1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Kochańczyk T, Fishman M, Lima CD. Chemical Tools for Probing the Ub/Ubl Conjugation Cascades. Chembiochem 2025; 26:e202400659. [PMID: 39313481 PMCID: PMC11727022 DOI: 10.1002/cbic.202400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Conjugation of ubiquitin (Ub) and structurally related ubiquitin-like proteins (Ubls), essential for many cellular processes, employs multi-step reactions orchestrated by specific E1, E2 and E3 enzymes. The E1 enzyme activates the Ub/Ubl C-terminus in an ATP-dependent process that results in the formation of a thioester linkage with the E1 active site cysteine. The thioester-activated Ub/Ubl is transferred to the active site of an E2 enzyme which then interacts with an E3 enzyme to promote conjugation to the target substrate. The E1-E2-E3 enzymatic cascades utilize labile intermediates, extensive conformational changes, and vast combinatorial diversity of short-lived protein-protein complexes to conjugate Ub/Ubl to various substrates in a regulated manner. In this review, we discuss various chemical tools and methods used to study the consecutive steps of Ub/Ubl activation and conjugation, which are often too elusive for direct studies. We focus on methods developed to probe enzymatic activities and capture and characterize stable mimics of the transient intermediates and transition states, thereby providing insights into fundamental mechanisms in the Ub/Ubl conjugation pathways.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Michael Fishman
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Christopher D. Lima
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
- Howard Hughes Medical Institute1275 York AvenueNew York, New York10065USA
| |
Collapse
|
3
|
Li J, Purser N, Liwocha J, Scott DC, Byers HA, Steigenberger B, Hill S, Tripathi-Giesgen I, Hinkle T, Hansen FM, Prabu JR, Radhakrishnan SK, Kirkpatrick DS, Reichermeier KM, Schulman BA, Kleiger G. Cullin-RING ligases employ geometrically optimized catalytic partners for substrate targeting. Mol Cell 2024; 84:1304-1320.e16. [PMID: 38382526 PMCID: PMC10997478 DOI: 10.1016/j.molcel.2024.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Cullin-RING ligases (CRLs) ubiquitylate specific substrates selected from other cellular proteins. Substrate discrimination and ubiquitin transferase activity were thought to be strictly separated. Substrates are recognized by substrate receptors, such as Fbox or BCbox proteins. Meanwhile, CRLs employ assorted ubiquitin-carrying enzymes (UCEs, which are a collection of E2 and ARIH-family E3s) specialized for either initial substrate ubiquitylation (priming) or forging poly-ubiquitin chains. We discovered specific human CRL-UCE pairings governing substrate priming. The results reveal pairing of CUL2-based CRLs and UBE2R-family UCEs in cells, essential for efficient PROTAC-induced neo-substrate degradation. Despite UBE2R2's intrinsic programming to catalyze poly-ubiquitylation, CUL2 employs this UCE for geometrically precise PROTAC-dependent ubiquitylation of a neo-substrate and for rapid priming of substrates recruited to diverse receptors. Cryo-EM structures illuminate how CUL2-based CRLs engage UBE2R2 to activate substrate ubiquitylation. Thus, pairing with a specific UCE overcomes E2 catalytic limitations to drive substrate ubiquitylation and targeted protein degradation.
Collapse
Affiliation(s)
- Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Holly A Byers
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Spencer Hill
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Trent Hinkle
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | | | | | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA; Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
4
|
Middleton AJ, Day CL. From seeds to trees: how E2 enzymes grow ubiquitin chains. Biochem Soc Trans 2023; 51:353-362. [PMID: 36645006 PMCID: PMC9987950 DOI: 10.1042/bst20220880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Modification of proteins by ubiquitin is a highly regulated process that plays a critical role in eukaryotes, from the construction of signalling platforms to the control of cell division. Aberrations in ubiquitin transfer are associated with many diseases, including cancer and neurodegenerative disorders. The ubiquitin machinery generates a rich code on substrate proteins, spanning from single ubiquitin modifications to polyubiquitin chains with diverse linkage types. Central to this process are the E2 enzymes, which often determine the exact nature of the ubiquitin code. The focus of this mini-review is on the molecular details of how E2 enzymes can initiate and grow ubiquitin chains. In particular, recent developments and biochemical breakthroughs that help explain how the degradative E2 enzymes, Ube2s, Ube2k, and Ube2r, generate complex ubiquitin chains with exquisite specificity will be discussed.
Collapse
Affiliation(s)
- Adam J. Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L. Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Xu M, Zhang J. A siRNA screening of UBE2 family demonstrated that UBE2R1 had a high repressive effect on HIV Tat protein. Biochem Biophys Rep 2022; 32:101366. [PMID: 36275929 PMCID: PMC9578976 DOI: 10.1016/j.bbrep.2022.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 10/28/2022] Open
Abstract
HIV Tat is an essential protein required for the transcription elongation of HIV genome. It has been shown that Tat can be degraded by either proteasome or autophagy pathways. In this study, it was shown that proteasome inhibitor MG132 could significantly prevent HIV Tat protein degradation in Tat over-expressing HeLa cells but it had a moderate effect in preventing Tat protein degradation in Jurkat T cells. A screening of the available UBE2 siRNA family identified that UBE2R1 had a high repressive effect on Tat protein but not on Tat mRNA level. This study further showed that RNF20 might not be the E3 ligase of Tat but was required to maintain a high level of H2B-monoubiquitylation (H2Bub1) on HIV-1 genome for efficient elongation. Overall, our study indicated that UBE2R1 might be the potential ubiquitin E2 ligase for HIV Tat protein turnover and RNF20 regulated HIV expression in the transcription elongation level.
Collapse
Affiliation(s)
- Muyu Xu
- Regulatory Biology Department, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, California, 92037, USA,Corresponding author.
| | - Jiying Zhang
- University of Chinese Academy of Sciences, 19 Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
6
|
Dreier JE, Prestel A, Martins JM, Brøndum SS, Nielsen O, Garbers AE, Suga H, Boomsma W, Rogers JM, Hartmann-Petersen R, Kragelund BB. A context-dependent and disordered ubiquitin-binding motif. Cell Mol Life Sci 2022; 79:484. [PMID: 35974206 PMCID: PMC9381478 DOI: 10.1007/s00018-022-04486-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Ubiquitin is a small, globular protein that is conjugated to other proteins as a posttranslational event. A palette of small, folded domains recognizes and binds ubiquitin to translate and effectuate this posttranslational signal. Recent computational studies have suggested that protein regions can recognize ubiquitin via a process of folding upon binding. Using peptide binding arrays, bioinformatics, and NMR spectroscopy, we have uncovered a disordered ubiquitin-binding motif that likely remains disordered when bound and thus expands the palette of ubiquitin-binding proteins. We term this motif Disordered Ubiquitin-Binding Motif (DisUBM) and find it to be present in many proteins with known or predicted functions in degradation and transcription. We decompose the determinants of the motif showing it to rely on features of aromatic and negatively charged residues, and less so on distinct sequence positions in line with its disordered nature. We show that the affinity of the motif is low and moldable by the surrounding disordered chain, allowing for an enhanced interaction surface with ubiquitin, whereby the affinity increases ~ tenfold. Further affinity optimization using peptide arrays pushed the affinity into the low micromolar range, but compromised context dependence. Finally, we find that DisUBMs can emerge from unbiased screening of randomized peptide libraries, featuring in de novo cyclic peptides selected to bind ubiquitin chains. We suggest that naturally occurring DisUBMs can recognize ubiquitin as a posttranslational signal to act as affinity enhancers in IDPs that bind to folded and ubiquitylated binding partners.
Collapse
Affiliation(s)
- Jesper E Dreier
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - João M Martins
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark
| | - Sebastian S Brøndum
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Olaf Nielsen
- Functional Genomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Anna E Garbers
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark
| | - Joseph M Rogers
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen Ø, Denmark
| | - Rasmus Hartmann-Petersen
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
- The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
- The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
7
|
Lee M, Lee S, Choi J, Ryu M, Lee M, Kim J, Hwang E, Lee C, Chi S, Ryu K. MUL1‐RING recruits the substrate, p53‐TAD as a complex with UBE2D2–UB conjugate. FEBS J 2022; 289:3568-3586. [PMID: 35048531 PMCID: PMC9304225 DOI: 10.1111/febs.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022]
Abstract
The RING domain of MUL1 (RINGMUL1) alone mediates ubiquitylation of the p53‐transactivation domain (TADp53). To elucidate the mechanism underlying the simultaneous recruitment of UBE2D2 and the substrate TADp53 by RINGMUL1, we determined the complex structure of RINGMUL1:UBE2D2 and studied the interaction between RINGMUL1 and TADp53 in the presence of UBE2D2–UB thioester (UBE2D2~UB) mimetics. The RINGMUL1‐binding induced the closed conformation of UBE2D2S22R/C85S–UBK48R oxyester (UBE2D2RS–UBROE), and strongly accelerated its hydrolysis, which was suppressed by the additional N77A‐mutation of UBE2D2. Interestingly, UBE2D2S22R/N77A/C85S–UBK48R oxyester (UBE2D2RAS–UBROE) already formed a closed conformation in the absence of RINGMUL1. Although TADp53 exhibited weak binding for RINGMUL1 or UBE2D2 alone, its binding affinity was enhanced and even further for RINGMUL1:UBE2D2 and RINGMUL1:UBE2D2RAS–UBROE, respectively. The recognition of TADp53 by RINGMUL1 as a complex with UBE2D2~UB is related to the multivalency of the binding events and underlies the ability of RINGMUL1 to ubiquitylate the intrinsically disordered protein, TADp53.
Collapse
Affiliation(s)
- Min‐Sung Lee
- Disease Target Structure Research Center Division of Biomedical Research KRIBB Daejeon South Korea
- Department of Proteome Structural Biology KRIBB School of Bioscience University of Science and Technology Daejeon South Korea
| | - Sang‐Ok Lee
- Disease Target Structure Research Center Division of Biomedical Research KRIBB Daejeon South Korea
- College of Pharmacy Chungbuk National University Cheongju‐si South Korea
| | - Joonhyeok Choi
- Ochang Center Korea Basic Science Institute Cheongju‐Si South Korea
| | - Minju Ryu
- Disease Target Structure Research Center Division of Biomedical Research KRIBB Daejeon South Korea
- Department of Proteome Structural Biology KRIBB School of Bioscience University of Science and Technology Daejeon South Korea
| | - Mi‐Kyung Lee
- Disease Target Structure Research Center Division of Biomedical Research KRIBB Daejeon South Korea
- Department of Proteome Structural Biology KRIBB School of Bioscience University of Science and Technology Daejeon South Korea
| | - Ji‐Hun Kim
- College of Pharmacy Chungbuk National University Cheongju‐si South Korea
| | - Eunha Hwang
- Ochang Center Korea Basic Science Institute Cheongju‐Si South Korea
| | - Chong‐Kil Lee
- College of Pharmacy Chungbuk National University Cheongju‐si South Korea
| | - Seung‐Wook Chi
- Disease Target Structure Research Center Division of Biomedical Research KRIBB Daejeon South Korea
- Department of Proteome Structural Biology KRIBB School of Bioscience University of Science and Technology Daejeon South Korea
| | - Kyoung‐Seok Ryu
- Ochang Center Korea Basic Science Institute Cheongju‐Si South Korea
- Department of Bio‐Analytical Science University of Science and Technology Daejeon South Korea
| |
Collapse
|
8
|
Fauser J, Itzen A, Gulen B. Current Advances in Covalent Stabilization of Macromolecular Complexes for Structural Biology. Bioconjug Chem 2021; 32:879-890. [PMID: 33861574 DOI: 10.1021/acs.bioconjchem.1c00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Structural characterization of macromolecular assemblies is often limited by the transient nature of the interactions. The development of specific chemical tools to covalently tether interacting proteins to each other has played a major role in various fundamental discoveries in recent years. To this end, protein engineering techniques such as mutagenesis, incorporation of unnatural amino acids, and methods using synthetic substrate/cosubstrate derivatives were employed. In this review, we give an overview of both commonly used and recently developed biochemical methodologies for covalent stabilization of macromolecular complexes enabling structural investigation via crystallography, nuclear magnetic resonance, and cryo-electron microscopy. We divided the strategies into nonenzymatic- and enzymatic-driven cross-linking and further categorized them in either naturally occurring or engineered covalent linkage. This review offers a compilation of recent advances in diverse scientific fields where the structural characterization of macromolecular complexes was achieved by the aid of intermolecular covalent linkage.
Collapse
Affiliation(s)
- Joel Fauser
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Burak Gulen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
9
|
Liwocha J, Krist DT, van der Heden van Noort GJ, Hansen FM, Truong VH, Karayel O, Purser N, Houston D, Burton N, Bostock MJ, Sattler M, Mann M, Harrison JS, Kleiger G, Ovaa H, Schulman BA. Linkage-specific ubiquitin chain formation depends on a lysine hydrocarbon ruler. Nat Chem Biol 2020; 17:272-279. [PMID: 33288957 PMCID: PMC7904580 DOI: 10.1038/s41589-020-00696-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/10/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Virtually all aspects of cell biology are regulated by a ubiquitin code
where distinct ubiquitin chain architectures guide the binding events and
itineraries of modified substrates. Various combinations of E2 and E3 enzymes
accomplish chain formation by forging isopeptide bonds between the C-terminus of
their transiently-linked donor ubiquitin and a specific nucleophilic amino acid
on the acceptor ubiquitin, yet it is unknown whether the fundamental feature of
most acceptors - the lysine side-chain - affects catalysis. Here, use of
synthetic ubiquitins with non-natural acceptor site replacements reveals that
the aliphatic side-chain specifying reactive amine geometry is a determinant of
the ubiquitin code, through unanticipated and complex reliance of many distinct
ubiquitin carrying enzymes on a canonical acceptor lysine.
Collapse
Affiliation(s)
- Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.,Carle Illinois College of Medicine, Champaign, IL, USA
| | - Gerbrand J van der Heden van Noort
- Oncode Institute and Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Vinh H Truong
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Daniel Houston
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nicole Burton
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Mark J Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
10
|
Lips C, Ritterhoff T, Weber A, Janowska MK, Mustroph M, Sommer T, Klevit RE. Who with whom: functional coordination of E2 enzymes by RING E3 ligases during poly-ubiquitylation. EMBO J 2020; 39:e104863. [PMID: 33015833 PMCID: PMC7667886 DOI: 10.15252/embj.2020104863] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Protein modification with poly-ubiquitin chains is a crucial process involved in a myriad of cellular pathways. Chain synthesis requires two steps: substrate modification with ubiquitin (priming) followed by repetitive ubiquitin-to-ubiquitin attachment (elongation). RING-type E3 ligases catalyze both reactions in collaboration with specific priming and elongating E2 enzymes. We provide kinetic insight into poly-ubiquitylation during protein quality control by showing that priming is the rate-determining step in protein degradation as directed by the yeast ERAD RING E3 ligases, Hrd1 and Doa10. Doa10 cooperates with the dedicated priming E2, Ubc6, while both E3s use Ubc7 for elongation. Here, we provide direct evidence that Hrd1 uses Ubc7 also for priming. We found that Ubc6 has an unusually high basal activity that does not require strong stimulation from an E3. Doa10 exploits this property to pair with Ubc6 over Ubc7 during priming. Our work not only illuminates the mechanisms of specific E2/E3 interplay in ERAD, but also offers a basis to understand how RING E3s may have properties that are tailored to pair with their preferred E2s.
Collapse
Affiliation(s)
- Christian Lips
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Tobias Ritterhoff
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Annika Weber
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Maria K Janowska
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Mandy Mustroph
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Thomas Sommer
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Lady Davies Guest ProfessorTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Rachel E Klevit
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
11
|
Lopata A, Kniss A, Löhr F, Rogov VV, Dötsch V. Ubiquitination in the ERAD Process. Int J Mol Sci 2020; 21:ijms21155369. [PMID: 32731622 PMCID: PMC7432864 DOI: 10.3390/ijms21155369] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
In this review, we focus on the ubiquitination process within the endoplasmic reticulum associated protein degradation (ERAD) pathway. Approximately one third of all synthesized proteins in a cell are channeled into the endoplasmic reticulum (ER) lumen or are incorporated into the ER membrane. Since all newly synthesized proteins enter the ER in an unfolded manner, folding must occur within the ER lumen or co-translationally, rendering misfolding events a serious threat. To prevent the accumulation of misfolded protein in the ER, proteins that fail the quality control undergo retrotranslocation into the cytosol where they proceed with ubiquitination and degradation. The wide variety of misfolded targets requires on the one hand a promiscuity of the ubiquitination process and on the other hand a fast and highly processive mechanism. We present the various ERAD components involved in the ubiquitination process including the different E2 conjugating enzymes, E3 ligases, and E4 factors. The resulting K48-linked and K11-linked ubiquitin chains do not only represent a signal for degradation by the proteasome but are also recognized by the AAA+ ATPase Cdc48 and get in the process of retrotranslocation modified by enzymes bound to Cdc48. Lastly we discuss the conformations adopted in particular by K48-linked ubiquitin chains and their importance for degradation.
Collapse
|
12
|
Wang D, Xiao Q, Zhang W, Wang X, Xue X, Zhang X, Yu Z, Zhao Y, Liu J, Wang H. Landscape of ubiquitination events that occur in host skin in response to tick (Haemaphysalis longicornis) bitten. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103572. [PMID: 31838045 DOI: 10.1016/j.dci.2019.103572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Ticks are major parasites of domestic livestock, wildlife, and humans. After a tick bite, diverse cutaneous manifestations initially occur in the bitten area in the host. In this study, a label-free proteomics approach was applied to identify the differentially ubiquitinated proteins (DUPs) induced by tick-bitten in the skin. In total, 113 proteins were ubiquitinated in rabbit skin during tick bitten period, among which the ubiquitination levels of 43 proteins were altered. These DUPs in skin subjected to tick-bitten were enriched in metabolic processes, immune processes, and protein degradation processes. Bioinformatic analysis suggested that tick bitten may regulate the glycolysis pathway in host skin via differential ubiquitination of GAPDH, HK1 and TPI1, while regulate the ubiquitin-proteasome system, the MHC-I and MHC-II antigen-presenting pathways, and the HIF-1 signaling pathway via differential ubiquitination of MEK1, PSMC3, PSMA6, MHC-II and PSMD1. Moreover, PSMC3, PSMA6, PSMD1 and MEK1 were demonstrated as novel targets of ubiquitination. This study provides the first overview of ubiquitination in host skin affected by tick bitten and broadens our knowledge of the molecular mechanism involved in tick bitten.
Collapse
Affiliation(s)
- Duo Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Qi Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Weiqi Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xiaoli Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Yinan Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China.
| |
Collapse
|
13
|
Lee SO, Lee CK, Ryu KS, Chi SW. The RING domain of mitochondrial E3 ubiquitin ligase 1 and its complex with Ube2D2: crystallization and X-ray diffraction. Acta Crystallogr F Struct Biol Commun 2020; 76:1-7. [PMID: 31929179 PMCID: PMC6957114 DOI: 10.1107/s2053230x19015395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial E3 ubiquitin ligase 1 (MUL1) is located in the mitochondrial outer membrane and regulates various biological processes, including apoptosis, cell growth, mitophagy and mitochondrial dynamics. The C-terminal region of MUL1 faces the cytoplasm and contains the RING domain (MUL1-RING) where the Ub~E2 thioester binds. Unlike most RING-type E3 enzymes, MUL1-RING alone does not have an additional region that recruits a substrate protein, yet is still able to ubiquitylate the substrate, the p53 protein. Nevertheless, the exact mechanism of the ubiquitylation of p53 by MUL1-RING has not yet been elucidated. In order to understand this novel ubiquitylation mechanism, it is necessary to determine the three-dimensional structures of MUL1-RING and of its complex with the cognate E2 enzyme. Here, Ube2D2 was validated as a functional E2 enzyme for the ubiquitylation of the p53 transactivation domain (p53-TAD) by MUL1-RING, and purification and crystallization processes for MUL1-RING and the MUL1-RING-Ube2D2 complex are reported.
Collapse
Affiliation(s)
- Sang-Ok Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon 34141, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyoung-Seok Ryu
- Protein Structure Research Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
- Department of Bio-Analytical Science, KBSI School of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
14
|
Structural and Functional Analysis of Ubiquitin-based Inhibitors That Target the Backsides of E2 Enzymes. J Mol Biol 2019; 432:952-966. [PMID: 31634471 DOI: 10.1016/j.jmb.2019.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/12/2018] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Abstract
Ubiquitin-conjugating E2 enzymes are central to the ubiquitination cascade and have been implicated in cancer and other diseases. Despite strong interest in developing specific E2 inhibitors, the shallow and exposed active site has proven recalcitrant to targeting with reversible small-molecule inhibitors. Here, we used phage display to generate highly potent and selective ubiquitin variants (UbVs) that target the E2 backside, which is located opposite to the active site. A UbV targeting Ube2D1 did not affect charging but greatly attenuated chain elongation. Likewise, a UbV targeting the E2 variant Ube2V1 did not interfere with the charging of its partner E2 enzyme but inhibited formation of diubiquitin. In contrast, a UbV that bound to the backside of Ube2G1 impeded the generation of thioester-linked ubiquitin to the active site cysteine of Ube2G1 by the E1 enzyme. Crystal structures of UbVs in complex with three E2 proteins revealed distinctive molecular interactions in each case, but they also highlighted a common backside pocket that the UbVs used for enhanced affinity and specificity. These findings validate the E2 backside as a target for inhibition and provide structural insights to aid inhibitor design and screening efforts.
Collapse
|
15
|
Deol KK, Lorenz S, Strieter ER. Enzymatic Logic of Ubiquitin Chain Assembly. Front Physiol 2019; 10:835. [PMID: 31333493 PMCID: PMC6624479 DOI: 10.3389/fphys.2019.00835] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
16
|
Lu G, Weng S, Matyskiela M, Zheng X, Fang W, Wood S, Surka C, Mizukoshi R, Lu CC, Mendy D, Jang IS, Wang K, Marella M, Couto S, Cathers B, Carmichael J, Chamberlain P, Rolfe M. UBE2G1 governs the destruction of cereblon neomorphic substrates. eLife 2018; 7:40958. [PMID: 30234487 PMCID: PMC6185104 DOI: 10.7554/elife.40958] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
The cereblon modulating agents (CMs) including lenalidomide, pomalidomide and CC-220 repurpose the Cul4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase complex to induce the degradation of specific neomorphic substrates via polyubiquitination in conjunction with E2 ubiquitin-conjugating enzymes, which have until now remained elusive. Here we show that the ubiquitin-conjugating enzymes UBE2G1 and UBE2D3 cooperatively promote the K48-linked polyubiquitination of CRL4CRBN neomorphic substrates via a sequential ubiquitination mechanism. Blockade of UBE2G1 diminishes the ubiquitination and degradation of neomorphic substrates, and consequent antitumor activities elicited by all tested CMs. For example, UBE2G1 inactivation significantly attenuated the degradation of myeloma survival factors IKZF1 and IKZF3 induced by lenalidomide and pomalidomide, hence conferring drug resistance. UBE2G1-deficient myeloma cells, however, remained sensitive to a more potent IKZF1/3 degrader CC-220. Collectively, it will be of fundamental interest to explore if loss of UBE2G1 activity is linked to clinical resistance to drugs that hijack the CRL4CRBN to eliminate disease-driving proteins.
Collapse
Affiliation(s)
- Gang Lu
- Celgene Corporation, San Diego, United States
| | | | | | - Xinde Zheng
- Celgene Corporation, San Diego, United States
| | - Wei Fang
- Celgene Corporation, San Diego, United States
| | - Scott Wood
- Celgene Corporation, San Diego, United States
| | | | | | | | - Derek Mendy
- Celgene Corporation, San Diego, United States
| | | | - Kai Wang
- Celgene Corporation, San Diego, United States
| | | | | | | | | | | | - Mark Rolfe
- Celgene Corporation, San Diego, United States
| |
Collapse
|
17
|
Lang F, Aravamudhan S, Nolte H, Türk C, Hölper S, Müller S, Günther S, Blaauw B, Braun T, Krüger M. Dynamic changes in the mouse skeletal muscle proteome during denervation-induced atrophy. Dis Model Mech 2017; 10:881-896. [PMID: 28546288 PMCID: PMC5536905 DOI: 10.1242/dmm.028910] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/16/2017] [Indexed: 01/07/2023] Open
Abstract
Loss of neuronal stimulation enhances protein breakdown and reduces protein synthesis, causing rapid loss of muscle mass. To elucidate the pathophysiological adaptations that occur in atrophying muscles, we used stable isotope labelling and mass spectrometry to quantify protein expression changes accurately during denervation-induced atrophy after sciatic nerve section in the mouse gastrocnemius muscle. Additionally, mice were fed a stable isotope labelling of amino acids in cell culture (SILAC) diet containing 13C6-lysine for 4, 7 or 11 days to calculate relative levels of protein synthesis in denervated and control muscles. Ubiquitin remnant peptides (K-ε-GG) were profiled by immunoaffinity enrichment to identify potential substrates of the ubiquitin-proteasomal pathway. Of the 4279 skeletal muscle proteins quantified, 850 were differentially expressed significantly within 2 weeks after denervation compared with control muscles. Moreover, pulse labelling identified Lys6 incorporation in 4786 proteins, of which 43 had differential Lys6 incorporation between control and denervated muscle. Enrichment of diglycine remnants identified 2100 endogenous ubiquitination sites and revealed a metabolic and myofibrillar protein diglycine signature, including myosin heavy chains, myomesins and titin, during denervation. Comparative analysis of these proteomic data sets with known atrogenes using a random forest approach identified 92 proteins subject to atrogene-like regulation that have not previously been associated directly with denervation-induced atrophy. Comparison of protein synthesis and proteomic data indicated that upregulation of specific proteins in response to denervation is mainly achieved by protein stabilization. This study provides the first integrated analysis of protein expression, synthesis and ubiquitin signatures during muscular atrophy in a living animal. Summary: Comprehensive proteomic profiling of protein expression, synthesis and ubiquitination during skeletal muscle atrophy reveals that complex regulatory networks are activated during muscle wasting.
Collapse
Affiliation(s)
- Franziska Lang
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Sriram Aravamudhan
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Soraya Hölper
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| | - Stefan Müller
- Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, 35137 Padova, Italy
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany .,Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
18
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
19
|
von Delbrück M, Kniss A, Rogov VV, Pluska L, Bagola K, Löhr F, Güntert P, Sommer T, Dötsch V. The CUE Domain of Cue1 Aligns Growing Ubiquitin Chains with Ubc7 for Rapid Elongation. Mol Cell 2016; 62:918-928. [PMID: 27264873 DOI: 10.1016/j.molcel.2016.04.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/21/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
Ubiquitin conjugation is an essential process modulating protein function in eukaryotic cells. Surprisingly, little is known about how the progressive assembly of ubiquitin chains is managed by the responsible enzymes. Only recently has ubiquitin binding activity emerged as an important factor in chain formation. The Ubc7 activator Cue1 carries a ubiquitin binding CUE domain that substantially stimulates K48-linked polyubiquitination mediated by Ubc7. Our results from NMR-based analysis and in vitro ubiquitination reactions point out that two parameters accelerate ubiquitin chain assembly: the increasing number of CUE binding sites and the position of CUE binding within a growing chain. In particular, interactions with a ubiquitin moiety adjacent to the acceptor ubiquitin facilitate chain elongation. These data indicate a mechanism for ubiquitin binding in which Cue1 positions Ubc7 and the distal acceptor ubiquitin for rapid polyubiquitination. Disrupting this mechanism results in dysfunction of the ERAD pathway by a delayed turnover of substrates.
Collapse
Affiliation(s)
- Maximilian von Delbrück
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | - Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Lukas Pluska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany; Institute for Biology, Humboldt Universität zu Berlin, Invalidenstrasse 43, 10115 Berlin, Germany.
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Hill S, Harrison JS, Lewis SM, Kuhlman B, Kleiger G. Mechanism of Lysine 48 Selectivity during Polyubiquitin Chain Formation by the Ube2R1/2 Ubiquitin-Conjugating Enzyme. Mol Cell Biol 2016; 36:1720-32. [PMID: 27044868 PMCID: PMC4959314 DOI: 10.1128/mcb.00097-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Lysine selectivity is of critical importance during polyubiquitin chain formation because the identity of the lysine controls the biological outcome. Ubiquitins are covalently linked in polyubiquitin chains through one of seven lysine residues on its surface and the C terminus of adjacent protomers. Lys 48-linked polyubiquitin chains signal for protein degradation; however, the structural basis for Lys 48 selectivity remains largely unknown. The ubiquitin-conjugating enzyme Ube2R1/2 has exquisite specificity for Lys 48, and computational docking of Ube2R1/2 and ubiquitin predicts that Lys 48 is guided to the active site through a key electrostatic interaction between Arg 54 on ubiquitin and Asp 143 on Ube2R1/2. The validity of this interaction was confirmed through biochemical experiments. Since structural examples involving Arg 54 in protein-ubiquitin complexes are exceedingly rare, these results provide additional insight into how ubiquitin-protein complexes can be stabilized. We discuss how these findings relate to how other ubiquitin-conjugating enzymes direct the lysine specificity of polyubiquitin chains.
Collapse
Affiliation(s)
- Spencer Hill
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada, USA
| | - Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven M Lewis
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
21
|
Abstract
Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.
Collapse
|
22
|
Middleton AJ, Day CL. The molecular basis of lysine 48 ubiquitin chain synthesis by Ube2K. Sci Rep 2015; 5:16793. [PMID: 26592444 PMCID: PMC4655369 DOI: 10.1038/srep16793] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
The post-translational modification of proteins by ubiquitin is central to the regulation of eukaryotic cells. Substrate-bound ubiquitin chains linked by lysine 11 and 48 target proteins to the proteasome for degradation and determine protein abundance in cells, while other ubiquitin chain linkages regulate protein interactions. The specificity of chain-linkage type is usually determined by ubiquitin-conjugating enzymes (E2s). The degradative E2, Ube2K, preferentially catalyses formation of Lys48-linked chains, but like most E2s, the molecular basis for chain formation is not well understood. Here we report the crystal structure of a Ube2K~ubiquitin conjugate and demonstrate that even though it is monomeric, Ube2K can synthesize Lys48-linked ubiquitin chains. Using site-directed mutagenesis and modelling, our studies reveal a molecular understanding of the catalytic complex and identify key features required for synthesis of degradative Lys48-linked chains. The position of the acceptor ubiquitin described here is likely conserved in other E2s that catalyse Lys48-linked ubiquitin chain synthesis.
Collapse
Affiliation(s)
- Adam J Middleton
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
23
|
Choi YS, Kim EH, Ryu KS. Comparative studies on manual and automatic backbone chemical shift assignments of 2H/13C/15N-labeled Ube2g1. J Anal Sci Technol 2015. [DOI: 10.1186/s40543-015-0068-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|