patients. However, a major clinical problem is that drug resistance to GO diminishes its effect over time. Here, we report that the inhibition of glycogen synthase kinase 3 (GSK3) alone overcomes several forms of GO resistance at concentrations without antileukemic effects. The GSK3 inhibitors tested significantly enhanced the cytotoxic effect of GO in AML cell lines. We elucidated four mechanisms of enhancement: (1) increased expression of CD33, the target antigen of GO; (2) activation of a lysosomal function essential for hydrolysis of the GO linker; (3) reduced expression of MDR1 that eliminates calicheamicin, the payload of GO; and (4) reduced expression of the anti-apoptotic factor Bcl-2. A similar combination effect was observed against patient-derived primary AML cells. Combining GO with GSK3 inhibitors may be efficacious in treating heterogeneous AML.
Collapse
Affiliation(s)
- Aki Inase
- Division of Bioresource Research and DevelopmentDepartment of Social/Community Medicine and Health ScienceKobe University Graduate School of MedicineKobeJapan
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yimamu Maimaitili
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shiro Kimbara
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yu Mizutani
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yoshiharu Miyata
- Division of Bioresource Research and DevelopmentDepartment of Social/Community Medicine and Health ScienceKobe University Graduate School of MedicineKobeJapan
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shinya Ohata
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | | | - Akihito Kitao
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Rina Sakai
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Koji Kawaguchi
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
- Department of Medical Oncology/HematologyKonan Medical CenterKobeJapan
| | - Ako Higashime
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shigeki Nagao
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Keiji Kurata
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hideaki Goto
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
- Department of Hematology and OncologyKita‐harima Medical CenterOnoJapan
| | | | - Kimikazu Yakushijin
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hironobu Minami
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
- Cancer Center, Kobe University HospitalKobeJapan
| | - Hiroshi Matsuoka
- Division of Bioresource Research and DevelopmentDepartment of Social/Community Medicine and Health ScienceKobe University Graduate School of MedicineKobeJapan
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
19
|
Gebrie A. Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Med 2023; 11:20503121231157209. [PMID: 36891126 PMCID: PMC9986912 DOI: 10.1177/20503121231157209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
Transcription factor EB, as a component of the microphthalmia family of transcription factors, has been demonstrated to be a key controller of autophagy-lysosomal biogenesis. Transcription factor EB is activated by stressors such as nutrition and deprivation of growth factors, hypoxia, lysosomal stress, and mitochondrial injury. To achieve the ultimate functional state, it is controlled in a variety of modes, such as in its rate of transcription, post-transcriptional control, and post-translational alterations. Due to its versatile role in numerous signaling pathways, including the Wnt, calcium, AKT, and mammalian target of rapamycin complex 1 signaling pathways, transcription factor EB-originally identified to be an oncogene-is now well acknowledged as a regulator of a wide range of physiological systems, including autophagy-lysosomal biogenesis, response to stress, metabolism, and energy homeostasis. The well-known and recently identified roles of transcription factor EB suggest that this protein might play a central role in signaling networks in a number of non-communicable illnesses, such as cancer, cardiovascular disorders, drug resistance mechanisms, immunological disease, and tissue growth. The important developments in transcription factor EB research since its first description are described in this review. This review helps to advance transcription factor EB from fundamental research into therapeutic and regenerative applications by shedding light on how important a role it plays in human health and disease at the molecular level.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
20
|
Firdous P, Hassan T, Farooq S, Nissar K. Applications of proteomics in cancer diagnosis. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
21
|
Abstract
Ca2+ is a universal second messenger that plays a wide variety of fundamental roles in cellular physiology. Thus, to warrant selective responses and to allow rapid mobilization upon specific stimuli, Ca2+ is accumulated in organelles to keep it at very low levels in the cytoplasm during resting conditions. Major Ca2+ storage organelles include the endoplasmic reticulum (ER), the mitochondria, and as recently demonstrated, the lysosome (Xu and Ren, Annu Rev Physiol 77:57-80, 2015). The importance of Ca2+ signaling deregulation in human physiology is underscored by its involvement in several human diseases, including lysosomal storage disorders, neurodegenerative disease and cancer (Shen et al., Nat Commun 3:731, 2012; Bae et al., J Neurosci 34:11485-11503, 2014). Recent evidence strongly suggests that lysosomal Ca2+ plays a major role in the regulation of lysosomal adaptation to nutrient availability through a lysosomal signaling pathway involving the lysosomal Ca2+ channel TRPML1 and the transcription factor TFEB, a master regulator for lysosomal function and autophagy (Sardiello et al., Science 325:473-477, 2009; Settembre et al., Science 332:1429-1433, 2011; Medina et al., Nat Cell Biol 17:288-299, 2015; Di Paola et al., Cell Calcium 69:112-121, 2018). Due to the tight relationship of this lysosomal Ca2+ channel and TFEB, in this chapter, we will focus on the role of the TRPML1/TFEB pathway in the regulation of lysosomal function and autophagy.
Collapse
Affiliation(s)
- Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
22
|
Al-Huseini I, Sirasanagandla SR, Babu KS, Sofin RGS, Das S. Kinase Inhibitors Involved in the Regulation of Autophagy: Molecular Concepts and Clinical Implications. Curr Med Chem 2023; 30:1502-1528. [PMID: 35078392 DOI: 10.2174/0929867329666220117114306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
All cells and intracellular components are remodeled and recycled in order to replace the old and damaged cells. Autophagy is a process by which damaged, and unwanted cells are degraded in the lysosomes. There are three different types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy has an effect on adaptive and innate immunity, suppression of any tumour, and the elimination of various microbial pathogens. The process of autophagy has both positive and negative effects, and this pertains to any specific disease or its stage of progression. Autophagy involves various processes which are controlled by various signaling pathways, such as Jun N-terminal kinase, GSK3, ERK1, Leucine-rich repeat kinase 2, and PTEN-induced putative kinase 1 and parkin RBR E3. Protein kinases are also important for the regulation of autophagy as they regulate the process of autophagy either by activation or inhibition. The present review discusses the kinase catalyzed phosphorylated reactions, the kinase inhibitors, types of protein kinase inhibitors and their binding properties to protein kinase domains, the structures of active and inactive kinases, and the hydrophobic spine structures in active and inactive protein kinase domains. The intervention of autophagy by targeting specific kinases may form the mainstay of treatment of many diseases and lead the road to future drug discovery.
Collapse
Affiliation(s)
- Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Kondaveeti Suresh Babu
- Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed) University, Pune, Maharashtra, India
| | | | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| |
Collapse
|
23
|
Ballesteros-Álvarez J, Nguyen W, Sivapatham R, Rane A, Andersen JK. Urolithin A reduces amyloid-beta load and improves cognitive deficits uncorrelated with plaque burden in a mouse model of Alzheimer's disease. GeroScience 2022; 45:1095-1113. [PMID: 36576642 PMCID: PMC9886708 DOI: 10.1007/s11357-022-00708-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/03/2022] [Indexed: 12/29/2022] Open
Abstract
In the present study, we investigated the effects of urolithin A (UA), a metabolite generated from ellagic acid via its metabolism by gut bacteria, as an autophagy activator with potential neuroprotective activity. WT and 3xTg-AD mice were administered long-term intermittent dietary supplementation with UA. UA was found to prevent deficits in spatial memory, cued fear response, and exploratory behavior in this model. It also decreased the Aβ plaque burden in areas of the hippocampus where these protein deposits are prominent in the model. Interestingly, correlation analyses demonstrate that Aβ plaque burden positively correlates with enhanced spatial memory in 3xTg-AD mice on a control diet but not in those supplemented with UA. In contrast, Aβ42 abundance in cortical and hippocampal homogenates negatively correlate with spatial memory in UA-fed mice. Our data suggest that plaque formation may be a protective mechanism against neurodegeneration and cognitive decline and that targeting the generation of proteotoxic Aβ species might be a more successful approach in halting disease progression. UA was also found to extend lifespan in normal aging mice. Mechanistically, we demonstrate that UA is able to induce autophagy and to increase Aβ clearance in neuronal cell lines. In summary, our studies reveal UA, likely via its actions as a autophagy inducer, is capable of removing Aβ from neurons and its dietary administration prevents the onset of cognitive deficits associated with pathological Aβ deposition in the 3xTg-AD mouse model as well as extending lifespan in normal aging mice.
Collapse
Affiliation(s)
| | - Wynnie Nguyen
- Buck Institute for Research on Aging, Novato, CA USA
| | | | - Anand Rane
- Buck Institute for Research on Aging, Novato, CA USA
| | | |
Collapse
|
24
|
Napolitano G, Di Malta C, Ballabio A. Non-canonical mTORC1 signaling at the lysosome. Trends Cell Biol 2022; 32:920-931. [PMID: 35654731 DOI: 10.1016/j.tcb.2022.04.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/21/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling hub integrates multiple environmental cues to modulate cell growth and metabolism. Over the past decade considerable knowledge has been gained on the mechanisms modulating mTORC1 lysosomal recruitment and activation. However, whether and how mTORC1 is able to elicit selective responses to diverse signals has remained elusive until recently. We discuss emerging evidence for a 'non-canonical' mTORC1 signaling pathway that controls the function of microphthalmia/transcription factor E (MiT-TFE) transcription factors, key regulators of cell metabolism. This signaling pathway is mediated by a specific mechanism of substrate recruitment, and responds to stimuli that appear to converge on the lysosomal surface. We discuss the relevance of this pathway in physiological and disease conditions.
Collapse
Affiliation(s)
- Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy.
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy.
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Follicle-Stimulating Hormone Alleviates Ovarian Aging by Modulating Mitophagy- and Glycophagy-Based Energy Metabolism in Hens. Cells 2022; 11:cells11203270. [PMID: 36291137 PMCID: PMC9600712 DOI: 10.3390/cells11203270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023] Open
Abstract
As a predominant hormone in the reproductive axis, follicle-stimulating hormone (FSH) is known as the primary surviving factor for follicular growth. In this study, the alleviating effect of FSH on aging chicken granulosa cells (GCs) was investigated. Results showed that FSH activated mitophagy and relieved mitochondrial edema in D-gal-induced senescent GCs, which was evidenced by an increased number of mitophagosomes as well as increased mitochondria-light chain 3 (LC3) colocalization. Mitophagy activation was accompanied by the activation of the AMP-activated protein kinase (AMPK) signaling pathway. Furthermore, upregulated glycophagy was demonstrated by an increased interaction of starch-binding domain protein 1 (STBD1) with GABA type A receptor-associated protein-like 1 (GABARAPL1) in D-gal-induced senescent GCs. FSH treatment further promoted glycophagy, accompanied by PI3K/AKT activation. PI3K inhibitor LY294002 and AKT inhibitor GSK690693 attenuated the effect of FSH on glycophagy and glycolysis. The inhibition of FSH-mediated autophagy attenuated the protective effect of FSH on naturally aging GC proliferation and glycolysis. The simultaneous blockage of PI3K/AKT and AMPK signaling also abolished the positive effect of FSH on naturally senescent ovarian energy regulation. These data reveal that FSH prevents chicken ovarian aging by modulating glycophagy- and mitophagy-based energy metabolism through the PI3K/AKT and AMPK pathways.
Collapse
|
26
|
Tan A, Prasad R, Lee C, Jho EH. Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease. Cell Death Differ 2022; 29:1433-1449. [PMID: 35739255 PMCID: PMC9345944 DOI: 10.1038/s41418-022-01028-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/16/2022] Open
Abstract
Transcription factor EB (TFEB), a member of the MiT/TFE family of basic helix-loop-helix leucine zipper transcription factors, is an established central regulator of the autophagy/lysosomal-to-nucleus signaling pathway. Originally described as an oncogene, TFEB is now widely known as a regulator of various processes, such as energy homeostasis, stress response, metabolism, and autophagy-lysosomal biogenesis because of its extensive involvement in various signaling pathways, such as mTORC1, Wnt, calcium, and AKT signaling pathways. TFEB is also implicated in various human diseases, such as lysosomal storage disorders, neurodegenerative diseases, cancers, and metabolic disorders. In this review, we present an overview of the major advances in TFEB research over the past 30 years, since its description in 1990. This review also discusses the recently discovered regulatory mechanisms of TFEB and their implications for human diseases. We also summarize the moonlighting functions of TFEB and discuss future research directions and unanswered questions in the field. Overall, this review provides insight into our understanding of TFEB as a major molecular player in human health, which will take us one step closer to promoting TFEB from basic research into clinical and regenerative applications.
Collapse
Affiliation(s)
- Anderson Tan
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Renuka Prasad
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chaerin Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
27
|
Zhu J, Wu W, Togashi Y, Taira Nihira N, Johmura Y, Zhu D, Nakanishi M, Miyoshi Y, Ohta T. Alteration of Trop-2 expression in breast cancer cells by clinically used therapeutic agents and acquired tamoxifen resistance. Breast Cancer 2022; 29:1076-1087. [PMID: 35882754 PMCID: PMC9587948 DOI: 10.1007/s12282-022-01389-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022]
Abstract
Background Sacituzumab govitecan is an antibody–drug conjugate that delivers SN-38, an active metabolite of irinotecan, to the target molecule, trophoblast cell-surface antigen 2 (Trop-2). It is a promising drug for triple-negative breast cancer and is anticipated to be effective for luminal breast cancer. The efficacy of the agent relies on the expression of Trop-2 rather than its intracellular function. However, conditions that alter the Trop-2 expression have not been well investigated. Methods We tested a range of clinically related treatments for their effect on Trop-2 expression in cultured breast cancer cell lines. Results The expression level of Trop-2 differed among cell lines, independent of their subtypes, and was highly variable on treatment with kinase inhibitors, tamoxifen, irradiation, and chemotherapeutic agents including irinotecan. While inhibitors of AKT, RSK, and p38 MAPK suppressed the Trop-2 expression, tamoxifen treatment significantly increased Trop-2 expression in luminal cancer cell lines. Notably, luminal cancer cells with acquired resistance to tamoxifen also exhibited higher levels of Trop-2. We identified transcription factor EB (TFEB) as a possible mechanism underlying tamoxifen-induced elevation of Trop-2 expression. Tamoxifen triggers dephosphorylation of TFEB, an active form of TFEB, and the effect of tamoxifen on Trop-2 was prevented by depletion of TFEB. A luciferase reporter assay showed that Trop-2 induction by TFEB was dependent on a tandem E-box motif within the Trop-2 promoter region. Conclusions Overall, these results suggest that the effectiveness of sacituzumab govitecan could be altered by concomitant treatment and that tamoxifen could be a favorable agent for combined therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-022-01389-3.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan.,Department of Breast Medicine, Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Naoe Taira Nihira
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Yoshikazu Johmura
- Department of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Dajiang Zhu
- Department of Breast Medicine, Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan.
| |
Collapse
|
28
|
Das A, Bhattacharya B, Roy S. Decrypting a path based approach for identifying the interplay between PI3K and GSK3 signaling cascade from the perspective of cancer. Genes Dis 2022; 9:868-888. [PMID: 35685456 PMCID: PMC9170611 DOI: 10.1016/j.gendis.2021.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer is one of those leading diseases worldwide, which takes millions of lives every year. Researchers are continuously looking for specific approaches to eradicate the deadly disease, ensuring minimal adverse effects along with more therapeutic significance. Targeting of different aberrantly regulated signaling pathways, involved in cancer, is surely one of the revolutionary chemotherapeutic approach. In this instance, GSK3 and PI3K signaling cascades are considered as important role player for both the oncogenic activation and inactivation which further leads to cancer proliferation and metastasis. In this review, we have discussed the potential role of GSK3 and PI3K signaling in cancer, and we further established the crosstalk between PI3K and GSK3 signaling, through showcasing their cross activation, cross inhibition and convergence pathways in association with cancer. We also exhibited the effect of GSK3 on the efficacy of PI3K inhibitors to overcome the drug resistance and preventing the cell proliferation, metastasis in a combinatorial way with GSK3 inhibitors for a better treatment strategy in clinical settings.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Barshana Bhattacharya
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Souvik Roy
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| |
Collapse
|
29
|
Qiu F, Yuan Y, Luo W, Gong YS, Zhang ZM, Liu ZM, Gao L. Asiatic acid alleviates ischemic myocardial injury in mice by modulating mitophagy- and glycophagy-based energy metabolism. Acta Pharmacol Sin 2022; 43:1395-1407. [PMID: 34522006 PMCID: PMC9160258 DOI: 10.1038/s41401-021-00763-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) causes disturbances in myocardial energy metabolism, ultimately leading to a poor prognosis. Cytosolic glycogen autophagy (glycophagy) and mitochondrial autophagy (mitophagy) are upregulated in MI to optimize energy metabolism but to a limited extent. Asiatic acid (AA), a pentacyclic triterpene derived from the traditional Chinese herb Centella asiatica, displays anti-inflammatory, antioxidant, and antiapoptotic activities. AA has been found to alleviate focal cerebral and liver ischemic injury by reversing mitochondrial dysfunction. In this study, we investigated whether AA exerted cardioprotective effects against MI by activating glycophagy and mitophagy to improve the energy balance. In vitro cardioprotective effects were examined in neonatal mouse cardiomyocytes subjected to oxygen-glucose deprivation for 12 h. Treatment with AA (2-50 μM) significantly increased cell viability and improved the energy metabolism evidenced by increased ATP level and phosphocreatine/ATP ratio. In vivo cardioprotective effects were studied in a mouse model of MI. Administration of AA (5-125 mg·kg-1·d-1, ig) significantly reduced infarct size and ischemic myocardial injury, and improved cardiac function. AA treatment also promoted mitophagy and relieved mitochondrial edema evidenced by increased number of mitophagosomes in ischemic myocardium in vivo and increased mitochondria-light chain 3 (LC3)-II colocalization in ODG-treated cardiomyocytes in vitro. Mitophagy activation was accompanied by activation of the AMPK signaling pathway. Knockdown of AMPK abolished AA-activated mitophagy. Furthermore, we showed that glycophagy was upregulated in OGD cardiomyocytes evidenced by increased starch binding domain protein 1 (STBD1)-GABA type A receptor-associated protein-like 1(GABARAPL1) interaction and extracellular acidification rate, whereas AA treatment further promoted glycophagy accompanied by PI3K/Akt activation. PI3K inhibitor LY294002 or Akt inhibitor GSK690693 blocked the effects of AA on glycophagy and glycolysis. Finally, simultaneous inhibition of glycophagy and mitophagy abolished the cardioprotective effects and energy regulation of AA. These results demonstrate that AA protects ischemic cardiomyocytes by modulating glycophagy- and mitophagy-based energy metabolism through the PI3K/Akt and AMPK pathways.
Collapse
Affiliation(s)
- Fan Qiu
- grid.452753.20000 0004 1799 2798Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China ,grid.452753.20000 0004 1799 2798Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yi Yuan
- grid.452753.20000 0004 1799 2798Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Wei Luo
- grid.452753.20000 0004 1799 2798Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China ,grid.452753.20000 0004 1799 2798Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yan-shan Gong
- grid.452753.20000 0004 1799 2798Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Zhong-ming Zhang
- grid.413389.40000 0004 1758 1622Department of Cardiovascular and Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Zhong-min Liu
- grid.452753.20000 0004 1799 2798Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China ,grid.452753.20000 0004 1799 2798Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China ,grid.452753.20000 0004 1799 2798Shanghai Institute of Stem Cell Research and Clinical translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China ,Shanghai Engineering Research Center for Stem Cell Clinical Treatment, Shanghai 200123, China
| | - Ling Gao
- grid.452753.20000 0004 1799 2798Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China ,grid.452753.20000 0004 1799 2798Shanghai Institute of Stem Cell Research and Clinical translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China ,Shanghai Engineering Research Center for Stem Cell Clinical Treatment, Shanghai 200123, China
| |
Collapse
|
30
|
Fu J, Yang Y, Zhu L, Chen Y, Liu B. Unraveling the Roles of Protein Kinases in Autophagy: An Update on Small-Molecule Compounds for Targeted Therapy. J Med Chem 2022; 65:5870-5885. [PMID: 35390258 DOI: 10.1021/acs.jmedchem.1c02053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases, which catalyze the phosphorylation of proteins, are involved in several important cellular processes, such as autophagy. Of note, autophagy, originally described as a mechanism for intracellular waste disposal and recovery, has been becoming a crucial biological process closely related to many types of human diseases. More recently, the roles of protein kinases in autophagy have been gradually elucidated, and the design of small-molecule compounds to modulate targets to positively or negatively interfere with the cytoprotective autophagy or autophagy-associated cell death may provide a new clue on the current targeted therapy. Thus, in this Perspective, we focus on summarizing the different roles of protein kinases, including positive, negative, and bidirectional regulations of autophagy. Moreover, we discuss several small-molecule compounds targeting these protein kinases in human diseases, highlighting their pivotal roles in autophagy for targeted therapeutic purposes.
Collapse
Affiliation(s)
- Jiahui Fu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Zoncu R, Perera RM. Built to last: lysosome remodeling and repair in health and disease. Trends Cell Biol 2022; 32:597-610. [DOI: 10.1016/j.tcb.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022]
|
32
|
Karati D, Shaoo KK, Mahadik K, Kumr D. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Abdel-Rafei MK, Thabet NM, Rashed LA, Moustafa EM. Canagliflozin, a SGLT-2 inhibitor, relieves ER stress, modulates autophagy and induces apoptosis in irradiated HepG2 cells: Signal transduction between PI3K/AKT/GSK-3β/mTOR and Wnt/β-catenin pathways; in vitro. J Cancer Res Ther 2021; 17:1404-1418. [PMID: 34916371 DOI: 10.4103/jcrt.jcrt_963_19] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background and Objectives Metabolic shifting from mitochondrial respiration to glycolysis characterizes malignant cells from its normal counterparts and is attributed to overactivation of oncogenic signaling pathways. Hence, this study intended to investigate the influence of canagliflozin (CAN) and/or γ-irradiation (γ-IR) on HepG2 cell proliferation, crosstalk between phosphatidylinositol 3-kinases (PI3K)/AKT/glycogen synthase kinase-3-β (GSK3-β)/mTOR and Wnt/β-catenin signaling pathways, and their regulation of diverse processes, such as endoplasmic reticulum (ER) stress, autophagy, and apoptosis. Materials and Methods HepG2 cells were treated with different doses of CAN and then exposed to different doses of γ-IR to achieve optimization that was based on cytotoxicity and clonogenic assays, respectively. The effects of CAN and/or γ-IR on glycolytic metabolism, cellular bioenergetics, oxidative stress, ER stress and autophagy biomarkers, expression of PI3K/AKT/GSK3-β/mTOR and Wnt/β-Catenin signaling pathways, and apoptotic markers were monitored. Results CAN enhanced the antitumor potential of γ-IR as displayed by a significant inhibition of clonogenic survival in HepG2 cells via inhibition of glucose uptake, lactate release, and modulation of ER stress-mediated autophagy; switched it to apoptosis; as well as disabled signaling pathways which contribute to metabolic reprogramming and tumor progression induced by γ-IR that confer radioresistance and treatment failure. Conclusion Our study sheds light on the effective combination of CAN and γ-IR in hepatocellular carcinoma treatment and necessitates CAN treatment prior to γ-IR to overcome metabolic reprogramming-associated radioresistance and improve curative outcomes.
Collapse
Affiliation(s)
- Mohamed Khairy Abdel-Rafei
- Department of Radiation Biology, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Noura Magdy Thabet
- Department of Radiation Biology, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Enas Mahmoud Moustafa
- Department of Radiation Biology, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
34
|
The two faces of autophagy in oral squamous cell carcinoma. Arch Oral Biol 2021; 134:105321. [PMID: 34923284 DOI: 10.1016/j.archoralbio.2021.105321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To undertake a comprehensive review of the current knowledge and understanding of autophagy in oral squamous cell carcinoma (OSCC), focusing on putative roles in tumour suppression and survival along with the influence of this cell death pathway on the development of resistance to chemotherapeutic treatment. DESIGN Several well utilised databases (PubMed, Medline, Google Scholar) were searched for the relevant literature using terms and keywords including but not limited too; autophagy and cancer, autophagy and OSCC, tumour survival, autophagy and oral microbiome, autophagy immunogenicity, OSCC chemoresistance. RESULTS Up-regulation of autophagy has been shown to promote tumour cell survival in the tumour microenvironment while in healthy cells, autophagy induction acts to prevent severe DNA mutations that can lead to cancer. Cancers utilise the autophagy pathway to promote survival during the stress of chemotherapeutic treatment and can induce resistance to chemotherapeutic drugs CONCLUSION: The ambiguous role of autophagy within cancers is still problematic in clinical fields. Within OSCC understanding whether autophagy plays a preventive or causative role is essential and may be beneficial in determining how modulation of this pathway may impact on OSSC and oral cancer patients.
Collapse
|
35
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
36
|
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm (Vienna) 2021; 129:141-172. [PMID: 34689261 PMCID: PMC8541819 DOI: 10.1007/s00702-021-02431-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin–proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.
Collapse
Affiliation(s)
- Franziska Hommen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Saygın Bilican
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
37
|
PARsylated transcription factor EB (TFEB) regulates the expression of a subset of Wnt target genes by forming a complex with β-catenin-TCF/LEF1. Cell Death Differ 2021; 28:2555-2570. [PMID: 33753903 PMCID: PMC8408140 DOI: 10.1038/s41418-021-00770-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Wnt signaling is mainly transduced by β-catenin via regulation of the β-catenin destruction complex containing Axin, APC, and GSK3β. Transcription factor EB (TFEB) is a well-known master regulator of autophagy and lysosomal biogenesis processes. TFEB's nuclear localization and transcriptional activity are also regulated by various upstream signals. In this study, we found that Wnt signaling induces the nuclear localization of TFEB and the expression of Wnt target genes is regulated by TFEB-β-catenin-TCF/LEF1 as well as β-catenin-TCF/LEF1 complexes. Our biochemical data revealed that TFEB is a part of the β-catenin destruction complex, and destabilization of the destruction complex by knockdown of either Axin or APC causes nuclear localization of TFEB. Interestingly, RNA-sequencing analysis revealed that about 27% of Wnt3a-induced genes were TFEB dependent. However, these "TFEB mediated Wnt target genes" were different from TFEB target genes involved in autophagy and lysosomal biogenesis processes. Mechanistically, we found that Tankyrase (TNKS) PARsylates TFEB with Wnt ON signaling, and the nuclear localized PARsylated TFEB forms a complex with β-catenin-TCF/LEF1 to induce the "TFEB mediated Wnt target genes". Finally, we found that in various types of cancer, the levels of TFEB mediated Wnt target genes exhibit strong correlations with the level of Axin2, which represents the activity of Wnt signaling. Overall, our data suggest that Wnt signaling induces the expression of a subset of genes that are distinct from previously known genes regulated by the β-catenin-TCF/LEF1 complex or TFEB, by forming a transcription factor complex consisting of PARsylated TFEB and β-catenin-TCF/LEF1.
Collapse
|
38
|
Pecoraro C, Faggion B, Balboni B, Carbone D, Peters GJ, Diana P, Assaraf YG, Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2021; 58:100779. [PMID: 34461526 DOI: 10.1016/j.drup.2021.100779] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3β) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3β is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative diseases, diabetes and cancer. GSK3β recently emerged among the key factors involved in the onset and progression of pancreatic cancer, as well as in the acquisition of chemoresistance. Intensive research has been conducted on key oncogenic functions of GSK3β and its potential as a druggable target; currently developed GSK3β inhibitors display promising results in preclinical models of distinct tumor types, including pancreatic cancer. Here, we review the latest findings about GSK-3β biology and its role in the development and progression of pancreatic cancer. Moreover, we discuss therapeutic agents targeting GSK3β that could be administered as monotherapy or in combination with other drugs to surmount chemoresistance. Several studies are also defining potential gene signatures to identify patients who might benefit from GSK3β-based therapeutic intervention. This detailed overview emphasizes the urgent need of additional molecular studies on the impact of GSK3β inhibition as well as structural analysis of novel compounds and omics studies of predictive biomarkers.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Beatrice Faggion
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Beatrice Balboni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy, and Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy.
| |
Collapse
|
39
|
Ballesteros‐Álvarez J, Andersen JK. mTORC2: The other mTOR in autophagy regulation. Aging Cell 2021; 20:e13431. [PMID: 34250734 PMCID: PMC8373318 DOI: 10.1111/acel.13431] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) has gathered significant attention as a ubiquitously expressed multimeric kinase with key implications for cell growth, proliferation, and survival. This kinase forms the central core of two distinct complexes, mTORC1 and mTORC2, which share the ability of integrating environmental, nutritional, and hormonal cues but which regulate separate molecular pathways that result in different cellular responses. Particularly, mTORC1 has been described as a major negative regulator of endosomal biogenesis and autophagy, a catabolic process that degrades intracellular components and organelles within the lysosomes and is thought to play a key role in human health and disease. In contrast, the role of mTORC2 in the regulation of autophagy has been considerably less studied despite mounting evidence this complex may regulate autophagy in a different and perhaps complementary manner to that of mTORC1. Genetic ablation of unique subunits is currently being utilized to study the differential effects of the two mTOR complexes. RICTOR is the best‐described subunit specific to mTORC2 and as such has become a useful tool for investigating the specific actions of this complex. The development of complex‐specific inhibitors for mTORC2 is also an area of intense interest. Studies to date have demonstrated that mTORC1/2 complexes each signal to a variety of exclusive downstream molecules with distinct biological roles. Pinpointing the particular effects of these downstream effectors is crucial toward the development of novel therapies aimed at accurately modulating autophagy in the context of human aging and disease.
Collapse
|
40
|
Miles HN, Delafield DG, Li L. Recent Developments and Applications of Quantitative Proteomics Strategies for High-Throughput Biomolecular Analyses in Cancer Research. RSC Chem Biol 2021; 4:1050-1072. [PMID: 34430874 PMCID: PMC8341969 DOI: 10.1039/d1cb00039j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Innovations in medical technology and dedicated focus from the scientific community have inspired numerous treatment strategies for benign and invasive cancers. While these improvements often lend themselves to more positive prognoses and greater patient longevity, means for early detection and severity stratification have failed to keep pace. Detection and validation of cancer-specific biomarkers hinges on the ability to identify subtype-specific phenotypic and proteomic alterations and the systematic screening of diverse patient groups. For this reason, clinical and scientific research settings rely on high throughput and high sensitivity mass spectrometry methods to discover and quantify unique molecular perturbations in cancer patients. Discussed within is an overview of quantitative proteomics strategies and a summary of recent applications that enable revealing potential biomarkers and treatment targets in prostate, ovarian, breast, and pancreatic cancer in a high throughput manner.
Collapse
Affiliation(s)
- Hannah N. Miles
- School of Pharmacy, University of Wisconsin-Madison777 Highland AvenueMadisonWI53705-2222USA+1-608-262-5345+1-608-265-8491
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison777 Highland AvenueMadisonWI53705-2222USA+1-608-262-5345+1-608-265-8491
- Department of Chemistry, University of Wisconsin-MadisonMadisonWI53706USA
| |
Collapse
|
41
|
Tandon N, Luxami V, Kant D, Tandon R, Paul K. Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer. RSC Adv 2021; 11:25228-25257. [PMID: 35478899 PMCID: PMC9037120 DOI: 10.1039/d1ra03979b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023] Open
Abstract
The indazole core is an interesting pharmacophore due to its applications in medicinal chemistry. In the past few years, this moiety has been used for the synthesis of kinase inhibitors. Many researchers have demonstrated the use of indazole derivatives as specific kinase inhibitors, including tyrosine kinase and serine/threonine kinases. A number of anticancer drugs with an indazole core are commercially available, e.g. axitinib, linifanib, niraparib, and pazopanib. Indazole derivatives are applied for the targeted treatment of lung, breast, colon, and prostate cancers. In this review, we compile the current development of indazole derivatives as kinase inhibitors and their application as anticancer agents in the past five years.
Collapse
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Divya Kant
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
42
|
Repurposing Niclosamide for Targeting Pancreatic Cancer by Inhibiting Hh/Gli Non-Canonical Axis of Gsk3β. Cancers (Basel) 2021; 13:cancers13133105. [PMID: 34206370 PMCID: PMC8269055 DOI: 10.3390/cancers13133105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The current obstacles for discovering new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the identification of new uses for approved or investigational drugs for new therapeutic purposes. Niclosamide (Nic) is a Food and Drug Administration (FDA)-approved anti-helminthic drug, reported to have anti-cancer effects, and is being assessed in various clinical trials. In the current study, we assessed the therapeutic efficacy of Nic on pancreatic cancer (PC) in vitro. Our results revealed mitochondrial stress and mTORC1-dependent autophagy as the predominant players of Nic-induced PC cell death. This study provided a novel mechanistic insight for anti-cancer efficacy of Nic by increasing p-Gsk3β that modulates molecular signaling(s), including inhibition of hedgehog (Hh) signaling-mediated cellular proliferation and increased apoptosis through mTORC1-dependent autophagy may prove helpful for the development of novel PC therapies. Abstract Niclosamide (Nic), an FDA-approved anthelmintic drug, is reported to have anti-cancer efficacy and is being assessed in clinical trials for various solid tumors. Based on its ability to target multiple signaling pathways, in the present study, we evaluated the therapeutic efficacy of Nic on pancreatic cancer (PC) in vitro. We observed an anti-cancerous effect of this drug as shown by the G0/G1 phase cell cycle arrest, inhibition of PC cell viability, colony formation, and migration. Our results revealed the involvement of mitochondrial stress and mTORC1-dependent autophagy as the predominant players of Nic-induced PC cell death. Significant reduction of Nic-induced reactive oxygen species (ROS) and cell death in the presence of a selective autophagy inhibitor spautin-1 demonstrated autophagy as a major contributor to Nic-mediated cell death. Mechanistically, Nic inhibited the interaction between BCL2 and Beclin-1 that supported the crosstalk of autophagy and apoptosis. Further, Nic treatment resulted in Gsk3β inactivation by phosphorylating its Ser-9 residue leading to upregulation of Sufu and Gli3, thereby negatively impacting hedgehog signaling and cell survival. Nic induced autophagic cell death, and p-Gsk3b mediated Sufu/Gli3 cascade was further confirmed by Gsk3β activator, LY-294002, by rescuing inactivation of Hh signaling upon Nic treatment. These results suggested the involvement of a non-canonical mechanism of Hh signaling, where p-Gsk3β acts as a negative regulator of Hh/Gli1 cascade and a positive regulator of autophagy-mediated cell death. Overall, this study established the therapeutic efficacy of Nic for PC by targeting p-Gsk3β mediated non-canonical Hh signaling and promoting mTORC1-dependent autophagy and cell death.
Collapse
|
43
|
Kim S, Song HS, Yu J, Kim YM. MiT Family Transcriptional Factors in Immune Cell Functions. Mol Cells 2021; 44:342-355. [PMID: 33972476 PMCID: PMC8175148 DOI: 10.14348/molcells.2021.0067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022] Open
Abstract
The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.
Collapse
Affiliation(s)
- Seongryong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyun-Sup Song
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jihyun Yu
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST, Daejeon 34141, Korea
| |
Collapse
|
44
|
Papadopoli D, Pollak M, Topisirovic I. The role of GSK3 in metabolic pathway perturbations in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119059. [PMID: 33989699 DOI: 10.1016/j.bbamcr.2021.119059] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/11/2023]
Abstract
Malignant transformation and tumor progression are accompanied by significant perturbations in metabolic programs. As such, cancer cells support high ATP turnover to construct the building blocks needed to fuel neoplastic growth. The coordination of metabolic networks in malignant cells is dependent on the collaboration with cellular signaling pathways. Glycogen synthase kinase 3 (GSK3) lies at the convergence of several signaling axes, including the PI3K/AKT/mTOR, AMPK, and Wnt pathways, which influence cancer initiation, progression and therapeutic responses. Accordingly, GSK3 modulates metabolic processes, including protein and lipid synthesis, glucose and mitochondrial metabolism, as well as autophagy. In this review, we highlight current knowledge of the role of GSK3 in metabolic perturbations in cancer.
Collapse
Affiliation(s)
- David Papadopoli
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montréal, QC H4A 3T2, Canada.
| | - Michael Pollak
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montréal, QC H4A 3T2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Décarie Blvd, Montréal, QC H4A 3J1, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montréal, QC H4A 3T2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Décarie Blvd, Montréal, QC H4A 3J1, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada
| |
Collapse
|
45
|
Ramirez Reyes JMJ, Cuesta R, Pause A. Folliculin: A Regulator of Transcription Through AMPK and mTOR Signaling Pathways. Front Cell Dev Biol 2021; 9:667311. [PMID: 33981707 PMCID: PMC8107286 DOI: 10.3389/fcell.2021.667311] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/β, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/β. Other pathways and cellular processes regulated by FLCN will be briefly discussed.
Collapse
Affiliation(s)
- Josué M. J. Ramirez Reyes
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rafael Cuesta
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
46
|
Dissection of two routes to naïve pluripotency using different kinase inhibitors. Nat Commun 2021; 12:1863. [PMID: 33767186 PMCID: PMC7994667 DOI: 10.1038/s41467-021-22181-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
Embryonic stem cells (ESCs) can be maintained in the naïve state through inhibition of Mek1/2 and Gsk3 (2i). A relevant effect of 2i is the inhibition of Cdk8/19, which are negative regulators of the Mediator complex, responsible for the activity of enhancers. Inhibition of Cdk8/19 (Cdk8/19i) stimulates enhancers and, similar to 2i, stabilizes ESCs in the naïve state. Here, we use mass spectrometry to describe the molecular events (phosphoproteome, proteome, and metabolome) triggered by 2i and Cdk8/19i on ESCs. Our data reveal widespread commonalities between these two treatments, suggesting overlapping processes. We find that post-transcriptional de-repression by both 2i and Cdk8/19i might support the mitochondrial capacity of naive cells. However, proteome reprogramming in each treatment is achieved by different mechanisms. Cdk8/19i acts directly on the transcriptional machinery, activating key identity genes to promote the naïve program. In contrast, 2i stabilizes the naïve circuitry through, in part, de-phosphorylation of downstream transcriptional effectors.
Collapse
|
47
|
Singh K, Chen YC, Hassanzadeh S, Han K, Judy JT, Seifuddin F, Tunc I, Sack MN, Pirooznia M. Network Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial Dysfunctions in SARS-CoV-2 Infection. Front Genet 2021; 12:599261. [PMID: 33796130 PMCID: PMC8008150 DOI: 10.3389/fgene.2021.599261] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Analyzing host cells' transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will help delineate biological processes underlying viral pathogenesis. First, analysis of expression profiles of lung cell lines A549 and Calu3 revealed upregulation of antiviral interferon signaling genes in response to all three SARS-CoV-2, MERS-CoV, or influenza A virus (IAV) infections. However, perturbations in expression of genes involved in inflammatory, mitochondrial, and autophagy processes were specifically observed in SARS-CoV-2-infected cells. Next, a validation study in infected human nasopharyngeal samples also revealed perturbations in autophagy and mitochondrial processes. Specifically, mTOR expression, mitochondrial ribosomal, mitochondrial complex I, lysosome acidification, and mitochondrial fission promoting genes were concurrently downregulated in both infected cell lines and human samples. SARS-CoV-2 infection impeded autophagic flux either by upregulating GSK3B in lung cell lines or by downregulating autophagy genes, SNAP29, and lysosome acidification genes in human samples, contributing to increased viral replication. Therefore, drugs targeting lysosome acidification or autophagic flux could be tested as intervention strategies. Finally, age-stratified SARS-CoV-2-positive human data revealed impaired upregulation of chemokines, interferon-stimulated genes, and tripartite motif genes that are critical for antiviral signaling. Together, this analysis has revealed specific aspects of autophagic and mitochondrial function that are uniquely perturbed in SARS-CoV-2-infected host cells.
Collapse
Affiliation(s)
- Komudi Singh
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shahin Hassanzadeh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer T. Judy
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
48
|
Zangrossi M, Romani P, Chakravarty P, Ratcliffe CD, Hooper S, Dori M, Forcato M, Bicciato S, Dupont S, Sahai E, Montagner M. EphB6 Regulates TFEB-Lysosomal Pathway and Survival of Disseminated Indolent Breast Cancer Cells. Cancers (Basel) 2021; 13:1079. [PMID: 33802447 PMCID: PMC7959459 DOI: 10.3390/cancers13051079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Late relapse of disseminated cancer cells is a common feature of breast and prostate tumors. Several intrinsic and extrinsic factors have been shown to affect quiescence and reawakening of disseminated dormant cancer cells (DDCCs); however, the signals and processes sustaining the survival of DDCCs in a foreign environment are still poorly understood. We have recently shown that crosstalk with lung epithelial cells promotes survival of DDCCs of estrogen receptor-positive (ER+) breast tumors. By using a lung organotypic system and in vivo dissemination assays, here we show that the TFEB-lysosomal axis is activated in DDCCs and that it is modulated by the pro-survival ephrin receptor EphB6. TFEB lysosomal direct targets are enriched in DDCCs in vivo and correlate with relapse in ER+ breast cancer patients. Direct coculture of DDCCs with alveolar type I-like lung epithelial cells and dissemination in the lung drive lysosomal accumulation and EphB6 induction. EphB6 contributes to survival, TFEB transcriptional activity, and lysosome formation in DDCCs in vitro and in vivo. Furthermore, signaling from EphB6 promotes the proliferation of surrounding lung parenchymal cells in vivo. Our data provide evidence that EphB6 is a key factor in the crosstalk between disseminated dormant cancer cells and the lung parenchyma and that the TFEB-lysosomal pathway plays an important role in the persistence of DDCCs.
Collapse
Affiliation(s)
- Manuela Zangrossi
- Department of Molecular Medicine, University of Padua, Viale G. Colombo, 3, 35126 Padua, Italy; (M.Z.); (P.R.); (S.D.)
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua, Viale G. Colombo, 3, 35126 Padua, Italy; (M.Z.); (P.R.); (S.D.)
| | - Probir Chakravarty
- Bioinformatics Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Colin D.H. Ratcliffe
- Tumor Cell Biology Lab, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; (C.D.H.R.); (S.H.)
| | - Steven Hooper
- Tumor Cell Biology Lab, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; (C.D.H.R.); (S.H.)
| | - Martina Dori
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 287, 41125 Modena, Italy; (M.D.); (M.F.); (S.B.)
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 287, 41125 Modena, Italy; (M.D.); (M.F.); (S.B.)
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 287, 41125 Modena, Italy; (M.D.); (M.F.); (S.B.)
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua, Viale G. Colombo, 3, 35126 Padua, Italy; (M.Z.); (P.R.); (S.D.)
| | - Erik Sahai
- Tumor Cell Biology Lab, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; (C.D.H.R.); (S.H.)
| | - Marco Montagner
- Department of Molecular Medicine, University of Padua, Viale G. Colombo, 3, 35126 Padua, Italy; (M.Z.); (P.R.); (S.D.)
| |
Collapse
|
49
|
Wang W, Li J, Tan J, Wang M, Yang J, Zhang ZM, Li C, Basnakian AG, Tang HW, Perrimon N, Zhou Q. Endonuclease G promotes autophagy by suppressing mTOR signaling and activating the DNA damage response. Nat Commun 2021; 12:476. [PMID: 33473107 PMCID: PMC7817833 DOI: 10.1038/s41467-020-20780-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Endonuclease G (ENDOG), a mitochondrial nuclease, is known to participate in many cellular processes, including apoptosis and paternal mitochondrial elimination, while its role in autophagy remains unclear. Here, we report that ENDOG released from mitochondria promotes autophagy during starvation, which we find to be evolutionally conserved across species by performing experiments in human cell lines, mice, Drosophila and C. elegans. Under starvation, Glycogen synthase kinase 3 beta-mediated phosphorylation of ENDOG at Thr-128 and Ser-288 enhances its interaction with 14-3-3γ, which leads to the release of Tuberin (TSC2) and Phosphatidylinositol 3-kinase catalytic subunit type 3 (Vps34) from 14-3-3γ, followed by mTOR pathway suppression and autophagy initiation. Alternatively, ENDOG activates DNA damage response and triggers autophagy through its endonuclease activity. Our results demonstrate that ENDOG is a crucial regulator of autophagy, manifested by phosphorylation-mediated interaction with 14-3-3γ, and its endonuclease activity-mediated DNA damage response.
Collapse
Affiliation(s)
- Wenjun Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.,Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jianshuang Li
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Junyang Tan
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Miaomiao Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jing Yang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Alexei G Basnakian
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Qinghua Zhou
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China. .,Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China. .,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
50
|
Endolysosomal TRPMLs in Cancer. Biomolecules 2021; 11:biom11010065. [PMID: 33419007 PMCID: PMC7825278 DOI: 10.3390/biom11010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.
Collapse
|