1
|
Nho S, Kim H. Dynamics of nucleosomes and chromatin fibers revealed by single-molecule measurements. BMB Rep 2025; 58:24-32. [PMID: 39757199 PMCID: PMC11788527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
The nucleosome is the fundamental structural unit of chromosome fibers. DNA wraps around a histone octamer to form a nucleosome while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region and provide regulatory controls of gene expression. Biochemical and physical cues stimulate wrapping-unwrapping and condensation-decondensation dynamics of nucleosomes and nucleosome arrays. Nucleosome dynamics and chromatin fiber organization are influenced by changes in the ionic background within the nucleus, post-translational modifications of histone proteins, and DNA sequence characteristics, such as histone-binding motifs and nucleosome spacing. Biochemical and biophysical measurements, along with in silico simulations, have been extensively used to study the regulatory effects on chromatin dynamics. In particular, single-molecule measurements have revealed novel mechanistic details of nucleosome and chromatin dynamics. This minireview elucidates recent findings on chromatin dynamics from these approaches. [BMB Reports 2025; 58(1): 24-32].
Collapse
Affiliation(s)
- Sihyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
2
|
Brown MT, McMurray MA. Stepwise order in protein complex assembly: approaches and emerging themes. Open Biol 2025; 15:240283. [PMID: 39809320 PMCID: PMC11732423 DOI: 10.1098/rsob.240283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Protein-based nanomachines drive every cellular process. An explosion of high-resolution structures of multiprotein complexes has improved our understanding of what these machines look like and how they work, but we still know relatively little about how they assemble in living cells. For example, it has only recently been appreciated that many complexes assemble co-translationally, with at least one subunit still undergoing active translation while already interacting with other subunits. One aspect that is particularly understudied is assembly order, the idea that there is a stepwise order to the subunit-subunit associations that underlies the efficient assembly of the quaternary structure. Here, we integrate a review of the methodological approaches commonly used to query assembly order within a discussion of studies of the 20S proteasome core particle, septin protein complexes, and the histone octamer. We highlight shared and distinct properties of these complexes that illustrate general themes applicable to most other multisubunit assemblies.
Collapse
Affiliation(s)
- Michael T. Brown
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| | - Michael A. McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| |
Collapse
|
3
|
Li D, Qian X, Wang Y, Yin Y, Sun H, Zhao H, Wu J, Qiu L. Molecular characterization and functional roles of circulating cell-free extrachromosomal circular DNA. Clin Chim Acta 2024; 556:117822. [PMID: 38325714 DOI: 10.1016/j.cca.2024.117822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Circular DNA segments isolated from chromosomes are known as extrachromosomal circular DNA (eccDNA). Its distinct structure and characteristics, along with the variations observed in different disease states, makes it a promising biomarker. Recent studies have revealed the presence of eccDNAs in body fluids, indicating their involvement in various biological functions. This finding opens up avenues for utilizing eccDNAs as convenient and real-time biomarkers for disease diagnosis, treatment monitoring, and prognosis assessment through noninvasive analysis of body fluids. In this comprehensive review, we focused on elucidating the size profiles, potential mechanisms of formation and clearance, detection methods, and potential clinical applications of eccDNAs. We aimed to provide a valuable reference resource for future research in this field.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Xia Qian
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yicong Yin
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Huishan Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Jie Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| |
Collapse
|
4
|
Das SK, Huynh MT, Lee TH. Spontaneous histone exchange between nucleosomes. J Biol Chem 2023; 299:105037. [PMID: 37442235 PMCID: PMC10406861 DOI: 10.1016/j.jbc.2023.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
The nucleosome is the fundamental gene-packing unit in eukaryotes. Nucleosomes comprise ∼147 bp DNA wrapped around an octameric histone protein core composed of two H2A-H2B dimers and one (H3-H4)2 tetramer. The strong yet flexible DNA-histone interactions are the physical basis of the dynamic regulation of genes packaged in chromatin. The dynamic nature of DNA-histone interactions also implies that nucleosomes dissociate DNA-histone contacts both transiently and repeatedly. This kinetic instability may lead to spontaneous nucleosome disassembly or histone exchange between nucleosomes. At high nucleosome concentrations, nucleosome-nucleosome collisions and subsequent histone exchange would be a more likely event, where nucleosomes could act as their own histone chaperone. This spontaneous histone exchange could serve as a mechanism for maintaining overall chromatin stability, although it has never been reported. Here we employed three-color single-molecule FRET (smFRET) to demonstrate that histone H2A-H2B dimers are exchanged spontaneously between nucleosomes on a time scale of a few tens of seconds at a physiological nucleosome concentration. We show that the rate of histone exchange increases at a higher monovalent salt concentration, with histone-acetylated nucleosomes, and in the presence of histone chaperone Nap1, while it remains unchanged at a higher temperature, and decreases upon DNA methylation. These results support the notion of histone exchange via transient and repetitive partial disassembly of the nucleosome and corroborate spontaneous histone diffusion in a compact chromatin context, modulating the local concentrations of histone modifications and variants.
Collapse
Affiliation(s)
- Subhra Kanti Das
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mai Thao Huynh
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
5
|
Das SK, Huynh MT, Gao J, Sengupta B, Yadav SP, Lee TH. Methods to investigate nucleosome structure and dynamics with single-molecule FRET. Methods 2023; 215:17-27. [PMID: 37236433 PMCID: PMC10330475 DOI: 10.1016/j.ymeth.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/13/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
The nucleosome is the fundamental building block of chromatin. Changes taking place at the nucleosome level are the molecular basis of chromatin transactions with various enzymes and factors. These changes are directly and indirectly regulated by chromatin modifications such as DNA methylation and histone post-translational modifications including acetylation, methylation, and ubiquitylation. Nucleosomal changes are often stochastic, unsynchronized, and heterogeneous, making it very difficult to monitor with traditional ensemble averaging methods. Diverse single-molecule fluorescence approaches have been employed to investigate the structure and structural changes of the nucleosome in the context of its interactions with various enzymes such as RNA Polymerase II, histone chaperones, transcription factors, and chromatin remodelers. We utilize diverse single-molecule fluorescence methods to study the nucleosomal changes accompanying these processes, elucidate the kinetics of these processes, and eventually learn the implications of various chromatin modifications in directly regulating these processes. The methods include two- and three-color single-molecule fluorescence resonance energy transfer (FRET), single-molecule fluorescence correlation spectroscopy, and fluorescence (co-)localization. Here we report the details of the two- and three-color single-molecule FRET methods we currently use. This report will help researchers design their single-molecule FRET approaches to investigating chromatin regulation at the nucleosome level.
Collapse
Affiliation(s)
- Subhra K Das
- Department of Chemistry, the Pennsylvania State University, University Park, PA 16802, USA
| | - Mai T Huynh
- Department of Chemistry, the Pennsylvania State University, University Park, PA 16802, USA
| | - Jia Gao
- Department of Chemistry, the Pennsylvania State University, University Park, PA 16802, USA
| | - Bhaswati Sengupta
- Department of Chemistry, the Pennsylvania State University, University Park, PA 16802, USA
| | - Satya P Yadav
- Department of Chemistry, the Pennsylvania State University, University Park, PA 16802, USA
| | - Tae-Hee Lee
- Department of Chemistry, the Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Das SK, Huynh MT, Lee TH. Spontaneous Histone Exchange Between Nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540004. [PMID: 37215040 PMCID: PMC10197660 DOI: 10.1101/2023.05.09.540004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The nucleosome is the fundamental gene-packing unit in eukaryotes. Nucleosomes comprise ∼147 bp DNA wrapped around an octameric histone protein core composed of two H2A-H2B dimers and one (H3-H4) 2 tetramer. The strong yet flexible DNA-histone interactions are a physical basis of the dynamic regulation of genes packaged in chromatin. The dynamic nature of DNA-histone interactions implies that nucleosomes dissociate DNA-histone contacts transiently and repeatedly. This kinetic instability may lead to spontaneous nucleosome disassembly or histone exchange between nucleosomes. At a high nucleosome concentration, nucleosome-nucleosome collisions and subsequent histone exchange would be a more likely pathway, where nucleosomes act as their own histone chaperone. The spontaneous histone exchange would serve as a mechanism for maintaining the overall chromatin stability although it has never been reported. We employed three-color single-molecule FRET (smFRET) to demonstrate that histone H2A-H2B dimers are exchanged spontaneously between nucleosomes and that the time scale is on a few tens of seconds at a physiological nucleosome concentration. The rate of histone exchange increases at a higher monovalent salt concentration, with histone acetylated nucleosomes, and in the presence of histone chaperone Nap1, while it remains unchanged at a higher temperature, and decreases upon DNA methylation. These results support histone exchange via transient and repetitive partial disassembly of the nucleosome and corroborate spontaneous histone diffusion in a compact chromatin context, modulating the local concentrations of histone modifications and variants.
Collapse
|
7
|
Rioux KL, Delaney S. Ionic strength modulates excision of uracil by SMUG1 from nucleosome core particles. DNA Repair (Amst) 2023; 125:103482. [PMID: 36931160 PMCID: PMC10073303 DOI: 10.1016/j.dnarep.2023.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Ionic strength affects many cellular processes including the packaging of genetic material in eukaryotes. For example, chromatin fibers are compacted in high ionic strength environments as are the minimal unit of packaging in chromatin, nucleosome core particles (NCPs). Furthermore, ionic strength is known to modulate several aspects of NCP dynamics including transient unwrapping of DNA from the histone protein core, nucleosome gaping, and intra- and internucleosomal interactions of the N-terminal histone tails. Changes in NCP structure may also impact interactions of transcriptional, repair, and other cellular machinery with nucleosomal DNA. One repair process, base excision repair (BER), is impacted by NCP structure and may be further influenced by changes in ionic strength. Here we examine the effects of ionic strength on the initiation of BER using biochemical assays. Using a population of NCPs containing uracil (U) at dozens of geometric locations, excision of U by single-strand selective monofunctional uracil DNA glycosylase (SMUG1) is assessed at higher and lower ionic strengths. SMUG1 has increased excision activity in the lower ionic strength conditions. On duplex DNA, however, SMUG1 activity is largely unaffected by ionic strength except at short incubation times, suggesting that changes in SMUG1 activity are likely due to alterations in NCP structure and dynamics. These results allow us to further understand the cellular role of SMUG1 in a changing ionic environment and broadly contribute to the understanding of BER on chromatin and genomic stability.
Collapse
Affiliation(s)
- Katelyn L Rioux
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Contribution of smFRET to Chromatin Research. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Chromatins are structural components of chromosomes and consist of DNA and histone proteins. The structure, dynamics, and function of chromatins are important in regulating genetic processes. Several different experimental and theoretical tools have been employed to understand chromatins better. In this review, we will focus on the literatures engrossed in understanding of chromatins using single-molecule Förster resonance energy transfer (smFRET). smFRET is a single-molecule fluorescence microscopic technique that can furnish information regarding the distance between two points in space. This has been utilized to efficiently unveil the structural details of chromatins.
Collapse
|
9
|
Carollo PS, Barra V. Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging. Biol Cell 2023; 115:e2200023. [PMID: 36117150 DOI: 10.1111/boc.202200023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023]
Abstract
As the repository of genetic information, the cell nucleus must protect DNA integrity from mechanical stresses. The nuclear lamina, which resides within the nuclear envelope (NE), is made up of lamins, intermediate filaments bound to DNA. The nuclear lamina provides the nucleus with the ability to deal with inward as well as outward mechanical stimuli. Chromatin, in turn, through its degrees of compaction, shares this role with the nuclear lamina, thus, ensuring the plasticity of the nucleus. Perturbation of chromatin condensation or the nuclear lamina has been linked to a plethora of biological conditions, that range from cancer and genetic diseases (laminopathies) to aging, both natural and accelerated, such as the case of Hutchinson-Gilford Progeria Syndrome (HGPS). From the experimental results accumulated so far on the topic, a direct link between variations of the epigenetic pattern and nuclear lamina structure would be suggested, however, it has never been clarified thoroughly. This relationship, instead, has a downstream important implication on nucleus shape, genome preservation, force sensing, and, ultimately, aging-related disease onset. With this review, we aim to collect recent studies on the importance of both nuclear lamina components and chromatin status in nuclear mechanics. We also aim to bring to light evidence of the link between DNA methylation and nuclear lamina in natural and accelerated aging.
Collapse
Affiliation(s)
- Pietro Salvatore Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Yeou S, Hwang J, Yi J, Kim C, Kim SK, Lee NK. Cytosine methylation regulates DNA bendability depending on the curvature. Chem Sci 2022; 13:7516-7525. [PMID: 35872822 PMCID: PMC9242020 DOI: 10.1039/d1sc07115g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Cytosine methylation plays an essential role in many biological processes, such as nucleosome inactivation and regulation of gene expression. The modulation of DNA mechanics may be one of the regulatory mechanisms influenced by cytosine methylation. However, it remains unclear how methylation influences DNA mechanics. Here, we show that methylation has contrasting effects on the bending property of dsDNA depending on DNA curvature. We directly applied bending force on 30 base pairs of dsDNA using a D-shaped DNA nanostructure and measured the degree of bending using single-molecule fluorescence resonance energy transfer without surface immobilization. When dsDNA is weakly bent, methylation increases the stiffness of dsDNA. The stiffness of dsDNA increased by approximately 8% with a single methylation site for 30 bp dsDNA. When dsDNA is highly bent by a strong force, it forms a kink, i.e., a sharp bending of dsDNA. Under strong bending, methylation destabilizes the non-kink form compared with the kink form, which makes dsDNA near the kink region apparently more bendable. However, if the kink region is methylated, the kink form is destabilized, and dsDNA becomes stiffer. As a result, methylation increases the stiffness of weakly bent dsDNA and concurrently can promote kink formation, which may stabilize the nucleosome structure. Our results provide new insight into the effect of methylation, showing that cytosine methylation has opposite effects on DNA mechanics depending on its curvature and methylation location.
Collapse
Affiliation(s)
- Sanghun Yeou
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Jihee Hwang
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Jaehun Yi
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Cheolhee Kim
- National Science Museum Daejeon 34143 Republic of Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| |
Collapse
|
11
|
Cell-Free DNA Fragmentomics in Liquid Biopsy. Diagnostics (Basel) 2022; 12:diagnostics12040978. [PMID: 35454026 PMCID: PMC9027801 DOI: 10.3390/diagnostics12040978] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cell-free DNA (cfDNA) in bodily fluids has rapidly transformed the development of noninvasive prenatal testing, cancer liquid biopsy, and transplantation monitoring. Plasma cfDNA consists of a mixture of molecules originating from various bodily tissues. The study of the fragmentation patterns of cfDNA, also referred to as ‘fragmentomics’, is now an actively pursued area of biomarker research. Clues that cfDNA fragmentation patterns might carry information concerning the tissue of origin of cfDNA molecules have come from works demonstrating that circulating fetal, tumor-derived, and transplanted liver-derived cfDNA molecules have a shorter size distribution than the background mainly of hematopoietic origin. More recently, an improved understanding of cfDNA fragmentation has provided many emerging fragmentomic markers, including fragment sizes, preferred ends, end motifs, single-stranded jagged ends, and nucleosomal footprints. The intrinsic biological link between activities of various DNA nucleases and characteristic fragmentations has been demonstrated. In this review, we focus on the biological properties of cell-free DNA unveiled recently and their potential clinical applications.
Collapse
|
12
|
Li S, Peng Y, Landsman D, Panchenko AR. DNA methylation cues in nucleosome geometry, stability and unwrapping. Nucleic Acids Res 2022; 50:1864-1874. [PMID: 35166834 DOI: 10.1093/nar/gkac097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
Cytosine methylation at the 5-carbon position is an essential DNA epigenetic mark in many eukaryotic organisms. Although countless structural and functional studies of cytosine methylation have been reported, our understanding of how it influences the nucleosome assembly, structure, and dynamics remains obscure. Here, we investigate the effects of cytosine methylation at CpG sites on nucleosome dynamics and stability. By applying long molecular dynamics simulations on several microsecond time scale, we generate extensive atomistic conformational ensembles of full nucleosomes. Our results reveal that methylation induces pronounced changes in geometry for both linker and nucleosomal DNA, leading to a more curved, under-twisted DNA, narrowing the adjacent minor grooves, and shifting the population equilibrium of sugar-phosphate backbone geometry. These DNA conformational changes are associated with a considerable enhancement of interactions between methylated DNA and the histone octamer, doubling the number of contacts at some key arginines. H2A and H3 tails play important roles in these interactions, especially for DNA methylated nucleosomes. This, in turn, prevents a spontaneous DNA unwrapping of 3-4 helical turns for the methylated nucleosome with truncated histone tails, otherwise observed in the unmethylated system on several microseconds time scale.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| | - Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| |
Collapse
|
13
|
Single-molecule micromanipulation studies of methylated DNA. Biophys J 2021; 120:2148-2155. [PMID: 33838135 DOI: 10.1016/j.bpj.2021.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylated at the five-carbon position is the most widely studied reversible DNA modification. Prior findings indicate that methylation can alter mechanical properties. However, those findings were qualitative and sometimes contradictory, leaving many aspects unclear. By applying single-molecule magnetic force spectroscopy techniques allowing for direct manipulation and dynamic observation of DNA mechanics and mechanically driven strand separation, we investigated how CpG and non-CpG cytosine methylation affects DNA micromechanical properties. We quantitatively characterized DNA stiffness using persistence length measurements from force-extension curves in the nanoscale length regime and demonstrated that cytosine methylation results in longer contour length and increased DNA flexibility (i.e., decreased persistence length). In addition, we observed the preferential formation of plectonemes over unwound single-stranded "bubbles" of DNA under physiologically relevant stretching forces and supercoiling densities. The flexibility and high structural stability of methylated DNA is likely to have significant consequences on the recruitment of proteins recognizing cytosine methylation and DNA packaging.
Collapse
|
14
|
Sin STK, Ji L, Deng J, Jiang P, Cheng SH, Heung MMS, Lau CSL, Leung TY, Chan KCA, Chiu RWK, Lo YMD. Characteristics of Fetal Extrachromosomal Circular DNA in Maternal Plasma: Methylation Status and Clearance. Clin Chem 2021; 67:788-796. [PMID: 33615350 DOI: 10.1093/clinchem/hvaa326] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although the characterization of cell-free extrachromosomal circular DNA (eccDNA) has gained much research interest, the methylation status of these molecules is yet to be elucidated. We set out to compare the methylation densities of plasma eccDNA of maternal and fetal origins, and between small and large molecules. The clearance of fetal eccDNA from maternal circulation was also investigated. METHODS We developed a sequencing protocol for eccDNA methylation analysis using tagmentation and enzymatic conversion approaches. A restriction enzyme-based approach was applied to verify the tagmentation results. The efficiency of cell-free fetal eccDNA clearance was investigated by fetal eccDNA fraction evaluations at various postpartum time points. RESULTS The methylation densities of fetal eccDNA (median: 56.3%; range: 40.5-67.6%) were lower than the maternal eccDNA (median: 66.7%; range: 56.5-75.7%) (P = 0.02, paired t-test). In addition, eccDNA molecules from the smaller peak cluster (180-230 bp) were of lower methylation levels than those from the larger peak cluster (300-450 bp). Both of these findings were confirmed using the restriction enzyme approach. We also observed comparable methylation densities between linear and eccDNA of both maternal and fetal origins. The average half-lives of fetal linear and eccDNA in the maternal blood were 30.2 and 29.7 min, respectively. CONCLUSIONS We found that fetal eccDNA in plasma was relatively hypomethylated compared to the maternal eccDNA. The methylation densities of eccDNA were positively correlated with their sizes. In addition, fetal eccDNA was found to be rapidly cleared from the maternal blood after delivery, similar to fetal linear DNA.
Collapse
Affiliation(s)
- Sarah T K Sin
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Lu Ji
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jiaen Deng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Suk Hang Cheng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Macy M S Heung
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Caitlyn S L Lau
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tak Y Leung
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
15
|
Caffrey PJ, Delaney S. Nucleosome Core Particles Lacking H2B or H3 Tails Are Altered Structurally and Have Differential Base Excision Repair Fingerprints. Biochemistry 2021; 60:210-218. [PMID: 33426868 DOI: 10.1021/acs.biochem.0c00877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A recently discovered post-translational modification of histone proteins is the irreversible proteolytic clipping of the histone N-terminal tail domains. This modification is involved in the regulation of various biological processes, including the DNA damage response. In this work, we used chemical footprinting to characterize the structural alterations to nucleosome core particles (NCPs) that result from a lack of a histone H2B or H3 tail. We also examine the influence of these histone tails on excision of the mutagenic lesion 1,N6-ethenoadenine (εA) by the repair enzyme alkyladenine DNA glycosylase. We found that the absence of the H2B or H3 tail results in altered DNA periodicity relative to that of native NCPs. We correlated these structural alterations to εA excision by utilizing a global analysis of 21 εA sites in NCPs and unincorporated duplex DNA. In comparison to native NCPs, there is enhanced excision of εA in tailless H2B NCPs in regions that undergo DNA unwrapping. This enhanced excision is not observed for tailless H3 NCPs; rather, excision is inhibited in more static areas of the NCP not prone to unwrapping. Our results support in vivo observations of alkylation damage profiles and the potential role of tail clipping as a mechanism for overcoming physical obstructions caused by packaging in NCPs but also reveal the potential inhibition of repair by tail clipping in some locations. Taken together, these results further our understanding of how base excision repair can be facilitated or diminished by histone tail removal and contribute to our understanding of the underlying mechanism that leads to mutational hot spots.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
16
|
Caffrey PJ, Kher R, Bian K, Li D, Delaney S. Comparison of the Base Excision and Direct Reversal Repair Pathways for Correcting 1, N6-Ethenoadenine in Strongly Positioned Nucleosome Core Particles. Chem Res Toxicol 2020; 33:1888-1896. [PMID: 32293880 PMCID: PMC7374743 DOI: 10.1021/acs.chemrestox.0c00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
1,N6-ethenoadenine (εA) is a
mutagenic lesion and biomarker observed in numerous cancerous tissues.
Two pathways are responsible for its repair: base excision repair
(BER) and direct reversal repair (DRR). Alkyladenine DNA glycosylase
(AAG) is the primary enzyme that excises εA in BER, generating
stable intermediates that are processed by downstream enzymes. For
DRR, the Fe(II)/α-ketoglutarate-dependent ALKBH2 enzyme repairs
εA by direct conversion of εA to A. While the molecular
mechanism of each enzyme is well understood on unpackaged duplex DNA,
less is known about their actions on packaged DNA. The nucleosome
core particle (NCP) forms the minimal packaging unit of DNA in eukaryotic
organisms and is composed of 145–147 base pairs wrapped around
a core of eight histone proteins. In this work, we investigated the
activity of AAG and ALKBH2 on εA lesions globally distributed
at positions throughout a strongly positioned NCP. Overall, we examined
the repair of εA at 23 unique locations in packaged DNA. We
observed a strong correlation between rotational positioning of εA
and AAG activity but not ALKBH2 activity. ALKBH2 was more effective
than AAG at repairing occluded εA lesions, but only AAG was
capable of full repair of any εA in the NCP. However, notable
exceptions to these trends were observed, highlighting the complexity
of the NCP as a substrate for DNA repair. Modeling of binding of the
repair enzymes to NCPs revealed that some of these observations can
be explained by steric interference caused by DNA packaging. Specifically,
interactions between ALKBH2 and the histone proteins obstruct binding
to DNA, which leads to diminished activity. Taken together, these
results support in vivo observations of alkylation
damage profiles and contribute to our understanding of mutational
hotspots.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Raadhika Kher
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
17
|
Yang YJ, Dong HL, Qiang XW, Fu H, Zhou EC, Zhang C, Yin L, Chen XF, Jia FC, Dai L, Tan ZJ, Zhang XH. Cytosine Methylation Enhances DNA Condensation Revealed by Equilibrium Measurements Using Magnetic Tweezers. J Am Chem Soc 2020; 142:9203-9209. [DOI: 10.1021/jacs.9b11957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hai-Long Dong
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiao-Wei Qiang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Er-Chi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Lei Yin
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xue-Feng Chen
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Fu-Chao Jia
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Lee TH. Physical Chemistry of Epigenetics: Single-Molecule Investigations. J Phys Chem B 2019; 123:8351-8362. [PMID: 31404497 PMCID: PMC6790939 DOI: 10.1021/acs.jpcb.9b06214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Indexed: 02/06/2023]
Abstract
The nucleosome is the fundamental building block of the eukaryotic genome, composed of an ∼147 base-pair DNA fragment wrapping around an octameric histone protein core. DNA and histone proteins are targets of enzymatic chemical modifications that serve as signals for gene regulation. These modifications are often referred to as epigenetic modifications that govern gene activities without altering the DNA sequence. Although the term epigenetics initially required inheritability, it now frequently includes noninherited histone modifications associated with gene regulation. Important epigenetic modifications for healthy cell growth and proliferation include DNA methylation, histone acetylation, methylation, phosphorylation, ubiquitination, and SUMOylation (SUMO = Small Ubiquitin-like Modifier). Our research focuses on the biophysical roles of these modifications in altering the structure and structural dynamics of the nucleosome and their implications in gene regulation mechanisms. As the changes are subtle and complex, we employ various single-molecule fluorescence approaches for their investigations. Our investigations revealed that these modifications induce changes in the structure and structural dynamics of the nucleosome and their thermodynamic and kinetic stabilities. We also suggested the implications of these changes in gene regulation mechanisms that are the foci of our current and future research.
Collapse
Affiliation(s)
- Tae-Hee Lee
- Department of Chemistry, The
Pennsylvania State University, University Park 16803, Pennsylvania, United States
| |
Collapse
|
19
|
Teng X, Hwang W. Effect of Methylation on Local Mechanics and Hydration Structure of DNA. Biophys J 2019; 114:1791-1803. [PMID: 29694859 DOI: 10.1016/j.bpj.2018.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/03/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylation affects mechanical properties of DNA and potentially alters the hydration fingerprint for recognition by proteins. The atomistic origin for these effects is not well understood, and we address this via all-atom molecular dynamics simulations. We find that the stiffness of the methylated dinucleotide step changes marginally, whereas the neighboring steps become stiffer. Stiffening is further enhanced for consecutively methylated steps, providing a mechanistic origin for the effect of hypermethylation. Steric interactions between the added methyl groups and the nonpolar groups of the neighboring nucleotides are responsible for the stiffening in most cases. By constructing hydration maps, we found that methylation also alters the surface hydration structure in distinct ways. Its resistance to deformation may contribute to the stiffening of DNA for deformational modes lacking steric interactions. These results highlight the sequence- and deformational-mode-dependent effects of cytosine methylation.
Collapse
Affiliation(s)
- Xiaojing Teng
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas; Department of Materials Science & Engineering, Texas A&M University, College Station, Texas; School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea.
| |
Collapse
|
20
|
Abstract
Nucleosomes and chromatin control eukaryotic genome accessibility and thereby regulate DNA processes, including transcription, replication, and repair. Conformational dynamics within the nucleosome and chromatin structure play a key role in this regulatory function. Structural fluctuations continuously expose internal DNA sequences and nucleosome surfaces, thereby providing transient access for the nuclear machinery. Progress in structural studies of nucleosomes and chromatin has provided detailed insight into local chromatin organization and has set the stage for recent in-depth investigations of the structural dynamics of nucleosomes and chromatin fibers. Here, we discuss the dynamic processes observed in chromatin over different length scales and timescales and review current knowledge about the biophysics of distinct structural transitions.
Collapse
Affiliation(s)
- Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael G. Poirier
- Department of Physics, Biophysics Graduate Program, Ohio State Biochemistry Graduate Program, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210-1117, USA
| |
Collapse
|
21
|
Lee J, Crickard JB, Reese JC, Lee TH. Single-molecule FRET method to investigate the dynamics of transcription elongation through the nucleosome by RNA polymerase II. Methods 2019; 159-160:51-58. [PMID: 30660864 PMCID: PMC6589119 DOI: 10.1016/j.ymeth.2019.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Transcription elongation through the nucleosome is a precisely coordinated activity to ensure timely production of RNA and accurate regulation of co-transcriptional histone modifications. Nucleosomes actively participate in transcription regulation at various levels and impose physical barriers to RNA polymerase II (RNAPII) during transcription elongation. Despite its high significance, the detailed dynamics of how RNAPII translocates along nucleosomal DNA during transcription elongation and how the nucleosome structure dynamically conforms to the changes necessary for RNAPII progression remain poorly understood. Transcription elongation through the nucleosome is a complex process and investigating the changes of the nucleosome structure during this process by ensemble measurements is daunting. This is because it is nearly impossible to synchronize elongation complexes within a nucleosome or a sub-nucleosome to a designated location at a high enough efficiency for desired sample homogeneity. Here we review our recently developed single-molecule FRET experimental system and method that has fulfilled this deficiency. With our method, one can follow the changes in the structure of individual nucleosomes during transcription elongation. We demonstrated that this method enables the detailed measurements of the kinetics of transcription elongation through the nucleosome and its regulation by a transcription factor, which can be easily extended to investigations of the roles of environmental variables and histone post-translational modifications in regulating transcription elongation.
Collapse
Affiliation(s)
- Jaehyoun Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - J Brooks Crickard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
22
|
Lee J, Lee TH. How Protein Binding Sensitizes the Nucleosome to Histone H3K56 Acetylation. ACS Chem Biol 2019; 14:506-515. [PMID: 30768236 DOI: 10.1021/acschembio.9b00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleosome, the fundamental gene-packing unit comprising an octameric histone protein core wrapped with DNA, has a flexible structure that enables dynamic gene regulation mechanisms. Histone lysine acetylation at H3K56 removes a positive charge from the histone core where it interacts with the termini of the nucleosomal DNA and acts as a critical gene regulatory signal that is implicated in transcription initiation and elongation. The predominant proposal for the biophysical role of H3K56 acetylation (H3K56ac) is that weakened electrostatic interaction between DNA termini and the histone core results in facilitated opening and subsequent disassembly of the nucleosome. However, this effect alone is too weak to account for the strong coupling between H3K56ac and its regulatory outcomes. Here we utilized a semisynthetically modified nucleosome with H3K56ac in order to address this discrepancy. Based on the results, we propose an innovative mechanism by which the charge neutralization effect of H3K56ac is significantly amplified via protein binding. We employed three-color single-molecule fluorescence resonance energy transfer (smFRET) to monitor the opening rate of nucleosomal DNA termini induced by binding of histone chaperone Nap1. We observed an elevated opening rate upon H3K56ac by 5.9-fold, which is far larger than the 1.5-fold previously reported for the spontaneous opening dynamics in the absence of Nap1. Our proposed mechanism successfully reconciles this discrepancy because DNA opening for Nap1 binding must be larger than the average spontaneous opening. This is a novel mechanism that can explain how a small biophysical effect of histone acetylation results in a significant change in protein binding rate.
Collapse
Affiliation(s)
- Jaehyoun Lee
- Department of Chemistry, the Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tae-Hee Lee
- Department of Chemistry, the Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Abstract
The base excision repair (BER) pathway removes modified nucleobases that can be deleterious to an organism. BER is initiated by a glycosylase, which finds and removes these modified nucleobases. Most of the characterization of glycosylase activity has been conducted in the context of DNA oligomer substrates. However, DNA within eukaryotic organisms exists in a packaged environment with the basic unit of organization being the nucleosome core particle (NCP). The NCP is a complex substrate for repair in which a variety of factors can influence glycosylase activity. In this Review, we focus on the geometric positioning of modified nucleobases in an NCP and the consequences on glycosylase activity and initiating BER.
Collapse
Affiliation(s)
- Erin E Kennedy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Paul J Caffrey
- Department of Chemistry, Brown University, Providence, RI 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
24
|
The histone chaperone NAP1L3 is required for haematopoietic stem cell maintenance and differentiation. Sci Rep 2018; 8:11202. [PMID: 30046127 PMCID: PMC6060140 DOI: 10.1038/s41598-018-29518-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/12/2018] [Indexed: 01/04/2023] Open
Abstract
Nucleosome assembly proteins (NAPs) are histone chaperones with an important role in chromatin structure and epigenetic regulation of gene expression. We find that high gene expression levels of mouse Nap1l3 are restricted to haematopoietic stem cells (HSCs) in mice. Importantly, with shRNA or CRISPR-Cas9 mediated loss of function of mouse Nap1l3 and with overexpression of the gene, the number of colony-forming cells and myeloid progenitor cells in vitro are reduced. This manifests as a striking decrease in the number of HSCs, which reduces their reconstituting activities in vivo. Downregulation of human NAP1L3 in umbilical cord blood (UCB) HSCs impairs the maintenance and proliferation of HSCs both in vitro and in vivo. NAP1L3 downregulation in UCB HSCs causes an arrest in the G0 phase of cell cycle progression and induces gene expression signatures that significantly correlate with downregulation of gene sets involved in cell cycle regulation, including E2F and MYC target genes. Moreover, we demonstrate that HOXA3 and HOXA5 genes are markedly upregulated when NAP1L3 is suppressed in UCB HSCs. Taken together, our findings establish an important role for NAP1L3 in HSC homeostasis and haematopoietic differentiation.
Collapse
|
25
|
Sepulveda H, Villagra A, Montecino M. Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene during Mesenchymal Lineage Commitment. Mol Cell Biol 2017; 37:e00177-17. [PMID: 28784721 PMCID: PMC5615189 DOI: 10.1128/mcb.00177-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/15/2017] [Accepted: 07/22/2017] [Indexed: 12/22/2022] Open
Abstract
Here we assess histone modification, chromatin remodeling, and DNA methylation processes that coordinately control the expression of the bone master transcription factor Sp7 (osterix) during mesenchymal lineage commitment in mammalian cells. We find that Sp7 gene silencing is mediated by DNA methyltransferase1/3 (DNMT1/3)-, histone deacetylase 1/2/4 (HDAC1/2/4)-, Setdb1/Suv39h1-, and Ezh1/2-containing complexes. In contrast, Sp7 gene activation involves changes in histone modifications, accompanied by decreased nucleosome enrichment and DNA demethylation mediated by SWI/SNF- and Tet1/Tet2-containing complexes, respectively. Inhibition of DNA methylation triggers changes in the histone modification profile and chromatin-remodeling events leading to Sp7 gene expression. Tet1/Tet2 silencing prevents Sp7 expression during osteoblast differentiation as it impairs DNA demethylation and alters the recruitment of histone methylase (COMPASS)-, histone demethylase (Jmjd2a/Jmjd3)-, and SWI/SNF-containing complexes to the Sp7 promoter. The dissection of these interconnected epigenetic mechanisms that govern Sp7 gene activation reveals a hierarchical process where regulatory components mediating DNA demethylation play a leading role.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Villagra
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
26
|
Gibson MD, Brehove M, Luo Y, North J, Poirier MG. Methods for Investigating DNA Accessibility with Single Nucleosomes. Methods Enzymol 2017; 581:379-415. [PMID: 27793287 DOI: 10.1016/bs.mie.2016.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleosomes are the fundamental organizing unit of all eukaryotic genomes. Understanding how proteins gain access to DNA-binding sites located within nucleosomes is important for understanding DNA processing including transcription, replication, and repair. Single-molecule total internal reflection fluorescence (smTIRF) microscopy measurements can provide key insight into how proteins gain and maintain access to DNA sites within nucleosomes. Here, we describe methods for smTIRF experiments including the preparation of fluorophore-labeled nucleosomes, the smTIRF system, data acquisition, analysis, and controls. These methods are presented for investigating transcription factor binding within nucleosomes. However, they are applicable for investigating the binding of any site-specific DNA-binding protein within nucleosomes.
Collapse
Affiliation(s)
- M D Gibson
- The Ohio State University, Columbus, OH, United States
| | - M Brehove
- The Ohio State University, Columbus, OH, United States
| | - Y Luo
- The Ohio State University, Columbus, OH, United States
| | - J North
- The Ohio State University, Columbus, OH, United States
| | - M G Poirier
- The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
27
|
Luo H, Xi Y, Li W, Li J, Li Y, Dong S, Peng L, Liu Y, Yu W. Cell identity bookmarking through heterogeneous chromatin landscape maintenance during the cell cycle. Hum Mol Genet 2017; 26:4231-4243. [DOI: 10.1093/hmg/ddx312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022] Open
|
28
|
INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers. Nat Commun 2017; 8:15616. [PMID: 28604691 PMCID: PMC5472786 DOI: 10.1038/ncomms15616] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
ATP-dependent chromatin remodellers modulate nucleosome dynamics by mobilizing or disassembling nucleosomes, as well as altering nucleosome composition. These chromatin remodellers generally function by translocating along nucleosomal DNA at the H3–H4 interface of nucleosomes. Here we show that, unlike other remodellers, INO80 translocates along DNA at the H2A–H2B interface of nucleosomes and persistently displaces DNA from the surface of H2A–H2B. DNA translocation and DNA torsional strain created near the entry site of nucleosomes by INO80 promotes both the mobilization of nucleosomes and the selective exchange of H2A.Z–H2B dimers out of nucleosomes and replacement by H2A–H2B dimers without any additional histone chaperones. We find that INO80 translocates and mobilizes H2A.Z-containing nucleosomes more efficiently than those containing H2A, partially accounting for the preference of INO80 to replace H2A.Z with H2A. Our data suggest that INO80 has a mechanism for dimer exchange that is distinct from other chromatin remodellers including its paralogue SWR1. Chromatin remodellers usually mobilize or disassemble nucleosomes by translocating along the nucleosomal DNA at the H3-H4 interface. Here, the authors provide evidence chromatin remodeller INO80 translocates along DNA at the H2A-H2B interface and displaces DNA from the surface of H2A-H2B.
Collapse
|
29
|
Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin 2017; 10:18. [PMID: 28413449 PMCID: PMC5387343 DOI: 10.1186/s13072-017-0125-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. Results The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Conclusions Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0125-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611 USA
| | - John N Anderson
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907 USA
| |
Collapse
|
30
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Lee J, Lee TH. Single-Molecule Investigations on Histone H2A-H2B Dynamics in the Nucleosome. Biochemistry 2017; 56:977-985. [PMID: 28128545 DOI: 10.1021/acs.biochem.6b01252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nucleosomes impose physical barriers to DNA-templated processes, playing important roles in eukaryotic gene regulation. DNA is packaged into nucleosomes by histone proteins mainly through strong electrostatic interactions that can be modulated by various post-translational histone modifications. Investigating the dynamics of histone dissociation from the nucleosome and how it is altered upon histone modifications is important for understanding eukaryotic gene regulation mechanisms. In particular, histone H2A-H2B dimer displacement in the nucleosome is one of the most important and earliest steps of histone dissociation. Two conflicting hypotheses on the requirement for dimer displacement are that nucleosomal DNA needs to be unwrapped before a dimer can displace and that a dimer can displace without DNA unwrapping. In order to test the hypotheses, we employed three-color single-molecule FRET and monitored in a time-resolved manner the early kinetics of H2A-H2B dimer dissociation triggered by high salt concentration and by histone chaperone Nap1. The results reveal that dimer displacement requires DNA unwrapping in the vast majority of the nucleosomes in the salt-induced case, while dimer displacement precedes DNA unwrapping in >60% of the nucleosomes in the Nap1-mediated case. We also found that acetylation at histone H4K16 or H3K56 affects the kinetics of Nap1-mediated dimer dissociation and facilitates the process both kinetically and thermodynamically. On the basis of these results, we suggest a mechanism by which histone chaperone facilitates H2A-H2B dimer displacement from the histone core without requiring another factor to unwrap the nucleosomal DNA.
Collapse
Affiliation(s)
- Jaehyoun Lee
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Li GL, Xu YJ, Huang XM, Xiao J, Nong S, Li CG. MeDIP-seq reveals the features of mitochondrial genomic methylation in immature testis of Chinese mitten crab Eriocheir sinensis. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:335-339. [PMID: 28129733 DOI: 10.1080/24701394.2016.1278537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, the methylation of mitochondrial genome in the immature testis of Chinese mitten crab Eriocheir sinensis of the Yangtze River system was determined for the first time using MeDIP-seq. Our methylated DNA fragments covered more than 99% of the mitochondrial genome in E. sinensis loaded from GenBank. There were 8 mutated bases and 42 SNPs in the crab mitochondrial genome. The methylation presented in all genes as well as in an A + T region, but less in intergenic regions in the mitochondrial genome. However, the level of methylation of most genes coding proteins and the A + T region were high. But, the majority of genes encoding tRNAs were hypomethylated, and both the rRNA genes also showed methylation of low or median frequency. Especially, the level of methylation of the intergenic regions is the lowest. Those features indicated that the methylation of DNA may play an important role in gene expressing regulation in the mitochondrial genome of immature testis in E. sinensis.
Collapse
Affiliation(s)
- Gen-Liang Li
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| | - Yi-Jiao Xu
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| | - Xiao-Min Huang
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| | - Juan Xiao
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| | - Song Nong
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| | - Chao-Gan Li
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| |
Collapse
|
33
|
Osakabe A, Adachi F, Arimura Y, Maehara K, Ohkawa Y, Kurumizaka H. Influence of DNA methylation on positioning and DNA flexibility of nucleosomes with pericentric satellite DNA. Open Biol 2016; 5:rsob.150128. [PMID: 26446621 PMCID: PMC4632512 DOI: 10.1098/rsob.150128] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA methylation occurs on CpG sites and is important to form pericentric heterochromatin domains. The satellite 2 sequence, containing seven CpG sites, is located in the pericentric region of human chromosome 1 and is highly methylated in normal cells. In contrast, the satellite 2 region is reportedly hypomethylated in cancer cells, suggesting that the methylation status may affect the chromatin structure around the pericentric regions in tumours. In this study, we mapped the nucleosome positioning on the satellite 2 sequence in vitro and found that DNA methylation modestly affects the distribution of the nucleosome positioning. The micrococcal nuclease assay revealed that the DNA end flexibility of the nucleosomes changes, depending on the DNA methylation status. However, the structures and thermal stabilities of the nucleosomes are unaffected by DNA methylation. These findings provide new information to understand how DNA methylation functions in regulating pericentric heterochromatin formation and maintenance in normal and malignant cells.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Fumiya Adachi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yasuhiro Arimura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
34
|
Yue H, Fang H, Wei S, Hayes JJ, Lee TH. Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome. Biochemistry 2016; 55:2069-77. [PMID: 27010485 PMCID: PMC5436050 DOI: 10.1021/acs.biochem.5b01247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Linker histone H1 regulates chromatin structure and gene expression. Investigating the dynamics and stoichiometry of binding of H1 to DNA and the nucleosome is crucial to elucidating its functions. Because of the abundant positive charges and the strong self-affinity of H1, quantitative in vitro studies of its binding to DNA and the nucleosome have generated results that vary widely and, therefore, should be interpreted in a system specific manner. We sought to overcome this limitation by developing a specially passivated microscope slide surface to monitor binding of H1 to DNA and the nucleosome at a single-molecule level. According to our measurements, the stoichiometry of binding of H1 to DNA and the nucleosome is very heterogeneous with a wide distribution whose averages are in reasonable agreement with previously published values. Our study also revealed that H1 does not dissociate from DNA or the nucleosome on a time scale of tens of minutes. We found that histone chaperone Nap1 readily dissociates H1 from DNA and superstoichiometrically bound H1 from the nucleosome, supporting a hypothesis whereby histone chaperones contribute to the regulation of the H1 profile in chromatin.
Collapse
Affiliation(s)
- Hongjun Yue
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - He Fang
- Department of Biochemistry and Biophysics, Rochester University Medical Center, Rochester, New York 14625, United States
| | - Sijie Wei
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jeffrey J. Hayes
- Department of Biochemistry and Biophysics, Rochester University Medical Center, Rochester, New York 14625, United States
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
35
|
Reppe S, Datta H, Gautvik KM. The Influence of DNA Methylation on Bone Cells. Curr Genomics 2016; 16:384-92. [PMID: 27019613 PMCID: PMC4765525 DOI: 10.2174/1389202916666150817202913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/19/2015] [Accepted: 06/26/2015] [Indexed: 01/14/2023] Open
Abstract
DNA methylation in eukaryotes invokes heritable alterations of the of the cytosine base in DNA without changing the underlying genomic DNA sequence. DNA methylation may be modified by environmental exposures as well as gene polymorphisms and may be a mechanistic link between environmental risk factors and the development of disease. In this review, we consider the role of DNA methylation in bone cells (osteoclasts/osteoblasts/osteocytes) and their progenitors with special focus on in vitro and ex vivo analyses. The number of studies on DNA methylation in bone cells is still somewhat limited, nevertheless it is getting increasingly clear that this type of the epigenetic changes is a critical regulator of gene expression. DNA methylation is necessary for proper development and function of bone cells and is accompanied by disease characteristic functional alterations as presently reviewed including postmenopausal osteoporosis and mechanical strain.
Collapse
Affiliation(s)
- Sjur Reppe
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway; ; Lovisenberg Diakonale Hospital, Oslo, Norway;; University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway
| | - Harish Datta
- Newcastle University, Institute of Cellular Medicine, UK
| | - Kaare M Gautvik
- Lovisenberg Diakonale Hospital, Oslo, Norway;; University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway
| |
Collapse
|
36
|
Global DNA methylation and related mRNA profiles in sheep oocytes and early embryos derived from pre-pubertal and adult donors. Anim Reprod Sci 2016; 164:144-51. [DOI: 10.1016/j.anireprosci.2015.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023]
|
37
|
Tatavosian R, Zhen CY, Duc HN, Balas MM, Johnson AM, Ren X. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging. J Biol Chem 2015; 290:28038-28054. [PMID: 26381410 DOI: 10.1074/jbc.m115.671115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 12/11/2022] Open
Abstract
Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364
| | - Chao Yu Zhen
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364
| | - Huy Nguyen Duc
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364
| | - Maggie M Balas
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364.
| |
Collapse
|