1
|
Chen WQ, Yuan YF, Hu KN, Sun DL, Wang SW, He QB, Liu YM, Han CY, Zhang J, Li YZ. Identification of novel variations in three cases with rare inherited neuromuscular disorder. Exp Ther Med 2024; 27:270. [PMID: 38756899 PMCID: PMC11097291 DOI: 10.3892/etm.2024.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/22/2024] [Indexed: 05/18/2024] Open
Abstract
Inherited neuromuscular disorder (IND) is a broad-spectrum, clinically diverse group of diseases that are caused due to defects in the neurosystem, muscles and related tissue. Since IND may originate from mutations in hundreds of different genes, the resulting heterogeneity of IND is a great challenge for accurate diagnosis and subsequent management. Three pediatric cases with IND were enrolled in the present study and subjected to a thorough clinical examination. Next, a genetic investigation was conducted using whole-exome sequencing (WES). The suspected variants were validated through Sanger sequencing or quantitative fluorescence PCR assay. A new missense variant of the Spastin (SPAST) gene was found and analyzed at the structural level using molecular dynamics (MD) simulations. All three cases presented with respective specific clinical manifestations, which reflected the diversity of IND. WES detected the diagnostic variants in all 3 cases: A compound variation comprising collagen type VI α3 chain (COL6A3) (NM_004369; exon19):c.6322G>T(p.E1208*) and a one-copy loss of COL6A3:exon19 in Case 1, which are being reported for the first time; a de novo SPAST (NM_014946; exon8):c.1166C>A(p.T389K) variant in Case 2; and a de novo Duchenne muscular dystrophy (NM_004006; exon11):c.1150-17_1160delACTTCCTTCTTTGTCAGGGGTACATGATinsC variant in Case 3. The structural and MD analyses revealed that the detected novel SPAST: c.1166C>A(p.T389K) variant mainly altered the intramolecular hydrogen bonding status and the protein segment's secondary structure. In conclusion, the present study expanded the IND mutation spectrum. The study not only detailed the precise diagnoses of these cases but also furnished substantial grounds for informed consultations. The approach involving the genetic evaluation strategy using WES for variation screening followed by validation using appropriate methods is beneficial due to the considerable heterogeneity of IND.
Collapse
Affiliation(s)
- Wen-Qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Yu-Fan Yuan
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Ke-Na Hu
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Dong-Lan Sun
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Si-Wen Wang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Qing-Bing He
- Department of Pediatric Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yan-Ming Liu
- Prenatal Diagnosis Center, Langfang Maternal and Child Health Care Hospital, Langfang, Hebei 065000, P.R. China
| | - Cong-Ying Han
- Prenatal Diagnosis Center, Langfang Maternal and Child Health Care Hospital, Langfang, Hebei 065000, P.R. China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Ya-Zhou Li
- Department of Pediatric Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
2
|
Basement Membrane Changes of Myofiber and Fibrosis in Sternocleidomastoid Muscle of Congenital Muscular Torticollis. J Craniofac Surg 2022; 33:2704-2710. [DOI: 10.1097/scs.0000000000008781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
|
3
|
Bellissimo CA, Garibotti MC, Perry CGR. Mitochondrial Stress Responses in Duchenne muscular dystrophy: Metabolic Dysfunction or Adaptive Reprogramming? Am J Physiol Cell Physiol 2022; 323:C718-C730. [PMID: 35816642 DOI: 10.1152/ajpcell.00249.2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial stress may be a secondary contributor to muscle weakness in inherited muscular dystrophies. Duchenne muscular dystrophy has received the majority of attention whereby most discoveries suggest mitochondrial ATP synthesis may be reduced. However, not all studies support this finding. Furthermore, some studies have reported increased mitochondrial reactive oxygen species and propensity for permeability transition pore formation as an inducer of apoptosis, although divergent findings have also been described. A closer examination of the literature suggests the degree and direction of mitochondrial stress responses may depend on the progression of the disease, the muscle type examined, the mouse model employed with regards to pre-clinical research, the precise metabolic pathways in consideration, and in some cases the in vitro technique used to assess a given mitochondrial bioenergetic function. One intent of this review is to provide careful considerations for future experimental designs to resolve the heterogeneous nature of mitochondrial stress during the progression of Duchenne muscular dystrophy. Such considerations have implications for other muscular dystrophies as well which are addressed briefly herein. A renewed perspective of the term 'mitochondrial dysfunction' is presented whereby stress responses might be re-explored in future investigations as direct contributors to myopathy vs an adaptive 'reprogramming' intended to maintain homeostasis in the face of disease stressors themselves. In so doing, the prospective development of mitochondrial enhancement therapies can be driven by advances in perspectives as much as experimental approaches when resolving the precise relationships between mitochondrial remodelling and muscle weakness in Duchenne and, indeed, other muscular dystrophies.
Collapse
Affiliation(s)
- Catherine A Bellissimo
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Madison C Garibotti
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
4
|
Lamandé SR. Collagen VI Muscle Disorders: Mutation Types, Pathogenic Mechanisms and Approaches to Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:311-323. [PMID: 34807426 DOI: 10.1007/978-3-030-80614-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutations in the genes encoding the major collagen VI isoform, COL6A1, COL6A2 and COL6A3, are responsible for the muscle disorders Bethlem myopathy and Ullrich congenital muscular dystrophy. These disorders form a disease spectrum from mild to severe. Dominant and recessive mutations are found along the entire spectrum and the clinical phenotype is strongly influenced by the way mutations impede collagen VI protein assembly. Most mutations are in the triple helical domain, towards the N-terminus and they compromise microfibril assembly. Some mutations are found outside the helix in the C- and N-terminal globular domains, but because these regions are highly polymorphic it is difficult to discriminate mutations from rare benign changes without detailed structural and functional studies. Collagen VI deficiency leads to mitochondrial dysfunction, deficient autophagy and increased apoptosis. Therapies that target these consequences have been tested in mouse models and some have shown modest efficacy in small human trials. Antisense therapies for a common mutation that introduces a pseudoexon show promise in cell culture but haven't yet been tested in an animal model. Future therapeutic approaches await new research into how collagen VI deficiency signals downstream consequences.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Hydroxytyrosol as a Promising Ally in the Treatment of Fibromyalgia. Nutrients 2020; 12:nu12082386. [PMID: 32784915 PMCID: PMC7468876 DOI: 10.3390/nu12082386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fibromyalgia (FM) is a chronic and highly disabling syndrome, which is still underdiagnosed, with controversial treatment. Although its aetiology is unknown, a number of studies have pointed to the involvement of altered mitochondrial metabolism, increased oxidative stress and inflammation. The intake of extra virgin olive oil, and particularly of one of its phenolic compounds, hydroxytyrosol (HT), has proven to be protective in terms of redox homeostatic balance and the reduction of inflammation. In this context, using a proteomic approach with nanoscale liquid chromatography coupled to tandem mass spectrometry, the present study analysed: (i) Changes in the proteome of dermal fibroblasts from a patient with FM versus a healthy control, and (ii) the effect of the treatment with a nutritional relevant dose of HT. Our results unveiled that fibroblast from FM show a differential expression in proteins involved in the turnover of extracellular matrix and oxidative metabolism that could explain the inflammatory status of these patients. Moreover, a number of these proteins results normalized by the treatment with HT. In conclusion, our results support that an HT-enriched diet could be highly beneficial in the management of FM.
Collapse
|
6
|
Mair D, Biskup S, Kress W, Abicht A, Brück W, Zechel S, Knop KC, Koenig FB, Tey S, Nikolin S, Eggermann K, Kurth I, Ferbert A, Weis J. Differential diagnosis of vacuolar myopathies in the NGS era. Brain Pathol 2020; 30:877-896. [PMID: 32419263 PMCID: PMC8017999 DOI: 10.1111/bpa.12864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Altered autophagy accompanied by abnormal autophagic (rimmed) vacuoles detectable by light and electron microscopy is a common denominator of many familial and sporadic non-inflammatory muscle diseases. Even in the era of next generation sequencing (NGS), late-onset vacuolar myopathies remain a diagnostic challenge. We identified 32 adult vacuolar myopathy patients from 30 unrelated families, studied their clinical, histopathological and ultrastructural characteristics and performed genetic testing in index patients and relatives using Sanger sequencing and NGS including whole exome sequencing (WES). We established a molecular genetic diagnosis in 17 patients. Pathogenic mutations were found in genes typically linked to vacuolar myopathy (GNE, LDB3/ZASP, MYOT, DES and GAA), but also in genes not regularly associated with severely altered autophagy (FKRP, DYSF, CAV3, COL6A2, GYG1 and TRIM32) and in the digenic facioscapulohumeral muscular dystrophy 2. Characteristic histopathological features including distinct patterns of myofibrillar disarray and evidence of exocytosis proved to be helpful to distinguish causes of vacuolar myopathies. Biopsy validated the pathogenicity of the novel mutations p.(Phe55*) and p.(Arg216*) in GYG1 and of the p.(Leu156Pro) TRIM32 mutation combined with compound heterozygous deletion of exon 2 of TRIM32 and expanded the phenotype of Ala93Thr-caveolinopathy and of limb-girdle muscular dystrophy 2i caused by FKRP mutation. In 15 patients no causal variants were detected by Sanger sequencing and NGS panel analysis. In 12 of these cases, WES was performed, but did not yield any definite mutation or likely candidate gene. In one of these patients with a family history of muscle weakness, the vacuolar myopathy was eventually linked to chloroquine therapy. Our study illustrates the wide phenotypic and genotypic heterogeneity of vacuolar myopathies and validates the role of histopathology in assessing the pathogenicity of novel mutations detected by NGS. In a sizable portion of vacuolar myopathy cases, it remains to be shown whether the cause is hereditary or degenerative.
Collapse
Affiliation(s)
- Dorothea Mair
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany.,Department of Neurology, Kassel School of Medicine, Klinikum Kassel, Kassel, Germany.,University of Southampton, Southampton, UK
| | - Saskia Biskup
- Centre for Genomics and Transcriptomics CeGaT, Tübingen, Germany
| | - Wolfram Kress
- Institute of Human Genetics, University Würzburg, Würzburg, Germany
| | | | - Wolfgang Brück
- Institute of Neuropathology, Göttingen University, Göttingen, Germany
| | - Sabrina Zechel
- Institute of Neuropathology, Göttingen University, Göttingen, Germany
| | | | | | - Shelisa Tey
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Stefan Nikolin
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Andreas Ferbert
- Department of Neurology, Kassel School of Medicine, Klinikum Kassel, Kassel, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Chausova PA, Ryzhkova OP, Polyakov AV. Clinical and genetic characteristics of congenital muscular dystrophies (Part 1). NEUROMUSCULAR DISEASES 2020; 10:10-21. [DOI: 10.17650/2222-8721-2020-10-1-10-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Congenital muscular dystrophy is an extremely heterogeneous group of hereditary neuromuscular diseases that are clinically characterized by muscular hypotonia, progressive muscle weakness, and dystrophic changes in the muscles. Overlapping clinical symptoms and many genes that have to be analyzed to determine the specific form of the disease in the patient make diagnosis difficult. The molecular genetic stage of diagnosis includes many different methods depending on the clinical hypothesis and their application has not lost its relevance even in the era of massive parallel sequencing. In addition to DNA sequence analysis, the analysis of muscle protein expression can also play a significant role in the diagnosis of congenital muscular dystrophy. In the review, we will consider the most important etiological, pathophysiological, clinical and laboratory data of the main forms of congenital muscular dystrophy known today.
Collapse
Affiliation(s)
- P. A. Chausova
- Research Centre for Medical Genetics named after academician N. P. Bochkov
| | - O. P. Ryzhkova
- Research Centre for Medical Genetics named after academician N. P. Bochkov
| | - A. V. Polyakov
- Research Centre for Medical Genetics named after academician N. P. Bochkov
| |
Collapse
|
8
|
Duan C, Cao Z, Tang F, Jian Z, Liang C, Liu H, Xiao Y, Liu L, Ma R. miRNA-mRNA crosstalk in myocardial ischemia induced by calcified aortic valve stenosis. Aging (Albany NY) 2020; 11:448-466. [PMID: 30651404 PMCID: PMC6366972 DOI: 10.18632/aging.101751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022]
Abstract
Aortic valve stenosis is the most common cause of morbidity and mortality in valvular heart disease in aged people. Both microRNA (miRNA) and mRNA are potential targets for the diagnosis and therapeutic intervention of myocardial ischemia induced by calcified aortic valve stenosis (CAVS), with unclear mechanisms. Here, 3 gene expression profiles of 47 male participants were applied to generate shared differentially expressed genes (DEGs) with significant major biological functions. Moreover, 20 hub genes were generated by a Weighted Genes Co-Expression Network Analysis (WGCNA) and were cross-linked to miRNA based on miRanda/miRwalk2 databases. Integrated miRNA/mRNA analysis identified several novel miRNAs and targeted genes as diagnostic/prognostic biomarkers or therapeutic targets in CAVS patients. In addition, the clinical data suggested that myocardial hypertrophy and myocardial ischemia in CAVS patients are likely associated with hub genes and the upstream regulatory miRNAs. Together, our data provide evidence that miRNAs and their targeted genes play an important role in the pathogenesis of myocardial hypertrophy and ischemia in patients with CAVS.
Collapse
Affiliation(s)
- Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P. R. China.,Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Zhezhe Cao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Fuqin Tang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Zhao Jian
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Chunshui Liang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Hong Liu
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P. R. China
| | - Ruiyan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| |
Collapse
|
9
|
Bugiardini E, Khan AM, Phadke R, Lynch DS, Cortese A, Feng L, Gang Q, Pittman AM, Morrow JM, Turner C, Carr AS, Quinlivan R, Rossor AM, Holton JL, Parton M, Blake JC, Reilly MM, Houlden H, Matthews E, Hanna MG. Genetic and phenotypic characterisation of inherited myopathies in a tertiary neuromuscular centre. Neuromuscul Disord 2019; 29:747-757. [DOI: 10.1016/j.nmd.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/12/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
|
10
|
Caria F, Cescon M, Gualandi F, Pichiecchio A, Rossi R, Rimessi P, Piccinelli SC, Cassarino SG, Gregorio I, Galvagni A, Ferlini A, Padovani A, Bonaldo P, Filosto M. WITHDRAWN: Autosomal recessive Bethlem myopathy: A clinical, genetic and functional study. Neuromuscul Disord 2019. [DOI: 10.1016/j.nmd.2019.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Caria F, Cescon M, Gualandi F, Pichiecchio A, Rossi R, Rimessi P, Cotti Piccinelli S, Gallo Cassarino S, Gregorio I, Galvagni A, Ferlini A, Padovani A, Bonaldo P, Filosto M. Autosomal recessive Bethlem myopathy: A clinical, genetic and functional study. Neuromuscul Disord 2019; 29:657-663. [PMID: 31471117 DOI: 10.1016/j.nmd.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 01/04/2023]
Abstract
Bethlem myopathy represents the milder form of the spectrum of Collagen VI-related dystrophies, which are characterized by a clinical continuum between the two extremities, the Bethlem myopathy and the Ullrich congenital muscular dystrophy, and include less defined intermediate phenotypes. Bethlem myopathy is mainly an autosomal dominant disorder and the causing mutations occur in the COL6A genes encoding for the α1 (COL6A1), α2 (COL6A2) and α3 (COL6A3) chains. However, few cases of recessive inheritance have been also reported. We here describe clinical, genetic and functional findings in a recessive Bethlem myopathy family harbouring two novel pathogenic mutations in the COL6A2 gene. Two adult siblings presented with muscle weakness and wasting, elbows and Achilles tendon retractions, lumbar hyperlordosis, waddling gait and positive Gowers' sign. Muscle biopsy showed a dystrophic pattern. Molecular analysis of the COL6A2 gene revealed the novel paternally-inherited nonsense p.Gln889* mutation and the maternally-inherited p.Pro260_Lys261insProPro small insertion. Fibroblast studies in both affected patients showed the concomitant reduction in the amount of normal Collagen VI (p.Gln889*) and impairment of Collagen VI secretion and assembly (p.Pro260_Lys261insProPro). Each of the two variants behave as a recessive mutation as shown by the asymptomatic heterozygous parents, while their concomitant effects determined a relatively mild Bethlem myopathy phenotype. This study confirms the occurrence of recessive inherited Bethlem myopathy and expands the genetic heterogeneity of this group of muscle diseases.
Collapse
Affiliation(s)
- Filomena Caria
- Center for Neuromuscular Diseases, Unit of Neurology, ASST "Spedali Civili", Brescia, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Italy
| | | | - Anna Pichiecchio
- IRCCS Mondino Foundation, Pavia, Italy; University of Pavia, Italy
| | - Rachele Rossi
- UOL of Medical Genetics, University-Hospital S'Anna- Ferrara, Italy
| | - Paola Rimessi
- UOL of Medical Genetics, University-Hospital S'Anna- Ferrara, Italy
| | | | - Serena Gallo Cassarino
- Center for Neuromuscular Diseases, Unit of Neurology, ASST "Spedali Civili", Brescia, Italy
| | - Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, Italy
| | - Anna Galvagni
- Center for Neuromuscular Diseases, Unit of Neurology, ASST "Spedali Civili", Brescia, Italy
| | | | - Alessandro Padovani
- Center for Neuromuscular Diseases, Unit of Neurology, ASST "Spedali Civili", Brescia, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases, Unit of Neurology, ASST "Spedali Civili", Brescia, Italy.
| |
Collapse
|
12
|
Žaloudíková M, Eckhardt A, Vytášek R, Uhlík J, Novotný T, Bačáková L, Musílková J, Hampl V. Decreased collagen VI in the tunica media of pulmonary vessels during exposure to hypoxia: a novel step in pulmonary arterial remodeling. Pulm Circ 2019; 9:2045894019860747. [PMID: 31187694 PMCID: PMC6625215 DOI: 10.1177/2045894019860747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The development of hypoxic pulmonary hypertension is characterized by the
structural remodeling of pulmonary arteries. However, the relationship between
changes of arterial cells and the extracellular matrix remains unclear. We
focused on the evaluation of the non-fibrillar collagen changes in tunica media
induced by a four-day exposure to hypoxia and the correlation of these changes
with the pulmonary arterial wall structure modifications. We used 20 adult male
Wistar rats. The amount and localization of collagen VI, collagen IV, matrix
metalloproteinase (MMP) 2, and MMP9 were tested in pulmonary arteries
immunohistochemically. Two-dimensional electrophoresis and messenger RNA (mRNA)
expression were used for the subsequent comparison of protein changes in
arterial tunica media cells (normoxia/hypoxia). Collagen VI was significantly
reduced strictly in the tunica media of conduit arteries of hypoxia-exposed
rats; however, its mRNA increased. The amount of collagen IV and its mRNA were
not altered. We detected a significant increase of MMP9 strictly in the tunica
media. In addition, a significantly increased number of MMP9-positive cells
surrounded the arteries. MMP2 and the expression of its mRNA were decreased in
tunica media. We conclude that the loss of collagen VI is an important step
characterizing the remodeling of pulmonary arteries. It could influence the
phenotypic status and behavior of smooth muscle cells and modify their
proliferation and migration.
Collapse
Affiliation(s)
- Marie Žaloudíková
- 1 Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adam Eckhardt
- 2 Institute of Physiology of the Czech Academy of Sciences v.v.i., Prague, Czech Republic
| | - Richard Vytášek
- 1 Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Uhlík
- 3 Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomáš Novotný
- 3 Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,4 Department of Orthopedics, Masaryk Hospital, Ústí nad Labem, Czech Republic.,5 Faculty of Health Studies, Jan Evangelista Purkyně University in Ústí nad Labem, Czech Republic
| | - Lucie Bačáková
- 2 Institute of Physiology of the Czech Academy of Sciences v.v.i., Prague, Czech Republic
| | - Jana Musílková
- 2 Institute of Physiology of the Czech Academy of Sciences v.v.i., Prague, Czech Republic
| | - Václav Hampl
- 1 Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Lamandé SR, Bateman JF. Genetic Disorders of the Extracellular Matrix. Anat Rec (Hoboken) 2019; 303:1527-1542. [PMID: 30768852 PMCID: PMC7318566 DOI: 10.1002/ar.24086] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Mutations in the genes for extracellular matrix (ECM) components cause a wide range of genetic connective tissues disorders throughout the body. The elucidation of mutations and their correlation with pathology has been instrumental in understanding the roles of many ECM components. The pathological consequences of ECM protein mutations depend on its tissue distribution, tissue function, and on the nature of the mutation. The prevalent paradigm for the molecular pathology has been that there are two global mechanisms. First, mutations that reduce the production of ECM proteins impair matrix integrity largely due to quantitative ECM defects. Second, mutations altering protein structure may reduce protein secretion but also introduce dominant negative effects in ECM formation, structure and/or stability. Recent studies show that endoplasmic reticulum (ER) stress, caused by mutant misfolded ECM proteins, makes a significant contribution to the pathophysiology. This suggests that targeting ER‐stress may offer a new therapeutic strategy in a range of ECM disorders caused by protein misfolding mutations. Anat Rec, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville Victoria, Australia
| | - John F Bateman
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville Victoria, Australia
| |
Collapse
|
14
|
Rhodoptilometrin, a Crinoid-Derived Anthraquinone, Induces Cell Regeneration by Promoting Wound Healing and Oxidative Phosphorylation in Human Gingival Fibroblast Cells. Mar Drugs 2019; 17:md17030138. [PMID: 30818790 PMCID: PMC6470796 DOI: 10.3390/md17030138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023] Open
Abstract
Gingival recession (GR) potentially leads to the exposure of tooth root to the oral cavity microenvironment and increases susceptibility to dental caries, dentin hypersensitivity, and other dental diseases. Even though many etiological factors were reported, the specific mechanism of GR is yet to be elucidated. Given the species richness concerning marine biodiversity, it could be a treasure trove for drug discovery. In this study, we demonstrate the effects of a marine compound, (+)-rhodoptilometrin from crinoid, on gingival cell migration, wound healing, and oxidative phosphorylation (OXPHOS). Experimental results showed that (+)-rhodoptilometrin can significantly increase wound healing, migration, and proliferation of human gingival fibroblast cells, and it does not have effects on oral mucosa fibroblast cells. In addition, (+)-rhodoptilometrin increases the gene and protein expression levels of focal adhesion kinase (FAK), fibronectin, and type I collagen, changes the intracellular distribution of FAK and F-actin, and increases OXPHOS and the expression levels of complexes I~V in the mitochondria. Based on our results, we believe that (+)-rhodoptilometrin might increase FAK expression and promote mitochondrial function to affect cell migration and promote gingival regeneration. Therefore, (+)-rhodoptilometrin may be a promising therapeutic agent for GR.
Collapse
|
15
|
Lansky Z, Mutsafi Y, Houben L, Ilani T, Armony G, Wolf SG, Fass D. 3D mapping of native extracellular matrix reveals cellular responses to the microenvironment. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 1:100002. [PMID: 32055794 PMCID: PMC7001979 DOI: 10.1016/j.yjsbx.2018.100002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 01/23/2023]
Abstract
Cells and extracellular matrix (ECM) are mutually interdependent: cells guide self-assembly of ECM precursors, and the resulting ECM architecture supports and instructs cells. Though bidirectional signaling between ECM and cells is fundamental to cell biology, it is challenging to gain high-resolution structural information on cellular responses to the matrix microenvironment. Here we used cryo-scanning transmission electron tomography (CSTET) to reveal the nanometer- to micron-scale organization of major fibroblast ECM components in a native-like context, while simultaneously visualizing internal cell ultrastructure including organelles and cytoskeleton. In addition to extending current models for collagen VI fibril organization, three-dimensional views of thick cell regions and surrounding matrix showed how ECM networks impact the structures and dynamics of intracellular organelles and how cells remodel ECM. Collagen VI and fibronectin were seen to distribute in fundamentally different ways in the cell microenvironment and perform distinct roles in supporting and interacting with cells. This work demonstrates that CSTET provides a new perspective for the study of ECM in cell biology, highlighting labeled extracellular elements against a backdrop of unlabeled but morphologically identifiable cellular features with nanometer resolution detail.
Collapse
Affiliation(s)
- Zipora Lansky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gad Armony
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author.
| |
Collapse
|
16
|
Implication of SPARC in the modulation of the extracellular matrix and mitochondrial function in muscle cells. PLoS One 2018; 13:e0192714. [PMID: 29420632 PMCID: PMC5805355 DOI: 10.1371/journal.pone.0192714] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 01/29/2018] [Indexed: 01/16/2023] Open
Abstract
Secreted protein, acidic and rich in cysteine (SPARC) is differentially associated with cell proliferation and extracellular matrix (ECM) assembly. We show here the effect of exogenous SPARC inhibition/induction on ECM and mitochondrial proteins expression and on the differentiation of C2C12 cells. The cells were cultured in growth medium (GM) supplemented with different experimental conditions. The differentiation of myoblasts was studied for 5 days, the expressions of ECM and mitochondrial proteins were measured and the formation of the myotubes was quantified after exogenous induction/inhibition of SPARC. The results indicate that the addition of recombinant SPARC protein (rSPARC) in cell culture medium increased the differentiation of C2C12 myoblasts and myogenin expression during the myotube formation. However, the treatment with antibody specific for SPARC (anti-SPARC) prevented the differentiation and decreased myogenin expression. The induction of SPARC in the proliferating and differentiating C2C12 cells increased collagen 1a1 protein expression, whereas the inhibition decreased it. The effects on fibronectin protein expression were opposite. Furthermore, the addition of rSPARC in C2C12 myoblast increased the expression of mitochondrial proteins, ubiquinol-cytochrome c reductase core protein II (UQCRC2) and succinate dehydrogenase iron-sulfur subunit (SDHB), whereas the anti-SPARC decreased them. During the differentiation, only the anti-SPARC had the effects on mitochondrial proteins, NADH dehydrogenase ubiquinone 1 beta subcomplex subunit 8 (NADHB8), SDHB and cytochrome c oxidase 1 (MTCO1). Thus, SPARC plays a crucial role in the proliferation and differentiation of C2C12 and may be involved in the link between the ECM remodeling and mitochondrial function.
Collapse
|
17
|
Lamandé SR, Bateman JF. Collagen VI disorders: Insights on form and function in the extracellular matrix and beyond. Matrix Biol 2017; 71-72:348-367. [PMID: 29277723 DOI: 10.1016/j.matbio.2017.12.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/18/2022]
Abstract
Mutations in the three canonical collagen VI genes, COL6A1, COL6A2 and COL6A3, cause a spectrum of muscle disease from Bethlem myopathy at the mild end to the severe Ullrich congenital muscular dystrophy. Mutations can be either dominant or recessive and the resulting clinical severity is influenced by the way mutations impact the complex collagen VI assembly process. Most mutations are found towards the N-terminus of the triple helical collagenous domain and compromise extracellular microfibril assembly. Outside the triple helix collagen VI is highly polymorphic and discriminating mutations from rare benign changes remains a major diagnostic challenge. Collagen VI deficiency alters extracellular matrix structure and biomechanical properties and leads to increased apoptosis and oxidative stress, decreased autophagy, and impaired muscle regeneration. Therapies that target these downstream consequences have been tested in a collagen VI null mouse and also in small human trials where they show modest clinical efficacy. An important role for collagen VI in obesity, cancer and diabetes is emerging. A major barrier to developing effective therapies is the paucity of information about how collagen VI deficiency in the extracellular matrix signals the final downstream consequences - the receptors involved and the intracellular messengers await further characterization.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia.
| | - John F Bateman
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
18
|
Hoffmann C, Weigert C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029793. [PMID: 28389517 DOI: 10.1101/cshperspect.a029793] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise stimulates the release of proteins with autocrine, paracrine, or endocrine functions produced in skeletal muscle, termed myokines. Based on the current state of knowledge, the major physiological function of myokines is to protect the functionality and to enhance the exercise capacity of skeletal muscle. Myokines control adaptive processes in skeletal muscle by acting as paracrine regulators of fuel oxidation, hypertrophy, angiogenesis, inflammatory processes, and regulation of the extracellular matrix. Endocrine functions attributed to myokines are involved in body weight regulation, low-grade inflammation, insulin sensitivity, suppression of tumor growth, and improvement of cognitive function. Muscle-derived regulatory RNAs and metabolites, as well as the design of modified myokines, are promising novel directions for treatment of chronic diseases.
Collapse
Affiliation(s)
- Christoph Hoffmann
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cora Weigert
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
19
|
Endicott J, Holden P, Fitzgerald J. Authentication of collagen VI antibodies. BMC Res Notes 2017; 10:358. [PMID: 28755659 PMCID: PMC5534245 DOI: 10.1186/s13104-017-2674-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/22/2017] [Indexed: 11/11/2022] Open
Abstract
Background Collagen VI is a ubiquitously-expressed macromolecule that forms unique microfibrillar assemblies in the extracellular matrix. Mutations in the COL6A1, COL6A2 and COL6A3 genes result in congenital muscular dystrophy, arguing that collagen is critical for skeletal muscle development and function. Antibodies against collagen VI are important clinical and diagnostic tools in muscular dystrophy. They are used to confirm genetic findings by detecting abnormalities in the distribution, organization and overall levels of collagen VI in cells and tissues isolated from patients. Methods Many antibodies have been raised against tissue-purified collagen VI and individual collagen VI chains, however few have been properly validated for sensitivity and chain specificity. To address this deficiency, we compared the ability of 23 commercially-available antibodies to detect extracellular collagen VI by immunohistochemistry on frozen tissue sections. To determine chain specificity, immunoblot analyses were conducted on cell lysates isolated from cells transfected with cDNAs for each individual chain and cells expressing all three chains together. Results Our analyses identified 15 antibodies that recognized tissue collagen VI by immunohistochemistry at varying intensities and 20 that successfully detected collagen VI by immunoblotting. Three antibodies failed to recognize collagen VI by either method under the conditions tested. All chain-specific antibodies that worked by immunoblotting specifically recognized their correct chain, and no other chains. Conclusions This series of side-by-side comparisons reveal at least two antibodies specific for each chain that work well for immunohistochemistry on frozen sections. This validation study expands the repertoire of antibodies available for muscular dystrophy studies caused by defects in collagen VI. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2674-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamie Endicott
- Bone and Joint Center, Department of Orthopedic Surgery, Henry Ford Hospital System, Integrative Biosciences Building, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Paul Holden
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jamie Fitzgerald
- Bone and Joint Center, Department of Orthopedic Surgery, Henry Ford Hospital System, Integrative Biosciences Building, 6135 Woodward Ave, Detroit, MI, 48202, USA. .,Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
20
|
Radev Z, Hermel JM, Elipot Y, Bretaud S, Arnould S, Duchateau P, Ruggiero F, Joly JS, Sohm F. A TALEN-Exon Skipping Design for a Bethlem Myopathy Model in Zebrafish. PLoS One 2015. [PMID: 26221953 PMCID: PMC4519248 DOI: 10.1371/journal.pone.0133986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Presently, human collagen VI-related diseases such as Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) remain incurable, emphasizing the need to unravel their etiology and improve their treatments. In UCMD, symptom onset occurs early, and both diseases aggravate with ageing. In zebrafish fry, morpholinos reproduced early UCMD and BM symptoms but did not allow to study the late phenotype. Here, we produced the first zebrafish line with the human mutation frequently found in collagen VI-related disorders such as UCMD and BM. We used a transcription activator-like effector nuclease (TALEN) to design the col6a1ama605003-line with a mutation within an essential splice donor site, in intron 14 of the col6a1 gene, which provoke an in-frame skipping of exon 14 in the processed mRNA. This mutation at a splice donor site is the first example of a template-independent modification of splicing induced in zebrafish using a targetable nuclease. This technique is readily expandable to other organisms and can be instrumental in other disease studies. Histological and ultrastructural analyzes of homozygous and heterozygous mutant fry and 3 months post-fertilization (mpf) fish revealed co-dominantly inherited abnormal myofibers with disorganized myofibrils, enlarged sarcoplasmic reticulum, altered mitochondria and misaligned sarcomeres. Locomotion analyzes showed hypoxia-response behavior in 9 mpf col6a1 mutant unseen in 3 mpf fish. These symptoms worsened with ageing as described in patients with collagen VI deficiency. Thus, the col6a1ama605003-line is the first adult zebrafish model of collagen VI-related diseases; it will be instrumental both for basic research and drug discovery assays focusing on this type of disorders.
Collapse
Affiliation(s)
- Zlatko Radev
- UMS 1374, AMAGEN, INRA, Jouy en Josas, Domaine de Vilvert, France
- UMS 3504, AMAGEN, CNRS, Gif-sur-Yvette, France
| | - Jean-Michel Hermel
- UMR 9197, INRA-CASBAH team, NEURO-Psi, CNRS, Gif sur Yvette, France
- * E-mail: (FS); (JMH)
| | - Yannick Elipot
- UMR 9197, DECA team, NEURO-Psi, CNRS, Gif sur Yvette, France
| | - Sandrine Bretaud
- UMR 5242, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | | | - Florence Ruggiero
- UMR 5242, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | - Frédéric Sohm
- UMS 1374, AMAGEN, INRA, Jouy en Josas, Domaine de Vilvert, France
- UMS 3504, AMAGEN, CNRS, Gif-sur-Yvette, France
- * E-mail: (FS); (JMH)
| |
Collapse
|
21
|
Williams AS, Kang L, Wasserman DH. The extracellular matrix and insulin resistance. Trends Endocrinol Metab 2015; 26:357-66. [PMID: 26059707 PMCID: PMC4490038 DOI: 10.1016/j.tem.2015.05.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a highly-dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggests that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. In addition, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review addresses what is currently known about the ECM, integrins, and insulin action in the muscle, liver, and adipose tissue. Understanding how ECM remodeling and integrin signaling regulate insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Li Kang
- Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
22
|
|
23
|
Sabatelli P, Gualandi F, Bonaldo P, Merlini L. Detecting collagen VI in Bethlem myopathy. J Biol Chem 2015; 290:8011. [PMID: 25795730 DOI: 10.1074/jbc.l115.639088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Patrizia Sabatelli
- Institute of molecular Genetics-CNR, SC Laboratory of Musculoskeletal Cell Biology, IOR, 40136 Bologna, Italy,
| | | | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy, and
| | - Luciano Merlini
- SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| |
Collapse
|