1
|
Yuan W, Zhang Q, Yang Z, Zhang Y, Zhou Y, Yan T, Liu Z, Ma X, Weng X. Analysis of the pluripotent and germline marker gene expression, and the state of X chromosome reactivation of primordial germ cells in pig gonads. Theriogenology 2025; 231:52-61. [PMID: 39413538 DOI: 10.1016/j.theriogenology.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The gonadal primordial germ cells (PGCs) possess a unique state of pluripotency and X chromosome activity. However, extensive evidence indicates developmental variability in PGCs across different species. This study aims to evaluate the pluripotency status, specific gene expression patterns, and X chromosome reactivation (XCR) of pig gonadal PGCs. Single-cell RNA-seq revealed significant heterogeneity within the population of gonadal PGCs. Notably, these PGCs expressed high levels of pluripotency markers OCT4, PRDM14, and NANOG, while lacking SOX2 expression. Through the screening of marker genes and subsequent protein expression validation, we identified growth differentiation factor 3 (GDF3) as a specific surface marker for pig gonadal PGCs, facilitating their efficient purification for further study. Furthermore, analysis of gonadal PGCs demonstrated complete XCR. This was evidenced by the absence of repressive histone modifications (H3K27me3, H3K9me3, and H2AK119ub), the lack of X inactive specific transcript (XIST) RNA FISH signal, and the doubled expression of X-linked genes. Additionally, these PGCs expressed high levels of genes associated with epigenetic modification, chromatin remodeling, and XIST-associated RNA-binding. These factors likely play a crucial role in regulating pluripotency and X chromosome activity. In summary, this study reveals the heterogeneity in pig gonadal PGCs and identifies GDF3 as a specific surface marker. It also elucidates the expression patterns of pluripotency transcription factors and the events involved in XCR.
Collapse
Affiliation(s)
- Wenjing Yuan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Qi Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhishan Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yuting Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yang Zhou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| | - Xinghong Ma
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
2
|
Zhu W, Du J, Chen Q, Zhang Z, Wu B, Xu J, Li T, Bi Y, Shi H, Li R. Association of UHRF1 gene polymorphisms with oligospermia in Chinese males. J Assist Reprod Genet 2019; 36:2563-2573. [PMID: 31802345 DOI: 10.1007/s10815-019-01614-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND UHRF1 plays an important role in maintaining DNA methylation patterns during spermatogenesis. This study was performed to evaluate the association between UHRF1 gene variations and infertility in males with oligozoospermia in a Chinese population. METHODS In this case-control study of 735 Chinese men, single-nucleotide polymorphism (SNP) genotypes and alleles in the UHRF1 gene were assessed by direct sequencing. The effects of the mutations on UHRF1 transcription were investigated using a dual-luciferase reporter gene assay. RESULTS We identified 24 SNPs, including nine SNPs in the promoter region, three in the 5' untranslated region, five in introns, and seven in exons. Interestingly, the genotype frequencies of SNP rs2656927 (P = 0.014) and rs8103849 (P < 0.001) significantly differed between men with oligozoospermia in case group 1 and normozoospermic men. Moreover, four variants (three were novel) were detected only in the patient group, with two in introns and the others in the promoter region. The results of the luciferase assay showed that the -1615C>T-C and -1562A>G-A alleles increased luciferase activity compared with the -1615C>T-T and -1562A>G-G alleles. CONCLUSIONS We detected two SNPs in the UHRF1 gene showing a significant difference between the case and control groups. Two screened SNPs affected UHRF1 promoter activity, improving the understanding of the pathophysiology of oligozoospermia.
Collapse
Affiliation(s)
- Weiqiang Zhu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Jing Du
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Qing Chen
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Zhaofeng Zhang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Bin Wu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Jianhua Xu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Tianqi Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Yuan Bi
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.
| | - Runsheng Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Mackin SJ, Thakur A, Walsh CP. Imprint stability and plasticity during development. Reproduction 2018; 156:R43-R55. [PMID: 29743259 DOI: 10.1530/rep-18-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
There have been a number of recent insights in the area of genomic imprinting, the phenomenon whereby one of two autosomal alleles is selected for expression based on the parent of origin. This is due in part to a proliferation of new techniques for interrogating the genome that are leading researchers working on organisms other than mouse and human, where imprinting has been most studied, to become interested in looking for potential imprinting effects. Here, we recap what is known about the importance of imprints for growth and body size, as well as the main types of locus control. Interestingly, work from a number of labs has now shown that maintenance of the imprint post implantation appears to be a more crucial step than previously appreciated. We ask whether imprints can be reprogrammed somatically, how many loci there are and how conserved imprinted regions are in other species. Finally, we survey some of the methods available for examining DNA methylation genome-wide and look to the future of this burgeoning field.
Collapse
Affiliation(s)
- Sarah-Jayne Mackin
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Avinash Thakur
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| |
Collapse
|
4
|
Ravichandran M, Jurkowska RZ, Jurkowski TP. Target specificity of mammalian DNA methylation and demethylation machinery. Org Biomol Chem 2018; 16:1419-1435. [DOI: 10.1039/c7ob02574b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review here the molecular mechanisms employed by DNMTs and TET enzymes that are responsible for shaping the DNA methylation pattern of a mammalian cell.
Collapse
Affiliation(s)
| | | | - T. P. Jurkowski
- Universität Stuttgart
- Abteilung Biochemie
- Institute für Biochemie und Technische Biochemie
- Stuttgart D-70569
- Germany
| |
Collapse
|
5
|
Chernyavskaya Y, Mudbhary R, Zhang C, Tokarz D, Jacob V, Gopinath S, Sun X, Wang S, Magnani E, Madakashira BP, Yoder JA, Hoshida Y, Sadler KC. Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development 2017; 144:2925-2939. [PMID: 28698226 PMCID: PMC5592811 DOI: 10.1242/dev.147629] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
Abstract
Complex cytoplasmic nucleotide-sensing mechanisms can recognize foreign DNA based on a lack of methylation and initiate an immune response to clear the infection. Zebrafish embryos with global DNA hypomethylation caused by mutations in the ubiquitin-like with PHD and ring finger domains 1 (uhrf1) or DNA methyltransferase 1 (dnmt1) genes exhibit a robust interferon induction characteristic of the first line of defense against viral infection. We found that this interferon induction occurred in non-immune cells and examined whether intracellular viral sensing pathways in these cells were the trigger. RNA-seq analysis of uhrf1 and dnmt1 mutants revealed widespread induction of Class I retrotransposons and activation of cytoplasmic DNA viral sensors. Attenuating Sting, phosphorylated Tbk1 and, importantly, blocking reverse transcriptase activity suppressed the expression of interferon genes in uhrf1 mutants. Thus, activation of transposons in cells with global DNA hypomethylation mimics a viral infection by activating cytoplasmic DNA sensors. This suggests that antiviral pathways serve as surveillance of cells that have derepressed intragenomic parasites due to DNA hypomethylation.
Collapse
Affiliation(s)
- Yelena Chernyavskaya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raksha Mudbhary
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Chi Zhang
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Debra Tokarz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27607, USA
| | - Vinitha Jacob
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Smita Gopinath
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Xiaochen Sun
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Elena Magnani
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27607, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Kirsten C Sadler
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| |
Collapse
|
6
|
Thakur A, Mackin SJ, Irwin RE, O’Neill KM, Pollin G, Walsh C. Widespread recovery of methylation at gametic imprints in hypomethylated mouse stem cells following rescue with DNMT3A2. Epigenetics Chromatin 2016; 9:53. [PMID: 27895716 PMCID: PMC5118886 DOI: 10.1186/s13072-016-0104-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/08/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Imprinted loci are paradigms of epigenetic regulation and are associated with a number of genetic disorders in human. A key characteristic of imprints is the presence of a gametic differentially methylated region (gDMR). Previous studies have indicated that DNA methylation lost from gDMRs could not be restored by DNMT1, or the de novo enzymes DNMT3A or 3B in stem cells, indicating that imprinted regions must instead undergo passage through the germline for reprogramming. However, previous studies were non-quantitative, were unclear on the requirement for DNMT3A/B and showed some inconsistencies. In addition, new putative gDMR has recently been described, along with an improved delineation of the existing gDMR locations. We therefore aimed to re-examine the dependence of methylation at gDMRs on the activities of the methyltransferases in mouse embryonic stem cells (ESCs). RESULTS We examined the most complete current set of imprinted gDMRs that could be assessed using quantitative pyrosequencing assays in two types of ESCs: those lacking DNMT1 (1KO) and cells lacking a combination of DNMT3A and DNMT3B (3abKO). We further verified results using clonal analysis and combined bisulfite and restriction analysis. Our results showed that loss of methylation was approximately equivalent in both cell types. 1KO cells rescued with a cDNA-expressing DNMT1 could not restore methylation at the imprinted gDMRs, confirming some previous observations. However, nearly all gDMRs were remethylated in 3abKO cells rescued with a DNMT3A2 expression construct (3abKO + 3a2). Transcriptional activity at the H19/Igf2 locus also tracked with the methylation pattern, confirming functional reprogramming in the latter. CONCLUSIONS These results suggested (1) a vital role for DNMT3A/B in methylation maintenance at imprints, (2) that loss of DNMT1 and DNMT3A/B had equivalent effects, (3) that rescue with DNMT3A2 can restore imprints in these cells. This may provide a useful system in which to explore factors influencing imprint reprogramming.
Collapse
Affiliation(s)
- Avinash Thakur
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
- Terry Fox Laboratory, BC Cancer Agency, 675 W 10th Ave, Vancouver, BC V5Z 1G1 Canada
| | - Sarah-Jayne Mackin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Rachelle E. Irwin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Karla M. O’Neill
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE UK
| | - Gareth Pollin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Colum Walsh
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| |
Collapse
|