1
|
Zandona A, Madunić J, Miš K, Maraković N, Dubois-Geoffroy P, Cavaco M, Mišetić P, Padovan J, Castanho M, Jean L, Renard PY, Pirkmajer S, Neves V, Katalinić M. Biological response and cell death signaling pathways modulated by tetrahydroisoquinoline-based aldoximes in human cells. Toxicology 2023:153588. [PMID: 37419273 DOI: 10.1016/j.tox.2023.153588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The uncharged 3-hydroxy-2-pyridine aldoximes with protonatable tertiary amines are studied as antidotes in toxic organophosphates (OP) poisoning. Due to some of their specific structural features, we hypothesize that these compounds could exert diverse biological activity beyond their main scope of application. To examine this further, we performed an extensive cell-based assessment to determine their effects on human cells (SH-SY5Y, HEK293, HepG2, HK-2, myoblasts and myotubes) and possible mechanism of action. As our results indicated, aldoxime having a piperidine moiety did not induce significant toxicity up to 300µM within 24hours, while those with a tetrahydroisoquinoline moiety, in the same concentration range, showed time-dependent effects and stimulated mitochondria-mediated activation of the intrinsic apoptosis pathway through ERK1/2 and p38-MAPK signaling and subsequent activation of initiator caspase 9 and executive caspase 3 accompanied with DNA damage as observed already after 4hour exposure. Mitochondria and fatty acid metabolism were also likely targets of 3-hydroxy-2-pyridine aldoximes with tetrahydroisoquinoline moiety, due to increased phosphorylation of acetyl-CoA carboxylase. In silico analysis predicted kinases as their most probable target class, while pharmacophores modeling additionally predicted the inhibition of a cytochrome P450cam. Overall, if the absence of significant toxicity for piperidine bearing aldoxime highlights the potential of its further studies in medical counter-measures, the observed biological activity of aldoximes with tetrahydroisoquinoline moiety could be indicative for future design of compounds either in a negative context in OP antidotes design, or in a positive one for design of compounds for the treatment of other phenomena like cell proliferating malignancies.
Collapse
Affiliation(s)
- Antonio Zandona
- Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb, Croatia.
| | - Josip Madunić
- Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb, Croatia.
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb, Croatia.
| | | | - Marco Cavaco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | | | | | - Miguel Castanho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Ludovic Jean
- Université Paris Cité, CNRS, INSERM, CiTCoM (UMR 8038), F-75006, Paris, France.
| | - Pierre-Yves Renard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Vera Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb, Croatia.
| |
Collapse
|
2
|
Vilella A, Romoli B, Bodria M, Pons S, Maskos U, Zoli M. Evidence for a protective effect of the loss of α4-containing nicotinic acetylcholine receptors on Aβ-related neuropathology in Tg2576 mice. Front Neurosci 2023; 17:1097857. [PMID: 37113156 PMCID: PMC10126303 DOI: 10.3389/fnins.2023.1097857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Loss of cholinergic neurons as well as α4β2* (* = containing) nicotinic acetylcholine receptors (nAChRs) is a prominent feature of Alzheimer's disease (AD). Specifically, amyloid β (Aβ), the principal pathogenic factor of AD, is a high affinity ligand for nAChRs. Yet, the pathophysiological role of nAChRs in AD is not well established. Methods In the present study, we have investigated the effects of the loss of α4* nAChRs on the histological alterations of the Tg2576 mouse model of AD (APPswe) crossing hemizygous APPswe mice with mice carrying the genetic inactivation of α4 nAChR subunit (α4KO). Results A global decrease in Aβ plaque load was observed in the forebrain of APPswe/α4KO mice in comparison with APPswe mice, that was particularly marked in neocortex of 15 month-old mice. At the same age, several alterations in synaptophysin immunoreactivity were observed in cortico-hippocampal regions of APPswe mice that were partially counteracted by α4KO. The analysis of the immunoreactivity of specific astroglia (glial fibrillary acidic protein, GFAP) and microglia (ionized calcium-binding adapter molecule, Iba1) markers showed an increase in the number as well as in the area occupied by these cells in APPswe mice that were partially counteracted by α4KO. Conclusion Overall, the present histological study points to a detrimental role of α4* nAChRs that may be specific for Aβ-related neuropathology.
Collapse
Affiliation(s)
- Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Antonietta Vilella,
| | - Benedetto Romoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Bodria
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stéphanie Pons
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Département de Neuroscience, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Département de Neuroscience, Paris, France
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Sinclair P, Kabbani N. Nicotinic receptor components of amyloid beta 42 proteome regulation in human neural cells. PLoS One 2022; 17:e0270479. [PMID: 35960729 PMCID: PMC9374227 DOI: 10.1371/journal.pone.0270479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is associated with chronic neurodegeneration often accompanied by elevated levels of the neurotoxic peptide amyloid-beta 1–42 (Aβ42) in the brain. Studies show that extracellular Aβ42 binds to various cell surface receptors including the human α7 nicotinic acetylcholine receptor (nAChR) and activates pathways of neurotoxicity leading to cell death. The α7 nAChR is thus considered a promising drug target for therapy against neurodegenerative disease such as AD. In this study, we use mass spectrometry-based label-free precursor ion quantification to identify proteins and pathways that are changed by a 72-hour treatment with Aβ42 or Aβ42 in the presence of the α7 nAChR blocker, α-bungarotoxin (Bgtx) in the human neuroblastoma SH-SY5Y cell line. Bioinformatic gene ontology enrichment analysis was used to identify and characterize proteins and pathways altered by Aβ42 presentation. The results support evidence on the involvement of mitochondrial proteins in Aβ42 responses and define potential mechanisms of α7 nAChR mediated amyloid toxicity. These findings can inform pharmacological strategies for drug design and treatment against amyloid disease.
Collapse
Affiliation(s)
- Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
- School of System Biology, George Mason University, Fairfax, VA, United States of America
- * E-mail:
| |
Collapse
|
4
|
Yang S, Yu C, Yang Z, Cui H, Wu Y, Liang Z, Liu Y, Shi X, Shao F, Zhao S, Tang Z. DL-3-n-butylphthalide-induced neuroprotection in rat models of asphyxia-induced cardiac arrest followed by cardiopulmonary resuscitation. J Cell Physiol 2021; 236:7464-7472. [PMID: 34061993 DOI: 10.1002/jcp.30442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022]
Abstract
Most patients that resuscitate successfully from cardiac arrest (CA) suffer from poor neurological prognosis. DL-3-n-butylphthalide (NBP) is known to have neuroprotective effects via multiple mechanisms. This study aimed to investigate whether NBP can decrease neurological impairment after CA. We studied the protective role of NBP in the hippocampus of a rat model of cardiac arrest induced by asphyxia. Thirty-nine rats were divided randomly into sham, control, and NBP groups. Rats in control and NBP groups underwent cardiopulmonary resuscitation (CPR) 6 min after asphyxia. NBP or vehicle (saline) was administered intravenously 10 min after the return of spontaneous circulation (ROSC). Ultrastructure of hippocampal neurons was observed under transmission electron microscope. NBP treatment improved neurological function up to 72 h after CA. The ultrastructural lesion in mitochondria recovered in the NBP-treated CA model. In conclusion, our study demonstrated multiple therapeutic benefits of NBP after CA.
Collapse
Affiliation(s)
- Song Yang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Emergency Medicine, Beijing Huairou Hospital, Beijing, China
| | - Changxiao Yu
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Cui
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yang Wu
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhen Liang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Liu
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xian Shi
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Emergency Medicine, Beijing Huairou Hospital, Beijing, China
| | - Fei Shao
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shen Zhao
- Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Medicine, Fujian Medical University, Fuzhou, China
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
5
|
Houchat JN, Cartereau A, Le Mauff A, Taillebois E, Thany SH. An Overview on the Effect of Neonicotinoid Insecticides on Mammalian Cholinergic Functions through the Activation of Neuronal Nicotinic Acetylcholine Receptors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093222. [PMID: 32384754 PMCID: PMC7246883 DOI: 10.3390/ijerph17093222] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Neonicotinoid insecticides are used worldwide and have been demonstrated as toxic to beneficial insects such as honeybees. Their effectiveness is predominantly attributed to their high affinity for insect neuronal nicotinic acetylcholine receptors (nAChRs). Mammalian neuronal nAChRs are of major importance because cholinergic synaptic transmission plays a key role in rapid neurotransmission, learning and memory processes, and neurodegenerative diseases. Because of the low agonist effects of neonicotinoid insecticides on mammalian neuronal nAChRs, it has been suggested that they are relatively safe for mammals, including humans. However, several lines of evidence have demonstrated that neonicotinoid insecticides can modulate cholinergic functions through neuronal nAChRs. Major studies on the influence of neonicotinoid insecticides on cholinergic functions have been conducted using nicotine low-affinity homomeric α7 and high-affinity heteromeric α4β2 receptors, as they are the most abundant in the nervous system. It has been found that the neonicotinoids thiamethoxam and clothianidin can activate the release of dopamine in rat striatum. In some contexts, such as neurodegenerative diseases, they can disturb the neuronal distribution or induce oxidative stress, leading to neurotoxicity. This review highlights recent studies on the mode of action of neonicotinoid insecticides on mammalian neuronal nAChRs and cholinergic functions.
Collapse
|
6
|
Transcriptome Profile of Nicotinic Receptor-Linked Sensitization of Beta Amyloid Neurotoxicity. Sci Rep 2020; 10:5696. [PMID: 32231242 PMCID: PMC7105468 DOI: 10.1038/s41598-020-62726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
Understanding the specific gene changes underlying the prodromic stages of Alzheimer’s disease pathogenesis will aid the development of new, targeted therapeutic strategies for this neurodegenerative disorder. Here, we employed RNA-sequencing to analyze global differential gene expression in a defined model nerve cell line expressing α4β2 nicotinic receptors (nAChRs), high-affinity targets for beta amyloid (Aβ). The nAChR-expressing neuronal cells were treated with nanomolar Aβ1–42 to gain insights into the molecular mechanisms underlying Aβ-induced neurotoxicity in the presence of this sensitizing target receptor. We identified 15 genes (out of 15,336) that were differentially expressed upon receptor-linked Aβ treatment. Genes up-regulated with Aβ treatment were associated with calcium signaling and axonal vesicle transport (including the α4 nAChR subunit, the calcineurin regulator RCAN3, and KIF1C of the kinesin family). Downregulated genes were associated with metabolic, apoptotic or DNA repair pathways (including APBA3, PARP1 and RAB11). Validation of the differential expression was performed via qRT-PCR and immunoblot analysis in the defined model nerve cell line and primary mouse neurons. Further verification was performed using immunocytochemistry. In conclusion, we identified apparent changes in gene expression on Aβ treatment in the presence of the sensitizing nAChRs, linked to early-stage Aβ-induced neurotoxicity, which may represent novel therapeutic targets.
Collapse
|
7
|
Yin P, Wang S, Wei Y, Wang X, Zhang J, Yin X, Feng J, Zhu M. Maresin1 Decreased Microglial Chemotaxis and Ameliorated Inflammation Induced by Amyloid-β42 in Neuron-Microglia Co-Culture Models. J Alzheimers Dis 2020; 73:503-515. [PMID: 31796671 DOI: 10.3233/jad-190682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Shuang Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yafen Wei
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jingdian Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Mendell AL, Creighton SD, Wilson HA, Jardine KH, Isaacs L, Winters BD, MacLusky NJ. Inhibition of 5α Reductase Impairs Cognitive Performance, Alters Dendritic Morphology and Increases Tau Phosphorylation in the Hippocampus of Male 3xTg-AD Mice. Neuroscience 2020; 429:185-202. [PMID: 31954826 DOI: 10.1016/j.neuroscience.2020.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Recent work has suggested that 5α-reduced metabolites of testosterone may contribute to the neuroprotection conferred by their parent androgen, as well as to sex differences in the incidence and progression of Alzheimer's disease (AD). This study investigated the effects of inhibiting 5α-reductase on object recognition memory (ORM), hippocampal dendritic morphology and proteins involved in AD pathology, in male 3xTg-AD mice. Male 6-month old wild-type or 3xTg-AD mice received daily injections of finasteride (50 mg/kg i.p.) or vehicle (18% β-cyclodextrin, 1% v/b.w.) for 20 days. Female wild-type and 3xTg-AD mice received only the vehicle. Finasteride treatment differentially impaired ORM in males after short-term (3xTg-AD only) or long-term (3xTg-AD and wild-type) retention delays. Dendritic spine density and dendritic branching of pyramidal neurons in the CA3 hippocampal subfield were significantly lower in 3xTg-AD females than in males. Finasteride reduced CA3 dendritic branching and spine density in 3xTg-AD males, to within the range observed in vehicle-treated females. In the CA1 hippocampal subfield, dendritic branching and spine density were reduced in both male and female 3xTg-AD mice, compared to wild type controls. Hippocampal amyloid β levels were substantially higher in 3xTg-AD females compared to both vehicle and finasteride-treated 3xTg-AD males. Site-specific Tau phosphorylation was higher in 3xTg-AD mice compared to sex-matched wild-type controls, increasing slightly after finasteride treatment. These results suggest that 5α-reduced neurosteroids may play a role in testosterone-mediated neuroprotection and may contribute to sex differences in the development and severity of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Boyer D Winters
- Psychology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
9
|
Yin P, Wang X, Wang S, Wei Y, Feng J, Zhu M. Maresin 1 Improves Cognitive Decline and Ameliorates Inflammation in a Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2019; 13:466. [PMID: 31680874 PMCID: PMC6803487 DOI: 10.3389/fncel.2019.00466] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative disease. Accumulating evidences suggest an active role of inflammation in the pathogenesis of AD. Inflammation resolution is an active process that terminates inflammation and facilitates the restoration of inflamed tissue to homeostasis. Resolution of inflammation has been shown to be conducted by a group of specialized pro-resolving lipid mediators (SPMs) including lipoxins, resolvins, protectins, and maresins (MaRs). Recent studies have demonstrated that failure of inflammation resolution can lead to chronic inflammation and, hence, contribute to AD progression. We have previously shown that MaR1 can improve neuronal survival and increase microglial phagocytosis of Aβ. However, the effects of MaR1 on animal models of AD have not been reported. In this study, we aim to investigate the effects of MaR1 on behavioral deficits and pathological changes in a mouse model of AD. Mice received bilateral injections of Aβ42 protein into the hippocampus, followed by administration of MaR1 by intra-cerebroventricular injection. The behavioral changes in the mice were analyzed using Morris water maze. Immunohistochemistry, Fluoro-Jade B (FJB) staining, cytometric beads array (CBA), and western blot analysis were used to demonstrate molecular changes in the mice hippocampus and cortex. Our results showed that MaR1 treatment significantly improved the cognitive decline, attenuated microglia and astrocyte activation. In addition, we found that MaR1 decreased the pro-inflammatory cytokines TNF-α, IL-6, and MCP-1 production induced by Aβ42 and increased the anti-inflammatory cytokines IL-2, IL-10 secretion with or without Aβ42 stimulation. Moreover, western blot results showed that MaR1 up-regulated the levels of proteins related to survival pathway including PI3K/AKT, ERK and down-regulated the levels of proteins associated with inflammation, autophagy, and apoptosis pathways such as p38, mTOR and caspase 3. To conclude, MaR1 improved the cognitive decline, ameliorated pro-inflammatory glia cells activation via improving survival, enhancing autophagy, inhibiting inflammation and apoptosis pathways. In conclusion, this study shows that inflammation resolution may be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Ping Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuang Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yafen Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Liang Z, Zhang B, Xu M, Morisseau C, Hwang SH, Hammock BD, Li QX. 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) Urea, a Selective and Potent Dual Inhibitor of Soluble Epoxide Hydrolase and p38 Kinase Intervenes in Alzheimer's Signaling in Human Nerve Cells. ACS Chem Neurosci 2019; 10:4018-4030. [PMID: 31378059 PMCID: PMC7028313 DOI: 10.1021/acschemneuro.9b00271] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. Neuroinflammation is a prevalent pathogenic stress leading to neuronal death in AD. Targeting neuroinflammation to keep neurons alive is an attractive strategy for AD therapy. 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) is a potent inhibitor of soluble epoxide hydrolase (sEH) and can enter into the brain. It has good efficacy on a wide range of chronic inflammatory diseases in preclinical animal models. However, the anti-neuroinflammatory effects and molecular mechanisms of TPPU for potential AD interventions remain elusive. With an aim to develop multitarget therapeutics for neurodegenerative diseases, we screened TPPU against sEH from different mammalian species and a broad panel of human kinases in vitro for potential new targets relevant to neuroinflammation in AD. TPPU inhibits both human sEH and p38β kinase, two key regulators of inflammation, with nanomolar potencies and distinct selectivity. To further elucidate the molecular mechanisms, differentiated SH-SY5Y human neuroblastoma cells were used as an AD cell model, and we investigated the neuroprotection of TPPU against amyloid oligomers. We found that TPPU effectively prevents neuronal death by mitigating amyloid neurotoxicity, tau hyperphosphorylation, and mitochondrial dysfunction, promoting neurite outgrowth and suppressing activation and nuclear translocation of NF-κB for inflammatory responses in human nerve cells. The results indicate that TPPU is a potent and selective dual inhibitor of sEH and p38β kinase, showing a synergistic action in multiple AD signaling pathways. Our study sheds light upon TPPU and other sEH/p38β dual inhibitors for potential pharmacological interventions in AD.
Collapse
Affiliation(s)
- Zhibin Liang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Bei Zhang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Meng Xu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
11
|
Wei P, Yang F, Zheng Q, Tang W, Li J. The Potential Role of the NLRP3 Inflammasome Activation as a Link Between Mitochondria ROS Generation and Neuroinflammation in Postoperative Cognitive Dysfunction. Front Cell Neurosci 2019; 13:73. [PMID: 30873011 PMCID: PMC6401615 DOI: 10.3389/fncel.2019.00073] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is commonly observed in perioperative care following major surgery and general anesthesia in elderly individuals. No preventive or interventional agents have been established so far. Although the role of interleukin-1β (IL-1β)-mediated neuroinflammation following surgery and anesthesia is strongly implicated in POCD, the exact mechanism of action remains to be explored. Growing evidence has shown that mitochondria-derived reactive oxygen species (mtROS) are closely linked to IL-1β expression through a redox sensor known as the nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. Therefore, we hypothesize that the mechanisms underlying POCD involve the mtROS/NLRP3 inflammasome/IL-1β signaling pathway. Furthermore, we speculate that cholinergic anti-inflammatory pathway induced by α7 nicotinic acetylcholine receptor (a7nAChR) may be the potential upstream of mtROS/NLRP3 inflammasome/IL-1β signaling pathway in POCD. For validating the hypotheses, we provide experimental plan involving different paradigms namely; microglial cells and behavioral studies. The link between mtROS, the NLRP3 inflammasome, and IL-1β within and between these different stages in combination with mtROS and NLRP3 inflammasome agonists and inhibitors could be explored using techniques, such as knockout mice, small interference ribonucleic acid, flow cytometry, co-immunoprecipitation, and the Morris Water Maze test. We conclude that the NLRP3 inflammasome is a new preventive and therapeutic target for POCD.
Collapse
Affiliation(s)
- Penghui Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Fan Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China.,Department of Anesthesiology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Zheng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Wenxi Tang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| |
Collapse
|
12
|
Mendell AL, MacLusky NJ. The testosterone metabolite 3α-androstanediol inhibits oxidative stress-induced ERK phosphorylation and neurotoxicity in SH-SY5Y cells through an MKP3/DUSP6-dependent mechanism. Neurosci Lett 2018; 696:60-66. [PMID: 30552945 DOI: 10.1016/j.neulet.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Testosterone exerts neuroprotective effects on the brain, but the mechanisms by which these effects are exerted appear to be different in males and females. While in females they involve local conversion to estradiol, in males they may be androgen receptor-dependent, or mediated through metabolism to neurosteroids such as 5α-androstane-3α,17β-diol (3α-diol), which acts through different mechanisms than testosterone itself. Recently, we demonstrated that 3α-diol can protect neurons and neuronal-like cells against oxidative stress-induced neurotoxicity associated with prolonged phosphorylation of the extracellular signal-regulated kinase (ERK). The mechanism(s) responsible for these effects remain unknown. In the present study, we sought to determine whether the ERK-specific phosphatase, mitogen-activated protein kinase phosphatase 3/dual specificity phosphatase 6 (MKP3/DUSP6), is involved in the cytoprotective effects of 3α-diol in SH-SY5Y human female neuroblastoma cells. 3α-diol inhibited ERK phosphorylation and ameliorated cell death induced by the oxidative stressor hydrogen peroxide (H2O2). These protective effects were significantly reduced by pre-treatment with the MKP3/DUSP6 inhibitor BCI. In addition, H2O2 decreased expression of MKP3/DUSP6, and this was prevented by co-treatment with 3α-diol. These findings suggest that the protective effects of 3α-diol are mediated through regulation of ERK phosphorylation in neurotoxic conditions and indicate that these effects may be exerted through modulation of MKP3/DUSP6. Targeting the regulation of MKP3/DUSP6 may be beneficial in reducing toxicity under conditions of oxidative stress.
Collapse
Affiliation(s)
- Ari Loren Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Neil James MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
13
|
Discovery, cocrystallization and biological evaluation of novel piperidine derivatives as high affinity Ls-AChBP ligands possessing α7 nAChR activities. Eur J Med Chem 2018; 160:37-48. [PMID: 30317024 DOI: 10.1016/j.ejmech.2018.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/05/2018] [Accepted: 09/30/2018] [Indexed: 11/23/2022]
Abstract
A series of novel pyridine-substituted piperidine derivatives were discovered as low nanomolar Ls-AChBP ligands with α7 nAChR partial agonism or antagonism activities. A high-resolution antagonist-bound Ls-AChBP complex was successfully resolved with a classic Loop C opening phenomenon and unique sulfur-π interactions which deviated from our previous docking mode to a large extent. With the knowledge of the co-complex, 27 novel piperidine derivatives were designed and synthesized. The structure-activity relationships (SARs) of the aromatic and pyridine regions were well established and binding modes were illustrated with the help of molecular docking which indicated that interactions with Trp 143 and the "water bridge" are essential for the high binding affinities. Halogen bonding as well as the space around 5'- or 6'- position of the pyridine ring was also proposed to influence the binding conformation of the compounds. Notably, two enantiomers of compound 2 showed opposite functions toward α7 nAChR and compound (S)-2 showed sub-nanomolar affinity (Ki = 0.86 nM) on Ls-AChBP and partial agonism (pEC50 = 4.69 ± 0.11,Emax = 36.1%) on α7 nAChR with reasonable pharmacokinetics (PK) properties and fine ability of blood-brain-barrier (BBB) penetration. This study provided promising hits to develop candidates targeting nAChR-related CNS diseases.
Collapse
|
14
|
Mendell AL, Chung BY, Creighton CE, Kalisch BE, Bailey CD, MacLusky NJ. Neurosteroid metabolites of testosterone and progesterone differentially inhibit ERK phosphorylation induced by amyloid β in SH-SY5Y cells and primary cortical neurons. Brain Res 2018; 1686:83-93. [DOI: 10.1016/j.brainres.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/12/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
|
15
|
Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z, Chang H, Chao J, Yao H. Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling-Induced Cognitive Impairment and Depressive-Like Behavior. Front Behav Neurosci 2017; 11:203. [PMID: 29093670 PMCID: PMC5651248 DOI: 10.3389/fnbeh.2017.00203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is a chronic neurological disease which is usually associated with psychiatric comorbidities. Depsression and cognition impairment are considered to be the most common psychiatric comorbidities in epilepsy patients. However, the specific contribution of epilepsy made to these psychiatric comorbidities remains largely unknown. Here we use pentylenetetrazole (PTZ) kindling, a chronic epilepsy model, to identify neuronal nitric oxide synthase (nNOS) as a signaling molecule triggering PTZ kindling-induced cognitive impairment and depressive-like behavior. Furthermore, we identified that both hippocampal MAPK and PI3K/AKT signaling pathways were activated in response to PTZ kindling, and the increased MAPK and PI3K/AKT signaling activation was paralleled by increased level of reactive oxygen species (ROS) in the hippocampus. However, the PTZ kindling-induced MAPK, PI3K/AKT signaling activities and the ROS level were attenuated by nNOS gene deficiency, suggesting that nNOS may act through ROS-mediated MAPK and PI3K/AKT signaling pathways to trigger cognition deficit and depressive-like behavior in PTZ-kindled mice. Our findings thus define a specific mechanism for chronic epilepsy-induced cognitive impairment and depressive-like behavior, and identify a potential therapeutic target for psychiatric comorbidities in chronic epilepsy patients.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Rongrong Huang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Zhengrong Xia
- Analysis and Test Center of Nanjing Medical University, Nanjing, China
| | - Huanhuan Chang
- Nanjing Biomedical Research Institute of Nanjing University, Nanjing, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
16
|
Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, Deng Y. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res 2017; 42:2326-2335. [PMID: 28382596 DOI: 10.1007/s11064-017-2250-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/22/2017] [Accepted: 03/25/2017] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to explore how liraglutide affects AD-like pathology and cognitive function in APP/PS1/Tau triple transgenic (3 × Tg) Alzheimer disease (AD) model mice. Male 3 × Tg mice and C57BL/6 J mice were treated for 8 weeks with liraglutide (300 μg/kg/day, subcutaneous injection) or saline. Levels of phosphorylated tau, neurofilaments (NFs), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in brain tissues were assessed with western blots. Fluoro-Jade-B labeling were applied to detect pathological changes. The Morris water maze (MWM) was used to assess the spatial learning and memory. Liraglutide decreased levels of hyperphosphorylated tau and NFs in 3 × Tg liraglutide-treated (Tg + LIR) mice, increased ERK phosphorylation, and decreased JNK phosphorylation. Liraglutide also decreased the number of degenerative neurons in the hippocampus and cortex of Tg + LIR mice, and shortened their escape latencies and increased their hidden platform crossings in the MWM task. Liraglutide did not significantly affect the animals' body weight (BW) or fasting blood glucose. Liraglutide can reduce hyperphosphorylation of tau and NFs and reduce neuronal degeneration, apparently through alterations in JNK and ERK signaling, which may be related to its positive effects on AD-like learning and memory impairment.
Collapse
Affiliation(s)
- Shuyi Chen
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Sun
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, China
| | - Ai Guo
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanlin Chen
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rongxia Fu
- Food science and Biological Engineering Department, Tianjin Agriculture University, Tianjin, China
| | - Yanqiu Deng
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China. .,, No. 22, Qi Xiang Tai Road, He Ping District, Tianjin, China.
| |
Collapse
|
17
|
Sultzer DL, Melrose RJ, Riskin-Jones H, Narvaez TA, Veliz J, Ando TK, Juarez KO, Harwood DG, Brody AL, Mandelkern MA. Cholinergic Receptor Binding in Alzheimer Disease and Healthy Aging: Assessment In Vivo with Positron Emission Tomography Imaging. Am J Geriatr Psychiatry 2017; 25:342-353. [PMID: 28162919 DOI: 10.1016/j.jagp.2016.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To compare regional nicotinic cholinergic receptor binding in older adults with Alzheimer disease (AD) and healthy older adults in vivo and to assess relationships between receptor binding and clinical symptoms. METHODS Using cross-sectional positron emission tomography (PET) neuroimaging and structured clinical assessment, outpatients with mild to moderate AD (N = 24) and healthy older adults without cognitive complaints (C group; N = 22) were studied. PET imaging of α4β2* nicotinic cholinergic receptor binding using 2-[18F]fluoro-3-(2(S)azetidinylmethoxy)pyridine (2FA) and clinical measures of global cognition, attention/processing speed, verbal memory, visuospatial memory, and neuropsychiatric symptoms were used. RESULTS 2FA binding was lower in the AD group compared with the C group in the medial thalamus, medial temporal cortex, anterior cingulate, insula/opercula, inferior caudate, and brainstem (p < 0.05, corrected cluster), but binding was not associated with cognition. The C group had significant inverse correlations between 2FA binding in the thalamus (left: rs = -0.55, p = 0.008; right: rs = -0.50, p = 0.02; N = 22) and hippocampus (left: rs = -0.65, p = 0.001; right: rs = -0.55, p = 0.009; N = 22) and the Trails A score. The AD group had inverse correlation between 2FA binding in anterior cingulate (left: rs = -0.50, p = 0.01; right: rs = -0.50, p = 0.01; N = 24) and Neurobehavioral Rating Scale agitation/disinhibition factor score. CONCLUSION Cholinergic receptor binding is reduced in specific brain regions in mild to moderate AD and is related to neuropsychiatric symptoms. Among healthy older adults, lower receptor binding may be associated with slower processing speed. Cholinergic receptor binding in vivo may reveal links to other key brain changes associated with aging and AD and may provide a potential molecular treatment target.
Collapse
Affiliation(s)
- David L Sultzer
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA.
| | - Rebecca J Melrose
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Hannah Riskin-Jones
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Theresa A Narvaez
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Joseph Veliz
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Timothy K Ando
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Kevin O Juarez
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Dylan G Harwood
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Arthur L Brody
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Mark A Mandelkern
- Imaging Service, VA Greater Los Angeles Healthcare Center, Los Angeles, CA; Department of Physics, University of California-Irvine, Irvine, CA
| |
Collapse
|
18
|
Franco R, Martínez-Pinilla E, Navarro G, Zamarbide M. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer's disease. Prog Neurobiol 2017; 149-150:21-38. [PMID: 28189739 DOI: 10.1016/j.pneurobio.2017.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 02/08/2023]
Abstract
Despite efforts to understand the mechanism of neuronal cell death, finding effective therapies for neurodegenerative diseases is still a challenge. Cognitive deficits are often associated with neurodegenerative diseases. Remarkably, in the absence of consensus biomarkers, diagnosis of diseases such as Alzheimer's still relies on cognitive tests. Unfortunately, all efforts to translate findings in animal models to the patients have been unsuccessful. Alzheimer's disease may be addressed from two different points of view, neuroprotection or cognitive enhancement. Based on recent data, the mammalian target of rapamycin (mTOR) pathway arises as a versatile player whose modulation may impact on mechanisms of both neuroprotection and cognition. Whereas direct targeting of mTOR does not seem to constitute a convenient approach in drug discovery, its indirect modulation by other signaling pathways seems promising. In fact, G-protein-coupled receptors (GPCRs) remain the most common 'druggable' targets and as such pharmacological manipulation of GPCRs with selective ligands may modulate phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), mitogen-activated protein (MAP) kinase and mTOR signaling pathways. Thus, GPCRs become important targets for potential drug treatments in different neurodegenerative disorders including, but not limited to, Alzheimer's disease. GPCR-mediated modulation of mTOR may take advantage of different GPCRs coupled to different G-dependent and G-independent signal transduction routes, of functional selectivity and/or of biased agonism. Signals mediated by GPCRs may act as coincidence detectors to achieve different benefits in different stages of the neurodegenerative disease.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | |
Collapse
|
19
|
Mendell AL, Creighton CE, Kalisch BE, MacLusky NJ. 5α-Androstane-3α,17β-Diol Inhibits Neurotoxicity in SH-SY5Y Human Neuroblastoma Cells and Mouse Primary Cortical Neurons. Endocrinology 2016; 157:4570-4578. [PMID: 27754784 DOI: 10.1210/en.2016-1508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Low free T levels in men are associated with age-related cognitive decline and increased risk for neurotoxicity, resulting in disease. The mechanisms underlying these observations remain poorly defined. Although rapid, androgen receptor-dependent activation of ERK has been postulated as a neurotrophic and neuroprotective mechanism, actions of T metabolites such as 5α-androstane-3α,17β-diol (3α-diol) may also be involved. We investigated the influence of 3α-diol on the induction of ERK phosphorylation in SH-SY5Y human female neuroblastoma cells and primary cortical neurons from male and female mice. In SH-SY5Y cells, ERK phosphorylation was induced by 10 nM DHT, epidermal growth factor, hydrogen peroxide (H2O2), and acetylcholine. The addition of 10 nM 3α-diol, which did not itself activate ERK, significantly inhibited ERK phosphorylation induced by DHT, epidermal growth factor, or H2O2, but not acetylcholine. In both SH-SY5Y cells and primary cortical neurons, prolonged ERK phosphorylation and caspase-3 cleavage resulting from amyloid β-peptide 1-42 (Aβ42) exposure were inhibited by cotreatment with 3α-diol. 3α-diol also reduced the loss in cellular viability induced by Aβ42 or H2O2 in SH-SY5Y cells. These data suggest that T-mediated neuroprotection may occur via two distinct but complementary mechanisms: an initial rapid activation of ERK phosphorylation, followed by modulation via 3α-diol of the potentially adverse consequences of prolonged ERK activation.
Collapse
Affiliation(s)
- A L Mendell
- Department of Biomedical Sciences (A.L.M., C.E.C., B.E.K., N.J.M.), Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - C E Creighton
- Department of Biomedical Sciences (A.L.M., C.E.C., B.E.K., N.J.M.), Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - B E Kalisch
- Department of Biomedical Sciences (A.L.M., C.E.C., B.E.K., N.J.M.), Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Neil J MacLusky
- Department of Biomedical Sciences (A.L.M., C.E.C., B.E.K., N.J.M.), Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
20
|
Yang B, Yang YS, Yang N, Li G, Zhu HL. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors. Sci Rep 2016; 6:27571. [PMID: 27273260 PMCID: PMC4897788 DOI: 10.1038/srep27571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/23/2016] [Indexed: 12/31/2022] Open
Abstract
A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future.
Collapse
Affiliation(s)
- Bing Yang
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Shun Yang
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Na Yang
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| |
Collapse
|