1
|
Pérez-Juárez J, Tapia-Vieyra JV, Gutiérrez-Magdaleno G, Sánchez-Puig N. Altered Conformational Landscape upon Sensing Guanine Nucleotides in a Disease Mutant of Elongation Factor-like 1 (EFL1) GTPase. Biomolecules 2022; 12:biom12081141. [PMID: 36009035 PMCID: PMC9405973 DOI: 10.3390/biom12081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
The final maturation step of the 60S ribosomal subunit requires the release of eukaryotic translation initiation factor 6 (human eIF6, yeast Tif6) to enter the pool of mature ribosomes capable of engaging in translation. This process is mediated by the concerted action of the Elongation Factor-like 1 (human EFL1, yeast Efl1) GTPase and its effector, the Shwachman-Bodian-Diamond syndrome protein (human SBDS, yeast Sdo1). Mutations in these proteins prevent the release of eIF6 and cause a disease known as Shwachman–Diamond Syndrome (SDS). While some mutations in EFL1 or SBDS result in insufficient proteins to meet the cell production of mature large ribosomal subunits, others do not affect the expression levels with unclear molecular defects. We studied the functional consequences of one such mutation using Saccharomyces cerevisiae Efl1 R1086Q, equivalent to human EFL1 R1095Q described in SDS patients. We characterised the enzyme kinetics and energetic basis outlining the recognition of this mutant to guanine nucleotides and Sdo1, and their interplay in solution. From our data, we propose a model where the conformational change in Efl1 depends on a long-distance network of interactions that are disrupted in mutant R1086Q, whereby Sdo1 and the guanine nucleotides no longer elicit the conformational changes previously described in the wild-type protein. These findings point to the molecular malfunction of an EFL1 mutant and its possible impact on SDS pathology.
Collapse
Affiliation(s)
- Jesús Pérez-Juárez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| | - Juana Virginia Tapia-Vieyra
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| | - Gabriel Gutiérrez-Magdaleno
- División de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpan Avenida Vasco de Quiroga 4871, Ciudad de Mexico 05348, Mexico
| | - Nuria Sánchez-Puig
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Correspondence: ; Tel.: +52-55-56224468
| |
Collapse
|
2
|
A Comparative Molecular Dynamics Study of Selected Point Mutations in the Shwachman–Bodian–Diamond Syndrome Protein SBDS. Int J Mol Sci 2022; 23:ijms23147938. [PMID: 35887285 PMCID: PMC9320453 DOI: 10.3390/ijms23147938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 01/27/2023] Open
Abstract
The Shwachman–Diamond Syndrome (SDS) is an autosomal recessive disease whose majority of patients display mutations in a ribosome assembly protein named Shwachman–Bodian–Diamond Syndrome protein (SBDS). A specific therapy for treating this rare disease is missing, due to the lack of knowledge of the molecular mechanisms responsible for its pathogenesis. Starting from the observation that SBDS single-point mutations, localized in different domains of the proteins, are responsible for an SDS phenotype, we carried out the first comparative Molecular Dynamics simulations on three SBDS mutants, namely R19Q, R126T and I212T. The obtained 450-ns long trajectories were compared with those returned by both the open and closed forms of wild type SBDS and strongly indicated that two distinct conformations (open and closed) are both necessary for the proper SBDS function, in full agreement with recent experimental observations. Our study supports the hypothesis that the SBDS function is governed by an allosteric mechanism involving domains I and III and provides new insights into SDS pathogenesis, thus offering a possible starting point for a specific therapeutic option.
Collapse
|
3
|
Méndez-Godoy A, García-Montalvo D, Martínez-Castilla LP, Sánchez-Puig N. Evolutionary and functional relationships in the ribosome biogenesis SBDS and EFL1 protein families. Mol Genet Genomics 2021; 296:1263-1278. [PMID: 34453201 DOI: 10.1007/s00438-021-01814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022]
Abstract
Nascent ribosomal 60S subunits undergo the last maturation steps in the cytoplasm. The last one involves removing the anti-association factor eIF6 from the 60S ribosomal surface by the joint action of the Elongation Factor-like 1 (EFL1) GTPase and the SBDS protein. Herein, we studied the evolutionary relationship of the EFL1 and EF-2 protein families and the functional conservation within EFL1 orthologues. Phylogenetic analysis demonstrated that the EFL1 proteins are exclusive of eukaryotes and share an evolutionary origin with the EF-2 and EF-G protein families. EFL1 proteins originated by gene duplication from the EF-2 proteins and specialized in ribosome maturation while the latter retained their function in translation. Some organisms have more than one EFL1 protein resulting from alternative splicing, while others are encoded in different genes originated by gene duplication. However, the function of these alternative EFL1 proteins is still unknown. We performed GTPase activity and complementation assays to study the functional conservation of EFL1 homologs alone and together with their SBDS counterparts. None of the orthologues or cross-species combinations could replace the function of the corresponding yeast EFL1•SBDS binomial. The complementation of SBDS interspecies chimeras indicates that domain 2 is vital for its function together with EFL1 and the 60S subunit. The results suggest a functional species-specificity and possible co-evolution between EFL1, SBDS, and the 60S ribosomal subunit. These findings set the basis for further studies directed to understand the molecular evolution of these proteins and their impact on ribosome biogenesis and disease.
Collapse
Affiliation(s)
- Alfonso Méndez-Godoy
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México, 04510, México.,Unit of Biochemistry, Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Daniel García-Montalvo
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México, 04510, México
| | - León P Martínez-Castilla
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Nuria Sánchez-Puig
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México, 04510, México.
| |
Collapse
|
4
|
Delre P, Alberga D, Gijsbers A, Sánchez-Puig N, Nicolotti O, Saviano M, Siliqi D, Mangiatordi GF. Exploring the role of elongation Factor-Like 1 (EFL1) in Shwachman-Diamond syndrome through molecular dynamics. J Biomol Struct Dyn 2020; 38:5219-5229. [PMID: 31838967 DOI: 10.1080/07391102.2019.1704883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shwachman-Diamond Syndrome (SDS) is an autosomal recessive disorder whose patients present mutations in two ribosome assembly proteins, the Shwachman-Bodian-Diamond Syndrome protein (SBDS) and the Elongation Factor-Like 1 (EFL1). Due to the lack of knowledge of the molecular mechanisms responsible for SDS pathogenesis, current therapy is nonspecific and focuses only at alleviating the symptoms. Building on the recent observation that EFL1 single-point mutations clinically manifest as SDS-like phenotype, we carried out comparative Molecular Dynamics (MD) simulations on three mutants, T127A, M882K and R1095Q and wild type EFL1. As supported by small angle X-ray scattering experiments, the obtained data improve the static EFL1 model resulting from the Cryo-electron microscopy and clearly show that all the mutants experience a peculiar rotation, around the hinge region, of domain IV with respect to domains I and II leading to a different conformation respect to that of wild type protein. This study supports the notion that EFL1 function is governed by an allosteric mechanism involving the concerted action of GTPase domain (domain I) and the domain IV and can help point towards new approaches to SDS treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pietro Delre
- Dipartimento di Chimica, Università Degli Studi di Bari "Aldo Moro", Bari, Italy.,Consiglio Nazionale Delle Ricerche, Istituto di Cristallografia, Bari, Italy
| | | | - Abril Gijsbers
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Nuria Sánchez-Puig
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze Del Farmaco, Università̀ Degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Michele Saviano
- Consiglio Nazionale Delle Ricerche, Istituto di Cristallografia, Bari, Italy
| | - Dritan Siliqi
- Consiglio Nazionale Delle Ricerche, Istituto di Cristallografia, Bari, Italy
| | | |
Collapse
|
5
|
Koh AL, Bonnard C, Lim JY, Liew WK, Thoon KC, Thomas T, Ali NAB, Ng AYJ, Tohari S, Phua KB, Venkatesh B, Reversade B, Jamuar SS. Heterozygous missense variant in EIF6 gene: A novel form of Shwachman-Diamond syndrome? Am J Med Genet A 2020; 182:2010-2020. [PMID: 32657013 DOI: 10.1002/ajmg.a.61758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
Shwachman-Diamond syndrome (SDS) is a rare multisystem ribosomal biogenesis disorder characterized by exocrine pancreatic insufficiency, hematologic abnormalities and bony abnormalities. About 90% of patients have biallelic mutations in SBDS gene. Three additional genes-EFL1, DNAJC21 and SRP54 have been reported in association with a SDS phenotype. However, the cause remains unknown for ~10% of patients. Herein, we report a 6-year-old Chinese boy, who presented in the neonatal period with pancytopenia, liver transaminitis with hepatosplenomegaly and developmental delay, and subsequently developed pancreatic insufficiency complicated by malabsorption and poor growth. Exome sequencing identified a novel de novo heterozygous variant in EIF6 (c.182G>T, p.Arg61Leu). EIF6 protein inhibits ribosomal maturation and is removed in the late steps of ribosomal maturation by SBDS and EFL1 protein. Given the interaction of EIF6 with SBDS and EFL1, we postulate heterozygous variants in EIF6 as a novel cause of Shwachman-Diamond-like phenotype. We compared the phenotype of our patient with those in patients with mutation in SBDS, EFL1, DNAJC21, and SRP54 genes to support this association. Identification of more cases of this novel phenotype would strengthen the association with the genetic etiology.
Collapse
Affiliation(s)
- Ai Ling Koh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Carine Bonnard
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Jiin Ying Lim
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Woei Kang Liew
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore
| | - Koh Cheng Thoon
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Terrence Thomas
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | | | - Alvin Yu Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Kong Boo Phua
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Saumya Shekhar Jamuar
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.,SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
| |
Collapse
|
6
|
Golob-Schwarzl N, Wodlej C, Kleinegger F, Gogg-Kamerer M, Birkl-Toeglhofer AM, Petzold J, Aigelsreiter A, Thalhammer M, Park YN, Haybaeck J. Eukaryotic translation initiation factor 6 overexpression plays a major role in the translational control of gallbladder cancer. J Cancer Res Clin Oncol 2019; 145:2699-2711. [PMID: 31586263 PMCID: PMC6800842 DOI: 10.1007/s00432-019-03030-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gallbladder cancer (GBC) is a rare neoplasia of the biliary tract with high mortality rates and poor prognosis. Signs and symptoms of GBC are not specific and often arise at late stage of disease. For this reason, diagnosis is typically made when the cancer is already in advanced stages, and prognosis for survival is less than 5 years in 90% of cases. Biomarkers to monitor disease progression and novel therapeutic alternative targets for these tumors are strongly required. Commonly, dysregulated protein synthesis contributes to carcinogenesis and cancer progression. In this case, protein synthesis directs translation of specific mRNAs, and, in turn, promotes cell survival, invasion, angiogenesis, and metastasis of tumors. In eukaryotes, protein synthesis is regulated at its initiation, which is a rate-limiting step involving eukaryotic translation initiation factors (eIFs). We hypothesize that eIFs represent crossroads in the development of GBC, and might serve as potential biomarkers. The study focus was the role of eIF6 (an anti-association factor for the ribosomal subunits) in GBC. METHODS In human GBC samples, the expression of eIF6 was analyzed biochemically at the protein (immunohistochemistry, immunoblot analyses) and mRNA levels (qRT-PCR). RESULTS High levels of eIF6 correlated with shorter overall survival in biliary tract cancer (BTC) patients (n = 28). Immunohistochemical data from tissue microarrays (n = 114) demonstrated significantly higher expression levels of eIF6 in GBC compared to non-neoplastic tissue. Higher eIF6 expression on protein (immunoblot) and mRNA (qRT-PCR) level was confirmed by analyzing fresh frozen GBC patient samples (n = 14). Depletion of eIF6 (using specific siRNA-mediated knockdown) in Mz-ChA-2 and TFK-1 cell lines inhibited cell proliferation and induced apoptosis. CONCLUSION Our data indicates that eIF6 overexpression plays a major role in the translational control of GBC, and indicates its potential as a new biomarker and therapeutic target in GBC.
Collapse
Affiliation(s)
- Nicole Golob-Schwarzl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Christina Wodlej
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Kleinegger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Department for Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Graz, Austria
| | - Margit Gogg-Kamerer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Johannes Petzold
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ariane Aigelsreiter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michael Thalhammer
- Department of General Surgery, Medical University of Graz, Graz, Austria
| | - Young Nyun Park
- Department of Pathology, Yonsei University, College of Medicine Soul, Seoul, South Korea
| | - Johannes Haybaeck
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
- Center for Biomarker Research in Medicine, Graz, Austria.
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University, Leipziger Straße 44, 39210, Magdeburg, Germany.
- Department of Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Furutani E, Newburger PE, Shimamura A. Neutropenia in the age of genetic testing: Advances and challenges. Am J Hematol 2019; 94:384-393. [PMID: 30536760 DOI: 10.1002/ajh.25374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
Identification of genetic causes of neutropenia informs precision medicine approaches to medical management and treatment. Accurate diagnosis of genetic neutropenia disorders informs treatment options, enables risk stratification, cancer surveillance, and attention to associated medical complications. The rapidly expanding genetic testing options for the evaluation of neutropenia have led to exciting advances but also new challenges. This review provides a practical guide to germline genetic testing for neutropenia.
Collapse
Affiliation(s)
- Elissa Furutani
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
| | - Peter E. Newburger
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
- Department of PediatricsUniversity of Massachusetts Medical School Worcester MA
| | - Akiko Shimamura
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
| |
Collapse
|
8
|
Cooperative energetic effects elicited by the yeast Shwachman-Diamond syndrome protein (Sdo1) and guanine nucleotides modulate the complex conformational landscape of the elongation factor-like 1 (Efl1) GTPase. Biophys Chem 2019; 247:13-24. [PMID: 30780079 DOI: 10.1016/j.bpc.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
One of the final maturation steps of the large ribosomal subunit requires the joint action of the elongation factor-like 1 (human EFL1, yeast Efl1) GTPase and the Shwachman-Diamond syndrome protein (human SBDS, yeast Sdo1) to release the eukaryotic translation initiation factor 6 (human eIF6, yeast Tif6) and allow the assembly of mature ribosomes. EFL1 function is driven by conformational changes. However, the nature of such conformational changes or the mechanism by which they are prompted are still largely unknown. In previous studies, it has been established that this GTPase interacts with its cofactor in solution in an inverted orientation with respect to the binding mode derived from 60S ribosome subunit cryo-EM data. To shed new light on this conundrum, we characterized calorimetrically the energetic basis describing the recognition of Efl1 to GT(D)P, Sdo1 and their intercommunication in solution. A structural-based analysis of the binding signatures indicates that Efl1 has a large structural flexibility. The mutual effects of Sdo1 and nucleotides on Efl1 modulate in a very specific and robust way the complex conformational landscape of Efl1, resembling the behavior observed with other GTPases and their cofactors.
Collapse
|
9
|
Gijsbers A, Montagut DC, Méndez-Godoy A, Altamura D, Saviano M, Siliqi D, Sánchez-Puig N. Interaction of the GTPase Elongation Factor Like-1 with the Shwachman-Diamond Syndrome Protein and Its Missense Mutations. Int J Mol Sci 2018; 19:E4012. [PMID: 30545121 PMCID: PMC6321010 DOI: 10.3390/ijms19124012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
The Shwachman-Diamond Syndrome (SDS) is a disorder arising from mutations in the genes encoding for the Shwachman-Bodian-Diamond Syndrome (SBDS) protein and the GTPase known as Elongation Factor Like-1 (EFL1). Together, these proteins remove the anti-association factor eIF6 from the surface of the pre-60S ribosomal subunit to promote the formation of mature ribosomes. SBDS missense mutations can either destabilize the protein fold or affect surface epitopes. The molecular alterations resulting from the latter remain largely unknown, although some evidence suggest that binding to EFL1 may be affected. We further explored the effect of these SBDS mutations on the interaction with EFL1, and showed that all tested mutations disrupted the binding to EFL1. Binding was either severely weakened or almost abolished, depending on the assessed mutation. In higher eukaryotes, SBDS is essential for development, and lack of the protein results in early lethality. The existence of patients whose only source of SBDS consists of that with surface missense mutations highlights the importance of the interaction with EFL1 for their function. Additionally, we studied the interaction mechanism of the proteins in solution and demonstrated that binding consists of two independent and cooperative events, with domains 2⁻3 of SBDS directing the initial interaction with EFL1, followed by docking of domain 1. In solution, both proteins exhibited large flexibility and consisted of an ensemble of conformations, as demonstrated by Small Angle X-ray Scattering (SAXS) experiments.
Collapse
Affiliation(s)
- Abril Gijsbers
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Diana Carolina Montagut
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Alfonso Méndez-Godoy
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Davide Altamura
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Nuria Sánchez-Puig
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
10
|
Tan QKG, Cope H, Spillmann RC, Stong N, Jiang YH, McDonald MT, Rothman JA, Butler MW, Frush DP, Lachman RS, Lee B, Bacino CA, Bonner MJ, McCall CM, Pendse AA, Walley N, Shashi V, Pena LDM. Further evidence for the involvement of EFL1 in a Shwachman-Diamond-like syndrome and expansion of the phenotypic features. Cold Spring Harb Mol Case Stud 2018; 4:a003046. [PMID: 29970384 PMCID: PMC6169826 DOI: 10.1101/mcs.a003046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Recent evidence has implicated EFL1 in a phenotype overlapping Shwachman-Diamond syndrome (SDS), with the functional interplay between EFL1 and the previously known causative gene SBDS accounting for the similarity in clinical features. Relatively little is known about the phenotypes associated with pathogenic variants in the EFL1 gene, but the initial indication was that phenotypes may be more severe, when compared with SDS. We report a pediatric patient who presented with a metaphyseal dysplasia and was found to have biallelic variants in EFL1 on reanalysis of trio whole-exome sequencing data. The variant had not been initially reported because of the research laboratory's focus on de novo variants. Subsequent phenotyping revealed variability in her manifestations. Although her metaphyseal abnormalities were more severe than in the original reported cohort with EFL1 variants, the bone marrow abnormalities were generally mild, and there was equivocal evidence for pancreatic insufficiency. Despite the limited number of reported patients, variants in EFL1 appear to cause a broader spectrum of symptoms that overlap with those seen in SDS. Our report adds to the evidence of EFL1 being associated with an SDS-like phenotype and provides information adding to our understanding of the phenotypic variability of this disorder. Our report also highlights the value of exome data reanalysis when a diagnosis is not initially apparent.
Collapse
Affiliation(s)
- Queenie K-G Tan
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Heidi Cope
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, New York 10032, USA
| | - Yong-Hui Jiang
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Marie T McDonald
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jennifer A Rothman
- Department of Pediatrics, Division of Hematology-Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Megan W Butler
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Donald P Frush
- Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Ralph S Lachman
- Cedars-Sinai Medical Center, International Skeletal Dysplasia Registry, Los Angeles, California 90048, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Melanie J Bonner
- Department of Psychiatry and Behavioral Sciences, Division of Child and Family Mental Health and Developmental Neuroscience, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chad M McCall
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Avani A Pendse
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Nicole Walley
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Loren D M Pena
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| |
Collapse
|
11
|
Wang K, Wang C, Zhu CJ, Li G, Li Y, Feng YB, Ruan JJ, Zhu F, Meng Y, Zhou RP, Chen FH. 4-Amino-2-Trifluoromethyl-Phenyl Retinate induced leukemia cell differentiation by decreasing eIF6. Biochem Biophys Res Commun 2018; 503:2033-2039. [PMID: 30078681 DOI: 10.1016/j.bbrc.2018.07.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/30/2022]
Abstract
4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), an all-trans retinoic acid (ATRA) derivative, possesses the ability to relief several carcinoma. Here, we explored the potential molecular mechanism of eukaryotic translation initiation factor 6 (eIF6) in ATPR-induced leukemia cell differentiation. Our research showed that ATPR could inhibit cell proliferation and promote cell differentiation in several leukemia cell lines. Besides, ATPR remarkably reduced the expression of eIF6 in vitro. Interestingly, the reduction of eIF6 contributed to restraining proliferation of K562 cells by inhibiting CyclinD1, C-myc and blocking cell cycle, as well as promoting differentiation of K562 cells by increasing the expression of C/EBPε, cell surface antigen CD11b and inducing renal-shrinkage of nuclear. Furthermore, the over-expression of eIF6 restrained the effects of ATPR on cell proliferation and maturation in K562 cells. In Addition, Notch1/CBF-1 signal activated by Chrysin could increase expression of eIF6 and restrain the differentiation in ATPR-induced K562 cells. Taken together, all above results indicated that ATPR induced differentiation of leukemia cells by decreasing eIF6 through Notch1/CBF-1 signal, which might exert an innovative treatment for leukemia.
Collapse
Affiliation(s)
- Ke Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Cong Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Chuan-Jun Zhu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Ge Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Yue Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Yu-Bin Feng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Jing-Jing Ruan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Fei Zhu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Yao Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Ren-Peng Zhou
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Fei-Hu Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China.
| |
Collapse
|
12
|
Conformational Flexibility of Proteins Involved in Ribosome Biogenesis: Investigations via Small Angle X-ray Scattering (SAXS). CRYSTALS 2018. [DOI: 10.3390/cryst8030109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Affiliation(s)
- Roberto Valli
- Medical Genetic Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Frattini
- UOS Milano, Institute of Genetics and Biomedical Research, National Research Council, Milano, Italy
- Department of Medicine and Surgery, University of Insubria, Milano, Italy
| | - Antonella Minelli
- Medical Genetic Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Zhu W, Li GX, Chen HL, Liu XY. The role of eukaryotic translation initiation factor 6 in tumors. Oncol Lett 2017; 14:3-9. [PMID: 28693127 PMCID: PMC5494901 DOI: 10.3892/ol.2017.6161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) affects the maturation of 60S ribosomal subunits. Found in yeast and mammalian cells, eIF6 is primarily located in the cytoplasm of mammalian cells. Emerging evidence has demonstrated that the dysregulated expression of eIF6 is important in several types of human cancer, including head and neck carcinoma, colorectal cancer, non-small cell lung cancer and ovarian serous adenocarcinoma. However, the molecular mechanisms by which eIF6 functions during tumor formation and progression remain elusive. The present review focuses on recent progress in terms of the mechanisms and functions of eIF6 in human tumorigenesis or cancer cell lines, along with the signal transduction pathways in which this novel translation initiation factor may participate. Oncogenic Ras activates Notch-1 and promotes transcription of eIF6 via a recombining binding protein suppressor of Hairless-dependent mechanism. In addition, overexpression of eIF6 results in aberrant activation of the Wnt/β-catenin signaling pathway. Similarly, overexpressed eIF6 regulates its downstream modulator, cell division control protein 42, which in turn affects oncogenesis. Finally, the potential of eIF6 as a biomarker for diagnosis of cancer is also discussed in the present review.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Gui Xian Li
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hong Lang Chen
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xing Yan Liu
- Sino-American Cancer Research Institute, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
15
|
Mutations inEFL1, anSBDSpartner, are associated with infantile pancytopenia, exocrine pancreatic insufficiency and skeletal anomalies in aShwachman-Diamond like syndrome. J Med Genet 2017; 54:558-566. [DOI: 10.1136/jmedgenet-2016-104366] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 11/03/2022]
|
16
|
Gijsbers A, Nishigaki T, Sánchez-Puig N. Fluorescence Anisotropy as a Tool to Study Protein-protein Interactions. J Vis Exp 2016. [PMID: 27805607 DOI: 10.3791/54640] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Protein-protein interactions play an essential role in the function of a living organism. Once an interaction has been identified and validated it is necessary to characterize it at the structural and mechanistic level. Several biochemical and biophysical methods exist for such purpose. Among them, fluorescence anisotropy is a powerful technique particularly used when the fluorescence intensity of a fluorophore-labeled protein remains constant upon protein-protein interaction. In this technique, a fluorophore-labeled protein is excited with vertically polarized light of an appropriate wavelength that selectively excites a subset of the fluorophores according to their relative orientation with the incoming beam. The resulting emission also has a directionality whose relationship in the vertical and horizontal planes defines anisotropy (r) as follows: r=(IVV-IVH)/(IVV+2IVH), where IVV and IVH are the fluorescence intensities of the vertical and horizontal components, respectively. Fluorescence anisotropy is sensitive to the rotational diffusion of a fluorophore, namely the apparent molecular size of a fluorophore attached to a protein, which is altered upon protein-protein interaction. In the present text, the use of fluorescence anisotropy as a tool to study protein-protein interactions was exemplified to address the binding between the protein mutated in the Shwachman-Diamond Syndrome (SBDS) and the Elongation factor like-1 GTPase (EFL1). Conventionally, labeling of a protein with a fluorophore is carried out on the thiol groups (cysteine) or in the amino groups (the N-terminal amine or lysine) of the protein. However, SBDS possesses several cysteines and lysines that did not allow site directed labeling of it. As an alternative technique, the dye 4',5'-bis(1,3,2 dithioarsolan-2-yl) fluorescein was used to specifically label a tetracysteine motif, Cys-Cys-Pro-Gly-Cys-Cys, genetically engineered in the C-terminus of the recombinant SBDS protein. Fitting of the experimental data provided quantitative and mechanistic information on the binding mode between these proteins.
Collapse
Affiliation(s)
- Abril Gijsbers
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México
| | - Nuria Sánchez-Puig
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México;
| |
Collapse
|