1
|
Savvidis C, Kouroglou E, Kallistrou E, Ragia D, Dionysopoulou S, Gavriiloglou G, Tsiama V, Proikaki S, Belis K, Ilias I. IGFBP-2 in Critical Illness: A Prognostic Marker in the Growth Hormone/Insulin-like Growth Factor Axis. PATHOPHYSIOLOGY 2024; 31:621-630. [PMID: 39585162 PMCID: PMC11587456 DOI: 10.3390/pathophysiology31040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Critical illness (CI) triggers complex disruptions in the growth hormone (GH)/insulin-like growth factor (IGF) axis, significantly affecting the dynamics of insulin-like growth-factor-binding proteins (IGFBPs). Among these, IGFBP-2 shows a sustained elevation during CI, which inversely correlates with serum levels of IGF-1, IGFBP-3, and the acid-labile subunit (ALS). Although IGFBP-2 does not directly interact with ALS, it may influence the availability of IGFs by competing with other IGFBPs for binding to IGF-1 and IGF-2. Research suggests that this persistent elevation of IGFBP-2 is largely driven by cytokine activity during CI, reflecting an adaptive response rather than a direct result of GH/IGF axis dysregulation. The clinical importance of IGFBP-2 is emphasized by its correlation with disease severity in conditions like sepsis and coronavirus disease 2019 (COVID-19), where its levels are markedly elevated compared to healthy controls and are similar to those observed in sepsis from various causes. Beyond its role in endocrine regulation, IGFBP-2 appears to play a part in metabolic and inflammatory pathways. Elevated IGFBP-2 levels have been linked to increased mortality and longer hospital stays, indicating its potential utility as a prognostic marker. Furthermore, measuring plasma IGFBP-2 may have other diagnostic applications, aiding in the assessment of CI when traditional biomarkers are inconclusive.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ioannis Ilias
- Department of Endocrinology, Hippokration Hospital, 11527 Athens, Greece; (C.S.); (E.K.); (E.K.); (D.R.); (S.D.); (G.G.); (V.T.); (S.P.); (K.B.)
| |
Collapse
|
2
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
3
|
Sevillano J, Sánchez-Alonso MG, Pizarro-Delgado J, Ramos-Álvarez MDP. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. Int J Mol Sci 2021; 22:ijms22115812. [PMID: 34071721 PMCID: PMC8198922 DOI: 10.3390/ijms22115812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Changes in lifestyle in developed countries have triggered the prevalence of obesity and type 2 diabetes mellitus (T2DM) in the latest years. Consequently, these metabolic diseases associated to insulin resistance, and the morbidity associated with them, accounts for enormous costs for the health systems. The best way to face this problem is to identify potential therapeutic targets and/or early biomarkers to help in the treatment and in the early detection. In the insulin receptor signaling cascade, the activities of protein tyrosine kinases and phosphatases are coordinated, thus, protein tyrosine kinases amplify the insulin signaling response, whereas phosphatases are required for the regulation of the rate and duration of that response. The focus of this review is to summarize the impact of transmembrane receptor protein tyrosine phosphatase (RPTPs) in the insulin signaling cascade and secretion, and their implication in metabolic diseases such as obesity and T2DM.
Collapse
|
4
|
LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol Metab 2021; 52:101245. [PMID: 33962049 PMCID: PMC8513159 DOI: 10.1016/j.molmet.2021.101245] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The insulin-like growth factor family of ligands (IGF-I, IGF-II, and insulin), receptors (IGF-IR, M6P/IGF-IIR, and insulin receptor [IR]), and IGF-binding proteins (IGFBP-1-6) play critical roles in normal human physiology and disease states. SCOPE OF REVIEW Insulin and insulin receptors are the focus of other chapters in this series and will therefore not be discussed further. Here we review the basic components of the IGF system, their role in normal physiology and in critical pathology's. While this review concentrates on the role of IGFs in human physiology, animal models have been essential in providing understanding of the IGF system, and its regulation, and are briefly described. MAJOR CONCLUSIONS IGF-I has effects via the circulation and locally within tissues to regulate cellular growth, differentiation, and survival, thereby controlling overall body growth. IGF-II levels are highest prenatally when it has important effects on growth. In adults, IGF-II plays important tissue-specific roles, including the maintenance of stem cell populations. Although the IGF-IR is closely related to the IR it has distinct physiological roles both on the cell surface and in the nucleus. The M6P/IGF-IIR, in contrast, is distinct and acts as a scavenger by mediating internalization and degradation of IGF-II. The IGFBPs bind IGF-I and IGF-II in the circulation to prolong their half-lives and modulate tissue access, thereby controlling IGF function. IGFBPs also have IGF ligand-independent cell effects.
Collapse
Affiliation(s)
- Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeff M P Holly
- Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Briony E Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, Australia
| |
Collapse
|
5
|
Faramia J, Hao Z, Mumphrey MB, Townsend RL, Miard S, Carreau AM, Nadeau M, Frisch F, Baraboi ED, Grenier-Larouche T, Noll C, Li M, Biertho L, Marceau S, Hould FS, Lebel S, Morrison CD, Münzberg H, Richard D, Carpentier AC, Tchernof A, Berthoud HR, Picard F. IGFBP-2 partly mediates the early metabolic improvements caused by bariatric surgery. Cell Rep Med 2021; 2:100248. [PMID: 33948578 PMCID: PMC8080239 DOI: 10.1016/j.xcrm.2021.100248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor-binding protein (IGFBP)-2 is a circulating biomarker of cardiometabolic health. Here, we report that circulating IGFBP-2 concentrations robustly increase after different bariatric procedures in humans, reaching higher levels after biliopancreatic diversion with duodenal switch (BPD-DS) than after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). This increase is closely associated with insulin sensitization. In mice and rats, BPD-DS and RYGB operations also increase circulating IGFBP-2 levels, which are not affected by SG or caloric restriction. In mice, Igfbp2 deficiency significantly impairs surgery-induced loss in adiposity and early improvement in insulin sensitivity but does not affect long-term enhancement in glucose homeostasis. This study demonstrates that the modulation of circulating IGFBP-2 may play a role in the early improvement of insulin sensitivity and loss of adiposity brought about by bariatric surgery.
Collapse
Affiliation(s)
- Justine Faramia
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Zheng Hao
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Michael B. Mumphrey
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - R. Leigh Townsend
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | - Anne-Marie Carreau
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Nadeau
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Elena-Dana Baraboi
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Thomas Grenier-Larouche
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Meng Li
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Laurent Biertho
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Simon Marceau
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Frédéric-Simon Hould
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Stéfane Lebel
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Christopher D. Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Denis Richard
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André Tchernof
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Frédéric Picard
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Development of a Sensitive Bioassay for the Analysis of IGF-Related Activation of AKT/mTOR Signaling in Biological Matrices. Cells 2021; 10:cells10030482. [PMID: 33668197 PMCID: PMC7995968 DOI: 10.3390/cells10030482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
The bioactivity of the IGF system is not a function of isolated hormone concentrations in a given biological matrix. Instead, the biological activities of IGFs are regulated by IGFBPs, IGFBP proteases, and inhibitors of IGFBP proteases. Therefore, assays based on IGF-related bioactivity may describe functions of the complete IGF system in a given biological matrix. Of particular interest are the IGF system effects on the AKT/mTOR pathway, as a dominant system for controlling growth, metabolism, and aging. In order to improve the sensitivity of IGF-dependent bioactivity, we made use of the known short-term and enhancing effects of IGFBP2 on the intracellular PI3K pathway. As a specific readout of this pathway, and further as a marker of the mTOR pathway, we assessed the phosphorylation of AKT-Ser473. Preincubation using IGFBP2 enhanced IGF1-dependent AKT-Ser473 phosphorylation in our experimental system. The assay's specificity was demonstrated by inhibition of IGF1 receptors outside or inside the cell, using antiserum or small molecule inhibitors, which reduced AKT phosphorylation in response to exogenous IGF1 (p < 0.05). The maximal response of AKT phosphorylation was recorded 15 to 60 min after the addition of IGF1 to cell monolayers (p < 0.001). In our cellular system, insulin induced AKT phosphorylation only at supra-physiological concentrations (µM). Using this novel assay, we identified the differential biological activity of the IGF system in AKT-Ser473 phosphorylation in serum (mouse, naked mole rat, and human), in cerebrospinal fluid (human), and in colostrum or mature milk samples (dairy cow). We have developed a sensitive and robust bioassay to assess the IGF-related activation of the AKT/mTOR pathway. The assay works efficiently and does not require expensive cell culture systems. By using capillary immuno-electrophoresis, the readout of IGF-related bioactivity is substantially accelerated, requiring a minimum of hands-on time. Importantly, the assay system is useful for studying IGF-related activity in the AKT/mTOR pathway in a broad range of biological matrices.
Collapse
|
7
|
Campbell WA, Fritsch-Kelleher A, Palazzo I, Hoang T, Blackshaw S, Fischer AJ. Midkine is neuroprotective and influences glial reactivity and the formation of Müller glia-derived progenitor cells in chick and mouse retinas. Glia 2021; 69:1515-1539. [PMID: 33569849 DOI: 10.1002/glia.23976] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Recent studies suggest midkine (MDK) is involved in the development and regeneration of the zebrafish retina. We investigate the expression patterns of MDK and related factors, roles in neuronal survival, and influence upon the formation of Müller glia-derived progenitor cells (MGPCs) in chick and mouse model systems. By using single-cell RNA-sequencing, we find that MDK and pleiotrophin (PTN), a MDK-related cytokine, are upregulated by Müller glia (MG) during later stages of development in chick. While PTN is downregulated, MDK is dramatically upregulated in mature MG after retinal damage or FGF2 and insulin treatment. By comparison, MDK and PTN are downregulated by MG in damaged mouse retinas. In both chick and mouse retinas, exogenous MDK induces expression of cFos and pS6 in MG. In the chick, MDK significantly decreases numbers dying neurons, reactive microglia, and proliferating MGPCs, whereas PTN has no effect. Inhibition of MDK-signaling with Na3 VO4 blocks neuroprotective effects with an increase in the number of dying cells and negates the pro-proliferative effects on MGPCs in damaged retinas. Inhibitors of PP2A and Pak1, which are associated with MDK-signaling through integrin β1, suppressed the formation of MGPCs in damaged chick retinas. In mice, MDK promotes a small but significant increase in proliferating MGPCs in damaged retinas and potently decreases the number of dying cells. We conclude that MDK expression is dynamically regulated in Müller glia during embryonic maturation, following retinal injury, and during reprogramming into MGPCs. MDK mediates glial activity, neuronal survival, and the re-programming of Müller glia into proliferating MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amanda Fritsch-Kelleher
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Buffolo M, Pires KM, Ferhat M, Ilkun O, Makaju A, Achenbach A, Bowman F, Atkinson DL, Holland WL, Amri EZ, Chaurasia B, Franklin S, Boudina S. Identification of a Paracrine Signaling Mechanism Linking CD34 high Progenitors to the Regulation of Visceral Fat Expansion and Remodeling. Cell Rep 2019; 29:270-282.e5. [PMID: 31597091 PMCID: PMC10950319 DOI: 10.1016/j.celrep.2019.08.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 12/14/2018] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Accumulation of visceral (VIS) is a predictor of metabolic disorders and insulin resistance. This is due in part to the limited capacity of VIS fat to buffer lipids allowing them to deposit in insulin-sensitive tissues. Mechanisms underlying selective hypertrophic growth and tissue remodeling properties of VIS fat are not well understood. We identified subsets of adipose progenitors (APs) unique to VIS fat with differential Cd34 expression and adipogenic capacity. VIS low (Cd34 low) APs are adipogenic, whereas VIS high (Cd34 high) APs are not. Furthermore, VIS high APs inhibit adipogenic differentiation of SUB and VIS low APs in vitro through the secretion of soluble inhibitory factor(s). The number of VIS high APs increased with adipose tissue expansion, and their abundance in vivo caused hypertrophic growth, fibrosis, inflammation, and metabolic dysfunction. This study unveils the presence of APs unique to VIS fat involved in the paracrine regulation of adipogenesis and tissue remodeling.
Collapse
Affiliation(s)
- Márcio Buffolo
- Department of Nutrition and Integrative Physiology and Program in Molecular Medicine, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - Karla Maria Pires
- Department of Nutrition and Integrative Physiology and Program in Molecular Medicine, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - Maroua Ferhat
- Department of Nutrition and Integrative Physiology and Program in Molecular Medicine, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - Olesya Ilkun
- Department of Nutrition and Integrative Physiology and Program in Molecular Medicine, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - Aman Makaju
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT 84112, USA
| | - Alan Achenbach
- Department of Nutrition and Integrative Physiology and Program in Molecular Medicine, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - Faith Bowman
- Department of Nutrition and Integrative Physiology and Program in Molecular Medicine, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - Donald L Atkinson
- Department of Nutrition and Integrative Physiology and Program in Molecular Medicine, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology and Program in Molecular Medicine, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - Ez-Zoubir Amri
- Institut de Biologie Valrose, Université Nice Sophia Antipolis, 28, avenue de Valombrose, 06107 Nice Cedex 2, France
| | - Bhagirath Chaurasia
- Department of Nutrition and Integrative Physiology and Program in Molecular Medicine, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology and Program in Molecular Medicine, University of Utah College of Health, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Steyn A, Crowther NJ, Norris SA, Rabionet R, Estivill X, Ramsay M. Epigenetic modification of the pentose phosphate pathway and the IGF-axis in women with gestational diabetes mellitus. Epigenomics 2019; 11:1371-1385. [PMID: 31583916 DOI: 10.2217/epi-2018-0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Gestational diabetes mellitus (GDM) has been linked with adverse long-term health outcomes for the fetus and mother. These effects may be mediated by epigenetic modifications. Materials & methods: Genome-wide RNA sequencing was performed in placental tissue and maternal blood in six GDM and six non-GDM pregnancies. Promoter region DNA methylation was examined for selected genes and correlated with gene expression to examine an epigenetic modulator mechanism. Results: Reductions of mRNA expression and increases in promoter methylation were observed for G6PD in GDM women, and for genes encoding IGF-binding proteins in GDM-exposed placenta. Conclusion: GDM involves epigenetic attenuation of G6PD, which may lead to hyperglycemia and oxidative stress, and the IGF-axis, which may modulate fetal macrosomia.
Collapse
Affiliation(s)
- Angela Steyn
- Division of Human Genetics, National Health Laboratory Service and the School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Nigel J Crowther
- Division of Human Genetics, National Health Laboratory Service and the School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,The Department of Chemical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Shane A Norris
- Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Raquel Rabionet
- The Centre for Genomic Regulation, Genes and Diseases Program, Barcelona, Spain
| | - Xavier Estivill
- The Centre for Genomic Regulation, Genes and Diseases Program, Barcelona, Spain
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service and the School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,The Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
10
|
Xi G, D'Costa S, Wai C, Xia SK, Cox ZC, Clemmons DR. IGFBP-2 stimulates calcium/calmodulin-dependent protein kinase kinase 2 activation leading to AMP-activated protein kinase induction which is required for osteoblast differentiation. J Cell Physiol 2019; 234:23232-23242. [PMID: 31155724 DOI: 10.1002/jcp.28890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins-2 (IGFBP-2) function coordinately to stimulate osteoblast differentiation. Induction of AMP-activated protein kinase (AMPK) is required for differentiation and is stimulated by these two factors. These studies were undertaken to determine how these two peptides lead to activation of AMPK. Enzymatic inhibitors and small interfering RNA were utilized to attenuate calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) activity in osteoblasts, and both manipulations resulted in failure to activate AMPK, thereby resulting in inhibition of osteoblast differentiation. IGFBP-2 and IGF-I stimulated an increase in CaMKK2, and inhibition of IGFBP-2 binding its receptor resulted in failure to induce CaMKK2 and AMPK activation. Injection of a peptide that contained the IGFBP-2 receptor-binding domain into IGFBP-2-/- mice activated CaMKK2 and injection of a CaMKK2 inhibitor into normal mice inhibited both CamKK2 and AMPK activation in osteoblasts. We conclude that induction of CaMKK2 by IGFBP-2 and IGF-I in osteoblasts is an important signaling event that occurs early in differentiation and is responsible for activation of AMPK, which is required for optimal osteoblast differentiation.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Susan D'Costa
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christine Wai
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shalier K Xia
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Zach C Cox
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David R Clemmons
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
A peptide containing the receptor binding site of insulin-like growth factor binding protein-2 enhances bone mass in ovariectomized rats. Bone Res 2018; 6:23. [PMID: 30109160 PMCID: PMC6089876 DOI: 10.1038/s41413-018-0024-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/31/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022] Open
Abstract
Male Igfbp2−/− mice have a significant reduction in bone mass and administration of a peptide that contains the insulin-like growth factor binding protein-2(IGFBP-2) receptor-binding domain stimulates bone formation in these animals. Female Igfbp2−/− mice do not have this phenotype but following ovariectomy (OVX) lose more bone than OVX wild-type mice. This suggests that in the absence of estrogen, IGFBP-2 is required to maintain bone mass. Therefore these studies were undertaken to determine if this peptide could stimulate bone acquisition in OVX rats. OVX rats were divided into seven treatment groups: sham animals, OVX animals, OVX animals receiving a control scrambled peptide, or one of three doses of the active peptide termed PEG-HBD-1 (0.7, 2, and 6 mg·kg-1) and an OVX group receiving parathyroid hormone (PTH) (50 µg·kg-1 per day). The peptides were administered for 8 weeks. DXA revealed a significant reduction in femoral and tibial areal bone mineral density (aBMD) after OVX, whereas treatment with the high-dose peptide increased aBMD by 6.2% ± 2.4% (P < 0.01) compared to control peptide; similar to the increase noted with PTH (5.6% ± 3.0%, P < 0.01). Similar increases were noted with two lower doses of the peptide (3.8% ± 1.5%, P < 0.05 for low dose; 3.1% ± 1.6%, P = 0.07 for middle dose). Micro CT showed that the OVX control peptide animals had reductions of 41% and 64% in femoral trabecular BV/TV and trabecular number, respectively. All three doses of the peptide increased bone volume/total volume (BV/TV) significantly, while the low and middle doses increased trabecular number. Cortical BV/TV and thickness at the midshaft increased significantly with each dose of peptide (18.9% ± 9.8%, P < 0.01 and 14.2% ± 7.9%, P < 0.01 for low dose; 23.7% ± 10.7%, P < 0.001 and 15.8% ± 6.1%, P < 0.001 for middle dose; 19.0% ± 6.9%, P < 0.01 and 16.2% ± 9.7%, P < 0.001 for high dose) and with PTH (25.8% ± 9.2%, P < 0.001 and 19.4% ± 8.8%, P < 0.001). Histomorphometry showed that the lowest dose of peptide stimulated BV/TV, trabecular thickness, mineral apposition rate (MAR), bone formation rate/bone surface (BFR/BS), number of osteoblasts/bone perimeter (N.ob/B.pm), and decreased osteoclast surface/bone perimeter (Oc.S/B.Pm). The highest dose stimulated each of these parameters except MAR and BFR/BS. Thus, the heparin-binding domain receptor region of IGFBP-2 accounts for its anabolic activity in bone. Importantly, this peptide enhances bone mass in estrogen-deficient animals. An experimental peptide stimulates bone acquisition in female rats who have had their ovaries removed, raising the prospect a new drug for osteoporosis. IGFBP-2 is an insulin-like growth factor (IGF) binding protein, which regulates the amount of IGF-I and II that are transported out of the blood and are available to influence the growth and proliferation of bone-producing osteoblasts. Previous studies have suggested that IGFBP-2 is required to maintain bone mass in the absence of estrogen, and that a 13 amino acid peptide (HBD1) from the core of the protein could provide a substitute for it. In this study, David Clemmons at the University of North Carolina at Chapel Hill and his colleagues demonstrate that injecting the peptide into ovariectomized female rats prompts significant increases in bone mass, whereas control animals lost bone.
Collapse
|
12
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
13
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Dai N, Ji F, Wright J, Minichiello L, Sadreyev R, Avruch J. IGF2 mRNA binding protein-2 is a tumor promoter that drives cancer proliferation through its client mRNAs IGF2 and HMGA1. eLife 2017; 6:27155. [PMID: 28753127 PMCID: PMC5576481 DOI: 10.7554/elife.27155] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/23/2017] [Indexed: 01/27/2023] Open
Abstract
The gene encoding the Insulin-like Growth Factor 2 mRNA binding protein 2/IMP2 is amplified and overexpressed in many human cancers, accompanied by a poorer prognosis. Mice lacking IMP2 exhibit a longer lifespan and a reduced tumor burden at old age. Herein we show in a diverse array of human cancer cells that IMP2 overexpression stimulates and IMP2 elimination diminishes proliferation by 50–80%. In addition to its known ability to promote the abundance of Insulin-like Growth Factor 2/IGF2, we find that IMP2 strongly promotes IGF action, by binding and stabilizing the mRNA encoding the DNA binding protein HMGA1, a known oncogene. HMGA1 suppresses the abundance of IGF binding protein 2/IGFBP2 and Grb14, inhibitors of IGF action. IMP2 stabilization of HMGA1 mRNA plus IMP2 stimulated IGF2 production synergistically drive cancer cell proliferation and account for IMP2’s tumor promoting action. IMP2’s ability to promote proliferation and IGF action requires IMP2 phosphorylation by mTOR. Some types of cancers develop when genes known as oncogenes or tumor promoters become faulty, and are present at abnormally high levels or inappropriately turned on. For example, cancer cells often have extra copies of the gene IMP2 and therefore produce too much the IMP2 protein. Previous research has shown that mice that lack the IMP2 protein develop fewer cancers and live longer, while patients whose cancers make too much IMP2 have a poorer prognosis. In healthy cells, the IMP2 protein normally helps to make new gene products by stabilising certain newly produced RNA molecules – the precursors of proteins, and in some cases by promoting the translation of these RNAs into proteins. For example, IMP2 binds to the mRNA that encodes the protein IGF2, which is a protein that helps cells to grow and is commonly produced in large quantities by cancer cells. However, until now it was not clear whether IMP2 only acts by increasing the production of IGF2 or also contributes to cancer growth in other ways. Using a range of human cancer cell lines, and healthy mouse cells, Dai et al. first confirmed that without IMP2, cancer cells made less IGF2 and grew less quickly. When IGF2 was added to the cells lacking IMP2, it only partially restored their ability to grow. Further experiments revealed that cells without IMP2 had increased levels of proteins that counteract the effects of IGF2. Usually, IMP2 binds and stabilizes the mRNA that encodes the oncogenic protein HMGA1, which is known to regulate the number of ‘anti-IGF2 proteins’. However, without IMP2, the HMGA1 levels drop, which causes an increase of the anti-IGF2 proteins. This indicates that IMP2 promotes cancer cell growth both by enabling cells to produce more IGF2 and by suppressing inhibitors of IGF2 action. This suggests that cancer patients whose tumors have abnormally high levels of IMP2 may be especially sensitive to drugs that target and inhibit IGF2.
Collapse
Affiliation(s)
- Ning Dai
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Jason Wright
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Pathology, Harvard Medical School, Boston, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| |
Collapse
|
15
|
Ren T, Zhu Y, Xia X, Ding Y, Guo J, Kan J. Zanthoxylum alkylamides ameliorate protein metabolism disorder in STZ-induced diabetic rats. J Mol Endocrinol 2017; 58:113-125. [PMID: 28100702 PMCID: PMC5424265 DOI: 10.1530/jme-16-0218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/18/2017] [Indexed: 12/26/2022]
Abstract
This study aimed to evaluate the protein metabolism effect of Zanthoxylum alkylamides and to explore the potential mechanism in streptozotocin (STZ)-induced diabetic rats. Diabetic rats were orally treated with 2, 4 and 8 mg per kg bw of alkylamides daily for 28 days. Alkylamides decreased the relative weight of the liver and food intake, significantly increased the relative skeletal muscle weight and significantly decreased the blood urea nitrogen levels. Insulin, insulin-like growth factor 1, total protein (TP) and albumin (ALB), globular proteins and ALB proteins/globulin protein levels in serum significantly increased. TP, RNA content and RNA/DNA ratio significantly increased in the skeletal muscle of diabetic rats. Real-time quantitative polymerase chain reaction results indicated that alkylamides significantly increased the mRNA expression of insulin receptor (InR), IGF1 and insulin-like growth factor 1 receptor (IGF1R) in the liver and skeletal muscle. Moreover, the mRNA and protein expression levels of PI3K, PKB and mTOR significantly increased, whereas those of atrogin-1, muscle ring finger 1 and FOXO in the skeletal muscle significantly decreased. Alkylamides may advance protein synthesis by the PI3K/PKB/mTOR signalling pathway and attenuate the catabolism of protein through the ubiquitin-proteasome pathway. Therefore, it was possible that alkylamides ameliorate protein metabolism disorders in diabetic rats by activating the mTOR pathway.
Collapse
Affiliation(s)
- Tingyuan Ren
- College of Food ScienceSouthwest University, Chongqing, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing)Ministry of Agriculture, Chongqing, China
| | - Yuping Zhu
- Institute of Biological EngineeringChongqing University, Chongqing, China
| | - Xuejuan Xia
- College of Food ScienceSouthwest University, Chongqing, China
| | - Yongbo Ding
- College of Food ScienceSouthwest University, Chongqing, China
| | - Jing Guo
- Department of NutritionDaping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Jianquan Kan
- College of Food ScienceSouthwest University, Chongqing, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing)Ministry of Agriculture, Chongqing, China
- Correspondence should be addressed to J Kan;
| |
Collapse
|
16
|
Zelenko Z, Gallagher EJ, Tobin-Hess A, Belardi V, Rostoker R, Blank J, Dina Y, LeRoith D. Silencing vimentin expression decreases pulmonary metastases in a pre-diabetic mouse model of mammary tumor progression. Oncogene 2016; 36:1394-1403. [PMID: 27568979 PMCID: PMC5332535 DOI: 10.1038/onc.2016.305] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 06/25/2016] [Accepted: 07/22/2016] [Indexed: 01/27/2023]
Abstract
Increased breast cancer risk and mortality has been associated with obesity and Type 2 diabetes (T2D). Hyperinsulinemia, a key factor in obesity, pre-diabetes and T2D, has been associated with decreased breast cancer survival. In the current study, a mouse model of pre-diabetes (MKR mouse) was used to investigate the mechanisms through which endogenous hyperinsulinemia promotes mammary tumor metastases. The MKR mice developed larger primary tumors and greater number of pulmonary metastases compared to wild type (WT) mice after injection with c-Myc/Vegf overexpressing MVT-1 cells. Analysis of the primary tumors showed significant increase in Vimentin protein expression in the MKR mice compared to WT. We hypothesized that Vimentin was an important mediator in the effect of hyperinsulinemia on breast cancer metastasis. Lentiviral shRNA knockdown of Vimentin led to a significant decrease in invasion of the MVT-1 cells and abrogated the increase in cell invasion in response to insulin. In the pre-diabetic MKR mouse, Vimentin knockdown led to a decrease in pulmonary metastases. In vitro, we found that insulin increased pAKT, prevented Caspase 3 activation, and increased Vimentin. Inhibiting the PI3K/AKT pathway, using NVP-BKM120, increased active Caspase 3 and decreased Vimentin levels. This study is the first to show that Vimentin plays an important role in tumor metastasis in vivo in the setting of pre-diabetes and endogenous hyperinsulinemia. Vimentin targeting may be an important therapeutic strategy to reduce metastases in patients with obesity, pre-diabetes or T2D.
Collapse
Affiliation(s)
- Z Zelenko
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - E J Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - A Tobin-Hess
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - V Belardi
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - R Rostoker
- Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, Israel
| | - J Blank
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Y Dina
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - D LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.,Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Diabetes and Metabolism Clinical Research Center of Excellence, Haifa, Israel
| |
Collapse
|
17
|
Xi G, Shen X, Rosen CJ, Clemmons DR. IRS-1 Functions as a Molecular Scaffold to Coordinate IGF-I/IGFBP-2 Signaling During Osteoblast Differentiation. J Bone Miner Res 2016; 31:1300-14. [PMID: 26773517 PMCID: PMC5228590 DOI: 10.1002/jbmr.2791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 12/29/2022]
Abstract
Insulin like growth factor I (IGF-I) and insulin like growth factor binding protein-2 (IGFBP-2) function coordinately to stimulate AKT and osteoblast differentiation. IGFBP-2 binding to receptor protein tyrosine phosphatase β (RPTPβ) stimulates polymerization and inactivation of phosphatase activity. Because phosphatase and tensin homolog (PTEN) is the primary target of RPTPβ, this leads to enhanced PTEN tyrosine phosphorylation and inactivation. However RPTPβ inactivation also requires IGF-I receptor activation. The current studies were undertaken to determine the mechanism by which IGF-I mediates changes in RPTPβ function in osteoblasts. IGFBP-2/IGF-I stimulated vimentin binding to RPTPβ and this was required for RPTPβ polymerization. Vimentin serine phosphorylation mediated its binding to RPTPβ and PKCζ was identified as the kinase that phosphorylated vimentin. To determine the mechanism underlying IGF-I stimulation of PKCζ-mediated vimentin phosphorylation, we focused on insulin receptor substrate-1 (IRS-1). IGF-I stimulated IRS-1 phosphorylation and recruitment of PKCζ and vimentin to phospho-IRS-1. IRS-1 immunoprecipitates containing PKCζ and vimentin were used to confirm that activated PKCζ directly phosphorylated vimentin. PKCζ does not contain a SH-2 domain that is required to bind to phospho-IRS-1. To determine the mechanism of PKCζ recruitment we analyzed the role of p62 (a PKCζ binding protein) that contains a SH2 domain. Exposure to differentiation medium plus IGF-I stimulated PKCζ/p62 association. Subsequent analysis showed the p62/PKCζ complex was co-recruited to IRS-1. Peptides that disrupted p62/PKCζ or p62/IRS-1 inhibited IGF-I/IGFBP-2 stimulated PKCζ activation, vimentin phosphorylation, PTEN tyrosine phosphorylation, AKT activation, and osteoblast differentiation. The importance of these signaling events for differentiation was confirmed in primary mouse calvarial osteoblasts. These results demonstrate the cooperative interaction between RPTPβ and the IGF-I receptor leading to a coordinated series of signaling events that are required for osteoblast differentiation. Our findings emphasize the important role IRS-1 plays in modulating these signaling events and confirm its essential role in facilitating osteoblast differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | | | - David R Clemmons
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Mesenchymal stem cells suppress cardiac alternans by activation of PI3K mediated nitroso-redox pathway. J Mol Cell Cardiol 2016; 98:138-45. [PMID: 27238412 DOI: 10.1016/j.yjmcc.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/03/2016] [Accepted: 05/25/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The paracrine action of non-cardiac progenitor cells is robust, but not well understood. Mesenchymal stem cells (MSC) have been shown to enhance calcium (Ca(++)) cycling in myocytes. Therefore, we hypothesized that MSCs can suppress cardiac alternans, an important arrhythmia substrate, by paracrine action on Ca(++) cycling. METHODS AND RESULTS Human cardiac myocyte monolayers derived from iPS cells (hCM) were cultured without or with human MSCs (hMSC) directly or plated on a transwell insert. Ca(++) transient alternans (Ca(++) ALT) and Ca(++) transient duration (CaD) were measured from hCM monolayers following application of 200μM H2O2. Ca(++) ALT in hCM was significantly decreased when cultured with hMSCs directly (97%, p<0.0001) and when cultured with hMSC in the transwell insert (80%, p<0.0001). When hCM with hMSCs were pretreated with PI3K or eNOS inhibitors, Ca(++) ALT was larger than baseline by 20% (p<0.0001) and 36% (p<0.0001), respectively. In contrast, Ca(++) ALT was reduced by 89% compared to baseline (p<0.0001) when hCM monolayers without hMSCs were pretreated with 20μM GSNO. In all experiments, changes in Ca(++) ALT were mirrored by changes in CaD. Finally, real time quantitative PCR revealed no significant differences in mRNA expression of RyR2, SERCA2a, and phospholamban between hCM cultured with or without hMSCs. CONCLUSION Ca(++) ALT is suppressed by hMSCs in a paracrine fashion due to activation of a PI3K-mediated nitroso-redox pathway. These findings demonstrate, for the first time, how stem cell therapy might be antiarrhythmic by suppressing cardiac alternans through paracrine action on Ca(++) cycling.
Collapse
|